Effect of Inoculation with Lactiplantibacillus plantarum and Cellulase on the Quality of Mulberry Silage
Abstract
1. Introduction
2. Materials and Methods
2.1. Silage Prepartion
2.2. Mulberry Silage Chemical Components, Fermentation Characteristics, and Microbiological Analyses
2.3. Bacterial Community Analysis
2.4. Statistical Analysis
3. Results
3.1. Changes in Nutritional Quality of Mulberry Branches and Leaves During Silage Fermentation
3.2. Changes in Fermentation Quality of Mulberry Branches and Leaves During Silage Fermentation
3.3. Change in Microorganism Number During Silage Fermentation of Mulberry Branch and Leaf
3.4. Alpha Diversity Analysis of Mulberry Twig and Leaf Silage and Beta Diversity Analysis
3.5. Analysis of the Bacterial Community Composition of the Branch and Leaf Silage Microbiome
4. Discussion
4.1. Effect of L. plantarum and Cellulase on the Nutritional Quality, Fermentation Characteristics, and Microorganism Count of Mulberry Silage
4.2. Effect of L. plantarum and Cellulase on the Bacterial Community Composition of Mulberry Branch Leaf Silage Fermentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADF | Acid detergent fiber |
CP | Crude protein |
EE | Ether extract |
DM | Dry matter |
LAB | Lactic acid bacteria |
LP | Lactiplantibacillus plantarum |
LPC | Lactiplantibacillus plantarum and cellulase |
NDF | Neutral detergent fiber |
NH3-N | Ammoniacal nitrogen |
WSC | Water-soluble carbohydrate |
References
- Liu, Y.; Ji, D.; Turgeon, R.; Chen, J.; Lin, T.; Huang, J.; Luo, J.; Zhu, Y.; Zhang, C.; Lv, Z. Physiological and Proteomic Responses of Mulberry Trees (Morus alba. L.) to Combined Salt and Drought Stress. Int. J. Mol. Sci. 2019, 20, 2486. [Google Scholar] [CrossRef]
- Tian, L.; Fan, Y.; Li, H.; Zhang, Y.; Wang, Y.; Lei, J.; Liu, F.; He, W.; Jiao, Z.; Wang, C. Analysis and comprehensive evaluation of nutritional quality of different mulberry varieties in Xinjiang. J. Food Saf. Qual. 2024, 15, 149–159. [Google Scholar] [CrossRef]
- Linna, G.; Xuekai, W.; Yanli, L.; Xueping, Y.; Kuikui, N.; Fuyu, Y. Microorganisms that are critical for the fermentation quality of paper mulberry silage. Food Energy Secur. 2021, 10, e304. [Google Scholar] [CrossRef]
- Wang, N.; Xiong, Y.; Wang, X.; Guo, L.; Lin, Y.; Ni, K.; Yang, F. Effects of Lactobacillus plantarum on fermentation quality and anti-nutritional factors of paper mulberry silage. Fermentation 2022, 8, 144. [Google Scholar] [CrossRef]
- David, R.; Krogh, J.S.; Morten, A.; Steffen, A.; Paolo, B.; Eric, J.; Stødkilde, L. Nutritional values of forage-legume-based silages and protein concentrates for growing pigs. Animal 2022, 16, 100572. [Google Scholar] [CrossRef]
- Cui, X.; Yang, Y.; Zhang, M.; Jiao, F.; Gan, T.; Lin, Z.; Huang, Y.; Wang, H.; Liu, S.; Bao, L.; et al. Optimized ensiling conditions and microbial community in mulberry leaves silage with Inoculants. Front. Microbiol. 2022, 13, 813363. [Google Scholar] [CrossRef]
- Du, Z.; Yamasaki, S.; Oya, T.; Cai, Y. Cellulase–lactic acid bacteria synergy action regulates silage fermentation of woody plant. Biotechnol. Biofuels Bioprod. 2023, 16, 125. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Wang, X.-K.; Lin, Y.-L.; Zheng, Y.-L.; Ni, K.-K.; Yang, F.-Y. Effects of Microbial Inoculants on Fermentation Quality and Aerobic Stability of Paper Mulberry Silages Prepared with Molasses or Cellulase. Fermentation 2022, 8, 167. [Google Scholar] [CrossRef]
- Mu, L.; Xie, Z.; Hu, L.; Chen, G.; Zhang, Z. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour. Technol. 2020, 315, 123772. [Google Scholar] [CrossRef]
- Kleinschmit, D.H.; Kung, L. A Meta-Analysis of the Effects of Lactobacillus buchneri on the Fermentation and Aerobic Stability of Corn and Grass and Small-Grain Silages. J. Dairy Sci. 2006, 89, 4005–4013. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Lu, W.; Ma, C. Meta-analysis of the effects of combined homo-and hetero-fermentative lactic acid bacteria on the fermentation and aerobic stability of corn silage. Int. J. Agric. Biol. 2018, 20, 1846–1852. Available online: https://www.researchgate.net/publication/326849356_Meta-analysis_of_the_effects_of_combined_homo-_and_heterofermentative_lactic_acid_bacteria_on_the_fermentation_and_aerobic_stability_of_corn_silagel (accessed on 17 June 2025).
- Oliveria, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Gonçalves, M.C.; Vyas, D.; et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [PubMed]
- Si, H.; Liu, H.; Li, Z.; Nan, W.; Jin, C.; Sui, Y.; Li, G. Effect of Lactobacillus plantarum and Lactobacillus buchneri addition on fermentation, bacterial community and aerobic stability in lucerne silage. Anim. Prod. Sci. 2019, 59, 1528–1536. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Zhang, H.; Yang, T.; Abbas, Z.; Jiang, X.; Zhang, H.; Zhang, R.; Si, D. The Fermentation Quality, Antioxidant Activity, and Bacterial Community of Mulberry Leaf Silage with Pediococcus, Bacillus, and Wheat Bran. Fermentation 2024, 10, 214. [Google Scholar] [CrossRef]
- Alhaag, H.; Yuan, X.; Mala, A.; Bai, J.; Shao, T. Fermentation Characteristics of Lactobacillus plantarum and Pediococcus species Isolated from Sweet Sorghum Silage and Their Application as Silage Inoculants. Appl. Sci. 2019, 9, 1247. [Google Scholar] [CrossRef]
- Ridla, M.; Uchida, S. Comparative Study on the Effects of Combined Treatments of Lactic Acid Bacteria and Cellulases on the Cell Wall Compositions and the Digestibility of Rhodesgrass (Chloris gayana Kunth.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages. Asian-Austral. J. Anim. Sci. 1999, 12, 531–536. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Dong, Z.; Chen, L.; Yuan, X.; Shao, T. The effects of lactic acid bacteria strains isolated from various substrates on the fermentation quality of common vetch (Vicia sativa L.) in tibet. Grass Forage Sci. 2018, 73, 639–647. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yang, H.J.; Huang, R.Z.; Wang, X.Z.; Ma, C.H.; Zhang, F.F. Effects of Lactiplantibacillus plantarum and Lactiplantibacillus brevis on fermentation, aerobic stability, and the bacterial community of paper mulberry silage. Front. Microbiol. 2022, 13, 1063914. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- AOAC International. Official Method 977.22: Glucose in Plants—Spectrophotometric Method. In Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; Volume 45, p. 12. [Google Scholar]
- Cheng, Q.; Chen, Y.; Bai, S.; Chen, L.; You, M.; Zhang, K.; Li, P.; Chen, C. Study on the bacterial community structure and fermentation characteristics of fresh and ensiled paper mulberry. Anim. Sci. J. 2021, 92, e13656. [Google Scholar] [CrossRef] [PubMed]
- Amato, K.R.; Yeoman, C.J.; Kent, A.; Righini, N.; Carbonero, F.; Estrada, A.; Gaskins, H.R.; Stumpf, R.M.; Yildirim, S.; Torralba, M.; et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013, 7, 1344–1353. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Y.; Liu, B.; Zhao, Y.; Wu, J.; Yuan, X.; Zhu, W.; Cui, Z. Accelerated acidification by inoculation with a microbial consortia in a complex open environment. Bioresour. Technol. 2016, 216, 294–301. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, M.; Fan, X.; Chen, Y.; Sun, H.; Xie, Y.; Zheng, Y.; Chen, C.; Li, P. Effects of epiphytic and exogenous lactic acid bacteria on fermentation quality and microbial community compositions of paper mulberry silage. Front. Microbiol. 2022, 13, 973500. [Google Scholar] [CrossRef]
- Xi, X.J.; Han, L.J.; Yuan, S.Y.L.; Ye, Z.H.J. Effect of adding lactic acid bacteria and cellulase on the quality of corn stalk silage. J. China Agric. Univ. 2003, 2, 21–24. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Q.Z. Forage Silage Technology; China Agricultural University Press: Beijing, China, 2011. [Google Scholar]
- Liu, W.; Si, Q.; Sun, L.; Wang, Z.; Liu, M.; Du, S.; Ge, G.; Jia, Y. Effects of cellulase and xylanase addition on fermentation quality, aerobic stability, and bacteria composition of low water-soluble carbohydrates oat silage. Fermentation 2023, 9, 638. [Google Scholar] [CrossRef]
- Si, Q.; Wang, Z.; Liu, W.; Liu, M.; Ge, G.; Jia, Y.; Du, S. Influence of cellulase or Lactiplantibacillus plantarum on the ensiling performance and bacterial community in mixed silage of alfalfa and Leymus chinensis. Microorganisms 2023, 11, 426. [Google Scholar] [CrossRef]
- He, L.; Wang, C.; Xing, Y.Q.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Dynamics of proteolysis, protease activity and bacterial community of Neolamarckia cadamba leaves silage and the effects of formic acid and Lactobacillus farciminis. Bioresour. Technol. 2019, 294, 122127. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Wang, C.; He, L.; Zhou, W.; Yang, F.; Zhang, Q. The bacterial community and fermentation quality of mulberry (Morus alba) leaf silage with or without Lactobacillus casei and sucrose. Bioresour. Technol. 2019, 293, 122059. [Google Scholar] [CrossRef]
- Jua, K.; Yong-Min, K.; Vincent, R.L.; Wee, Y.-J. Lactic acid for green chemical industry: Recent advances in and future prospects for production technology, recovery, and applications. Fermentation 2022, 8, 609. [Google Scholar] [CrossRef]
- Lu, L.; Xiao, M.; Xu, X. Enterobacter agglomerans B1 producing β-galactosidase with transglycosylation activity: Screening, identification, fermentation conditions, and galacto- oligosaccharides synthesis. Acta Microbiol. Sin. 2008, 48, 38–44. [Google Scholar] [PubMed]
- Dong, Z.; Shao, T.; Li, J.; Yang, L.; Yuan, X. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile Napier grass silages. J. Dairy Sci. 2020, 103, 4288–4301. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Li, S.; Wang, S.; Li, S.; Ke, Y.; Gao, R.; Wang, L.; Zhou, Z.; Wu, Z.; et al. Pretreatment of sweet sorghum silages with Lactobacillus plantarum and cellulase with two different raw material characteristics: Fermentation profile, carbohydrate composition, in vitro rumen fermentation and microbiota communities. Chem. Biol. Technol. Agric. 2025, 12, 33. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, H.; Guo, Q.; Sudu, B.; Han, H. Modulation of the microbial community and the fermentation characteristics of wrapped natural grass silage inoculated with composite bacteria. Chem. Biol. Technol. Agric. 2025, 12, 50. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Zhang, B.; Bao, J. pH shifting adaptive evolution stimulates the low pH tolerance of Pediococcus acidilactici and high L-lactic acid fermentation efficiency. Bioresour. Technol. 2025, 416, 131813. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.M.A.; Gomes, O.P.; Evangelista, F.P.; Azevedo, C.F.; da Silva, V.P.; e Silva, F.F. Microbiome of rehydrated corn and sorghum grain silages treated with microbial inoculants in different fermentation periods. Sci. Rep. 2022, 12, 16864. [Google Scholar] [CrossRef]
- Keshri, J.; Chen, Y.; Pinto, R.; Kroupitski, Y.; Weinberg, Z.G.; Sela, S. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant. Appl. Biochem. Microbiol. 2018, 102, 4025–4037. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, R.; Wang, C.; Dong, W.; Zhang, Z.; Zhao, L.; Zhang, X. Effects of Cellulase and Lactobacillus plantarum on Fermentation Quality, Chemical Composition, and Microbial Community of Mixed Silage of Whole-Plant Corn and Peanut Vines. Appl. Biochem. Biotechnol. 2022, 194, 2465–2480. [Google Scholar] [CrossRef]
- Xiong, H.; Zhu, Y.; Wen, Z.; Liu, G.; Guo, Y.; Sun, B. Effects of Cellulase, Lactobacillus plantarum, and Sucrose on Fermentation Parameters, Chemical Composition, and Bacterial Community of Hybrid Pennisetum Silage. Fermentation 2022, 8, 356. [Google Scholar] [CrossRef]
- Chen, G.; Chen, D.; Zhou, W.; Peng, Y.; Chen, C.; Shen, W.; Zeng, X.; Yuan, Q. Improvement of metabolic syndrome in high-fat diet-induced mice by yeast β-glucan is linked to inhibited proliferation of Lactobacillus and Lactococcus in gut microbiota. J. Agric. Food Chem. 2021, 69, 7581–7592. [Google Scholar] [CrossRef]
Index | Content |
---|---|
DM/% | 50.35 ± 0.82 |
CP/% DM | 14.66 ± 0.28 |
NDF/% DM | 54.30 ± 1.04 |
ADF/% DM | 27.06 ± 0.47 |
EE/% DM | 5.92 ± 0.05 |
WSC/% DM | 8.38 ± 0.19 |
LAB/logCFU·g−1 FM | 5.24 ± 0.06 |
Yeast/log CFU·g−1 FM | 4.74 ± 0.04 |
Mold/logCFU·g−1 FM | 2.83 ± 0.02 |
AB/logCFU·g−1 FM | 8.63 ± 0.04 |
Index | Time | Groups | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | LP | LPC | Groups | Time | G × T | ||
DM% | 7 d | 45.88 ± 0.25 Ba | 47.35 ± 0.27 Aa | 48.26 ± 1.05 Aa | 0.0001 | 0.0001 | 0.2183 |
15 d | 44.02 ± 0.38 Bb | 44.97 ± 0.20 Bb | 46.44 ± 1.10 Ab | ||||
30 d | 41.49 ± 0.61 Bc | 42.37 ± 0.67 Bc | 45.43 ± 0.76 Ab | ||||
60 d | 40.58 ± 0.69 Bc | 41.62 ± 0.85 Bc | 43.15 ± 0.37 Ac | ||||
CP% DM | 7 d | 14.55 ± 0.11 Aa | 14.31 ± 0.04 Aa | 13.29 ± 0.06 Bb | 0.0264 | 0.2682 | 0.0001 |
15 d | 13.64 ± 0.02 Ab | 12.71 ± 0.06 Bb | 12.38 ± 0.08 Cc | ||||
30 d | 13.77 ± 0.04 Ab | 12.15 ± 0.03 Bc | 12.22 ± 0.20 Bc | ||||
60 d | 12.89 ± 0.18 Bc | 12.92 ± 0.24 Bb | 13.8 ± 0.12 Aa | ||||
EE% DM | 7 d | 4.02 ± 0.22 Ac | 4.33 ± 0.33 Ac | 4.05 ± 0.09 Ac | 0.0354 | 0.4521 | 0.6452 |
15 d | 5.91 ± 0.25 Aa | 6.45 ± 0.39 Aa | 6.54 ± 0.21 Aa | ||||
30 d | 5.49 ± 0.59 Aab | 5.68 ± 0.53 Ab | 5.94 ± 0.26 Aa | ||||
60 d | 4.88 ± 0.08 Ab | 5.17 ± 0.10 Ab | 5.11 ± 0.16 Ab | ||||
WSC% DM | 7 d | 3.23 ± 0.16 Bb | 3.95 ± 0.17 Ab | 4.52 ± 1.02 Ab | 0.2958 | 0.0003 | 0.0253 |
15 d | 5.9 ± 0.13 Aa | 6.27 ± 0.15 Aa | 6.36 ± 0.28 Aa | ||||
30 d | 6.15 ± 0.28 Aa | 6.15 ± 0.07 Aa | 5.8 ± 0.17 Aa | ||||
60 d | 3.94 ± 0.17 Ab | 3.97 ± 0.24 Ab | 4.2 ± 0.16 Ab |
Index | Time | Groups | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | LP | LPC | Groups | Time | G × T | ||
NDF% DM | 7 d | 46.77 ± 1.27 Aa | 45.75 ± 0.95 Aa | 42.01 ± 1.63 Bab | 0.0426 | 0.5734 | 0.0001 |
15 d | 46.96 ± 0.79 Aa | 41.31 ± 2.61 Bb | 35.05 ± 1.76 Cc | ||||
30 d | 46.48 ± 1.00 Aa | 41.19 ± 1.06 Bb | 40.06 ± 1.64 Bb | ||||
60 d | 41.45 ± 0.73 Bb | 43.74 ± 0.96 Ab | 44.97 ± 0.72 Aa | ||||
ADF% DM | 7 d | 25.93 ± 1.18 Aa | 23.34 ± 1.18 Ba | 20.32 ± 0.84 Cb | 0.0105 | 0.5921 | 0.0103 |
15 d | 25.74 ± 1.41 Aa | 23.42 ± 0.89 Ba | 20.69 ± 0.71 Cb | ||||
30 d | 26.83 ± 0.51 Aa | 21.27 ± 0.69 Ba | 21.08 ± 1.17 Bb | ||||
60 d | 25.45 ± 0.47 Aa | 23.61 ± 1.02 Aa | 24.39 ± 0.83 Aa |
Index | Time | Groups | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | LP | LPC | Groups | Time | G × T | ||
pH | 7 d | 6.21 ± 0.18 Aa | 5.38 ± 0.03 Ba | 5.02 ± 0.02 Ca | 0.0149 | 0.0798 | 0.0001 |
15 d | 5.41 ± 0.18 Ab | 5.27 ± 0.02 Aab | 4.9 ± 0.02 Bab | ||||
30 d | 5.04 ± 0.04 Ac | 5.04 ± 0.04 Ac | 4.8 ± 0.06 Bbc | ||||
60 d | 5.44 ± 0.12 Ab | 5.09 ± 0.02 Bbc | 4.64 ± 0.13 Cc | ||||
LA/(g·kg−1 DM) | 7 d | 1.64 ± 0.04 Bc | 2.17 ± 0.03 Ac | 2.24 ± 0.04 Ac | 0.0161 | 0.0006 | 0.0001 |
15 d | 2.64 ± 0.18 Bb | 3.81 ± 0.07 Aa | 3.75 ± 0.23 Aa | ||||
30 d | 3.5 ± 0.04 Ba | 3.82 ± 0.13 Aa | 3.79 ± 0.10 Aa | ||||
60 d | 2.69 ± 0.18 Bb | 3.34 ± 0.28 Ab | 3.48 ± 0.15 Ab | ||||
AA/(g·kg−1 DM) | 7 d | 1.29 ± 0.08 ABa | 1.07 ± 0.11 Ba | 1.42 ± 0.06 Aab | 0.0398 | 0.1084 | 0.0001 |
15 d | 1.04 ± 0.14 Bab | 1.11 ± 0.11 Ba | 1.45 ± 0.14 Aab | ||||
30 d | 0.93 ± 0.11 Bbc | 0.63 ± 0.03 Bb | 1.63 ± 0.37 Aa | ||||
60 d | 0.64 ± 0.04 Bc | 0.37 ± 0.04 Bb | 1.22 ± 0.26 Ab | ||||
PA/(g·kg−1 DM) | 7 d | 0.12 ± 0.01 Ab | 0.12 ± 0.03 Ab | 0.14 ± 0.04 Ab | 0.0552 | 0.0127 | 0.0051 |
15 d | 0.22 ± 0.02 Ba | 0.24 ± 0.01 Ba | 0.35 ± 0.02 Aa | ||||
30 d | 0.23 ± 0.05 Ba | 0.24 ± 0.02 Ba | 0.37 ± 0.03 Aa | ||||
60 d | ND | ND | ND | ||||
NH3-N/TN%DM | 7 d | 0.36 ± 0.03 Bb | 0.55 ± 0.02 Ac | 0.54 ± 0.04 Ac | 0.0009 | 0.0049 | 0.007 |
15 d | 0.38 ± 0.01 Cb | 0.55 ± 0.12 Bc | 0.7 ± 0.01 Ab | ||||
30 d | 0.39 ± 0.02 Cb | 0.68 ± 0.01 Bb | 0.84 ± 0.02 Abc | ||||
60 d | 0.55 ± 0.05 Ba | 0.88 ± 0.07 Aa | 0.82 ± 0.02 Aa |
Index | Time | Groups | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | LP | LPC | Groups | Time | G × T | ||
LAB (logCFU·g−1FM) | 7 d | 6.93 ± 0.04 Bb | 7.34 ± 0.07 Ab | 7.04 ± 0.02 Bb | 0.0026 | 0.0004 | 0.002 |
15 d | 6.85 ± 0.08 Ab | 6.9 ± 0.18 Ac | 6.65 ± 0.12 Ac | ||||
30 d | 7.5 ± 0.02 Ba | 7.81 ± 0.21 Aa | 7.75 ± 0.17 ABa | ||||
60 d | 6.45 ± 0.25 Ac | 6.44 ± 0.05 Ad | 5.92 ± 0.20 Bd | ||||
Yeast (logCFU/gFM) | 7 d | 4.68 ± 0.12 Aa | 4.59 ± 0.09 Aa | 4.34 ± 0.05 Ba | 0.0001 | 0.0001 | 0.9509 |
15 d | 4.44 ± 0.06 Aab | 4.37 ± 0.1 Aa | 4.21 ± 0.06 Aa | ||||
30 d | 4.35 ± 0.12 Aab | 3.98 ± 0.09 Bb | 3.8 ± 0.12 Bb | ||||
60 d | 3.74 ± 0.08 Ac | 3.63 ± 0.22 ABc | 3.4 ± 0.16 Bc | ||||
Mold (logCFU/gFM) | 7 d | 2.35 ± 0.05 Aa | 2.12 ± 0.06 Ba | 1.8 ± 0.01 Ca | 0.0104 | 0.0001 | 0.0008 |
15 d | 1.69 ± 0.20 Ab | 1.37 ± 0.19 Bb | 1.21 ± 0.02 Bb | ||||
30 d | 1.00 ± 0.11 Ac | 0.41 ± 0.14 Bc | 0.33 ± 0.09 Bc | ||||
60 d | 0.23 ± 0.04 Ad | 0.22 ± 0.04 Ac | 0.10 ± 0.03 Ad | ||||
Aerobic bacteria(logCFU/gFM) | 7 d | 8.22 ± 0.06 Aa | 8.13 ± 0.05 Aa | 7.97 ± 0.10 Aa | 0.0649 | 0.0001 | 0.4839 |
15 d | 7.71 ± 0.14 Ab | 7.43 ± 0.1 Ab | 7.51 ± 0.34 Ab | ||||
30 d | 7.38 ± 0.09 Ab | 7.12 ± 0.06 Ab | 7.09 ± 0.10 Ac | ||||
60 d | 6.62 ± 0.40 Ac | 6.72 ± 0.15 Ac | 6.55 ± 0.06 Ad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chen, Y.; Huo, Z.; Liu, G.; Zheng, X.; Qi, Y.; Ma, C.; Zhang, F. Effect of Inoculation with Lactiplantibacillus plantarum and Cellulase on the Quality of Mulberry Silage. Microorganisms 2025, 13, 1437. https://doi.org/10.3390/microorganisms13071437
Sun Y, Chen Y, Huo Z, Liu G, Zheng X, Qi Y, Ma C, Zhang F. Effect of Inoculation with Lactiplantibacillus plantarum and Cellulase on the Quality of Mulberry Silage. Microorganisms. 2025; 13(7):1437. https://doi.org/10.3390/microorganisms13071437
Chicago/Turabian StyleSun, Yingchao, Yongcheng Chen, Zhiwei Huo, Guohong Liu, Xiaokai Zheng, Yayin Qi, Chunhui Ma, and Fanfan Zhang. 2025. "Effect of Inoculation with Lactiplantibacillus plantarum and Cellulase on the Quality of Mulberry Silage" Microorganisms 13, no. 7: 1437. https://doi.org/10.3390/microorganisms13071437
APA StyleSun, Y., Chen, Y., Huo, Z., Liu, G., Zheng, X., Qi, Y., Ma, C., & Zhang, F. (2025). Effect of Inoculation with Lactiplantibacillus plantarum and Cellulase on the Quality of Mulberry Silage. Microorganisms, 13(7), 1437. https://doi.org/10.3390/microorganisms13071437