Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = contaminated drainage stream

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2134 KB  
Article
Integrated Characterization of Sediments Contaminated by Acid Mine Drainage: Mineralogical, Magnetic, and Geochemical Properties
by Patrícia Gomes, Teresa Valente and Eric Font
Minerals 2025, 15(8), 786; https://doi.org/10.3390/min15080786 - 26 Jul 2025
Viewed by 821
Abstract
Acid mine drainage, a consequence of exposure of sulfide mining waste to weathering processes, results in significant water, sediment, and soil contamination. This contamination results in acidophilic ecosystems, with low pH values and elevated concentrations of sulfate and potentially toxic elements. The São [...] Read more.
Acid mine drainage, a consequence of exposure of sulfide mining waste to weathering processes, results in significant water, sediment, and soil contamination. This contamination results in acidophilic ecosystems, with low pH values and elevated concentrations of sulfate and potentially toxic elements. The São Domingos mine, an abandoned site in the Iberian Pyrite Belt, lacks remediation measures and has numerous waste dumps, which are a major source of contamination to local water systems. Therefore, this study examines sediment accumulation in five mine dams along the São Domingos stream that traverses the entire mine complex. Decades of sediment and waste transport since mine closure have resulted in dam-clogging processes. The geochemical, mineralogical, and magnetic properties of the sediments were analyzed to evaluate the mineralogical controls on the mobilization of potentially toxic elements. The sediments are dominated by iron oxides, oxyhydroxides, and hydroxysulfates, with jarosite playing a key role in binding high concentrations of iron and toxic elements. However, no considerable correlation was found between potentially toxic elements and magnetic parameters, highlighting the complex behavior of these contaminants in acid mine drainage-affected systems. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

24 pages, 6730 KB  
Article
Comparative Adsorption of Cu(II), Zn(II), Cd(II), and Mn(II) from Aquatic Solution and Neutral Mine Drainage Using Paper Sludge
by Dagmar Samešová, Adam Pochyba, Anna Ďuricová, Juraj Poništ, Veronika Štefanka Prepilková, Marián Schwarz, Darina Veverková, Jozef Salva and Jarmila Schmidtová
Water 2025, 17(10), 1471; https://doi.org/10.3390/w17101471 - 13 May 2025
Cited by 2 | Viewed by 1113
Abstract
The use of paper sludge as a waste stream from industrial facilities represents a significant environmental challenge due to its quantity and heterogeneous composition. The aim of the study was to evaluate the adsorption characteristics of paper sludge in neutral mine effluents and [...] Read more.
The use of paper sludge as a waste stream from industrial facilities represents a significant environmental challenge due to its quantity and heterogeneous composition. The aim of the study was to evaluate the adsorption characteristics of paper sludge in neutral mine effluents and aquatic solutions of metal ions: Cu(II), Zn(II), Cd(II), and Mn(II). The main novelty of the research is a comparison of the adsorption process in synthetically prepared aquatic solutions and neutral mine drainage from field sampling. The adsorption process of the monitored metals was evaluated in terms of adsorption capacity, parameters of the Freundlich and Langmuir adsorption isotherm, and the separation factor. The adsorption capacity of paper sludge of all metals is significantly lower in neutral mine drainage (NMD) compared to adsorption in aquatic solution. The adsorption capacity of Zn(II) in aqueous solution reaches equilibrium over time, similarly to Cu(II), with values ranging from 0.2 to 1.6 mg/g. For Cd(II), a slight increasing trend in the adsorption capacity of paper sludge is observed at higher initial concentrations (3–5 mg/L) over a contact time of 90–120 min. In general, aqueous solutions of metal ions exhibited higher adsorption capacities compared to NMD, with the highest value recorded for Cu(II) at 4.742 mg/g. As the concentration values in the original solution increased, a decline in KR (from 268% to 137% at a C0 range of 4–20 mg/L) was observed. In the mine drainage with the addition of Zn(II), KR values were also lower compared to those in aquatic solutions. The reduction in KR became more pronounced with increasing initial concentration, showing a decrease of 29.9% to 38.9% at C0 levels ranging from 2 to 10 mg/L. The separation factors for Cu(II), Zn(II), and Cd(II) were lower in NMD, indicating better metal separation from real mine waters. The results confirm the potential of paper sludge as a low-cost adsorbent for the treatment of heavy metal contaminated waters. Full article
Show Figures

Figure 1

47 pages, 7191 KB  
Review
Microbial Electrolysis Cells for H2 Generation by Treating Acid Mine Drainage: Recent Advances and Emerging Trends
by Wenwen Cui and Shunde Yin
Fuels 2025, 6(1), 14; https://doi.org/10.3390/fuels6010014 - 12 Feb 2025
Cited by 4 | Viewed by 3845
Abstract
Microbial electrolysis cells (MECs) are receiving increasing scholarly recognition for their capacity to simultaneously remediate contaminated streams and generate renewable hydrogen. Within the realm of acid mine drainage (AMD) treatment, MECs demonstrate pronounced advantages by merging pollutant mitigation with hydrogen production, thereby attracting [...] Read more.
Microbial electrolysis cells (MECs) are receiving increasing scholarly recognition for their capacity to simultaneously remediate contaminated streams and generate renewable hydrogen. Within the realm of acid mine drainage (AMD) treatment, MECs demonstrate pronounced advantages by merging pollutant mitigation with hydrogen production, thereby attracting intensified research interest. Drawing on 1321 pertinent publications extracted from the Web of Science Core Collection (2004–2024), this bibliometric assessment systematically elucidates the current research landscape and prospective directions in MEC-based AMD remediation and H2 synthesis. Key thematic areas encompass (1) a detailed appraisal of distinctive publication dynamics within this specialized domain; (2) insights into the principal contributing nations, institutions, journals, and academic fields; and (3) a synthesized overview of technological milestones, emerging investigative foci, and prospective developmental pathways. By critically reviewing extant knowledge, this evaluation offers meaningful guidance to researchers newly engaging with MEC-driven AMD treatment while illuminating the technological trajectories poised to shape the future of this evolving field. Full article
(This article belongs to the Special Issue Clean and Renewable Hydrogen Fuel)
Show Figures

Figure 1

32 pages, 9751 KB  
Article
Stream Chemistry and Forest Recovery Assessment and Prediction Modeling in Coal-Mine-Affected Watersheds in Kentucky, USA
by Oguz Sariyildiz, Buddhi R. Gyawali, George F. Antonious, Kenneth Semmens, Demetrio Zourarakis and Maya P. Bhatt
Environments 2024, 11(3), 40; https://doi.org/10.3390/environments11030040 - 21 Feb 2024
Cited by 2 | Viewed by 3216
Abstract
Kentucky is one of the largest coal-producing states; surface coal mining has led to changes in natural land cover, soil loss, and water quality. This study explored relationships between actively mined and reclaimed areas, vegetation change, and water quality parameters. The study site [...] Read more.
Kentucky is one of the largest coal-producing states; surface coal mining has led to changes in natural land cover, soil loss, and water quality. This study explored relationships between actively mined and reclaimed areas, vegetation change, and water quality parameters. The study site evaluated 58 watersheds with Landsat-derived variables (reclamation age and percentage of mining, reclaimed forest, and reclaimed woods) as well as topographic variables (such as elevation, slope, drainage density, and infiltration). Water samples were collected in spring (n = 9), summer (n = 14), and fall (n = 58) 2017 to study changes in water quality variables (SO42−, alkalinity, conductivity, Ca2+, Mg2+, Mn2+, Al3+, and Fe2+, Fe3+) in response to changes in land cover. Pearson correlation analyses indicated that conductivity has strong to very strong relationships with water quality variables related to coal mining (except Al3+, Fe2+, Fe3+, Mn2+, elevation, slope, and drainage density) and land cover variables. In addition, separate regression analyses were performed, with conductivity values based on samples collected in the fall. First, conductivity responses to mining percentage, reclamation age and topographic variables were examined (adjusted R2 = 0.818, p < 0.01). Next, vegetation cover change parameters were added to the same model, which yielded slightly improved R2 (adjusted R2 = 0.826, p < 0.01). Finally, reclamation age and mining percentages were used to explain the quantity of reclaimed forested areas as a percentage of watersheds. The model was significant (p < 0.01), with an adjusted R2 value of 0.641. Results suggest that the quantity (area as a percentage) of reclaimed forests may be a predictor of the mining percentage and reclamation age. This study indicated that conductivity is a predictable water quality indicator that is highly associated with Coal-Mine-Related Stream Chemistry in areas where agriculture and urban development are limited. Water quality is not suitable for various purposes due to the presence of contaminants, especially in mined sites. These findings may help the scientific community and key state and federal agencies improve their understanding of water quality attributes in watersheds affected by coal mining, as well as refine land reclamation practices more effectively while such practices are in action. Full article
(This article belongs to the Special Issue Advanced Research on Micropollutants in Water)
Show Figures

Figure 1

19 pages, 7699 KB  
Article
Contamination of a Water Stream and Water Drainage Reaching Matosinhos Beach by Antibiotic-Resistant Bacteria
by Matilde A. Pereira, Josman D. Palmeira and Helena Ferreira
Microorganisms 2023, 11(12), 2833; https://doi.org/10.3390/microorganisms11122833 - 22 Nov 2023
Cited by 3 | Viewed by 2809
Abstract
Antibiotic-resistant bacteria represent a major public health concern, especially impacting medical care centers and hospitals, thereby challenging the effectiveness of current infection treatment protocols. The emergence and persistence of antimicrobial resistance in the environment have been thoroughly researched, with a focus on the [...] Read more.
Antibiotic-resistant bacteria represent a major public health concern, especially impacting medical care centers and hospitals, thereby challenging the effectiveness of current infection treatment protocols. The emergence and persistence of antimicrobial resistance in the environment have been thoroughly researched, with a focus on the aquatic environment as a potential reservoir of these bacteria in areas with anthropogenic contamination. Having this in mind, this work aims to investigate the water streams of Riguinha and Brito Capelo Street, both of which ultimately flow into Matosinhos Beach in Portugal, to determine the potential presence of fecal contamination. Six water samples were collected and analyzed within twenty-four hours from these two water streams. A phenotypic characterization was performed in various volumes on MacConkey agar with antibiotics. Randomly selected lactose-fermenting gram-negative bacteria underwent antimicrobial susceptibility tests using the agar diffusion method following EUCAST guidelines, covering β-lactam and non-β-lactam antibiotics. The isolates were analyzed through Polymerase Chain Reaction. The findings of this study confirm that both water streams were contaminated by multidrug-resistant bacteria such as Enterobacteriaceae, including Escherichia coli, the KESC group, and Pseudomonas, exhibiting extended-spectrum β-lactamases (ESBL), AmpC β-lactamases, and carbapenemases. These indicate the presence of fecal contamination with relevant antimicrobial-resistant threats. Full article
(This article belongs to the Special Issue Water Microorganisms Associated with Human Health)
Show Figures

Figure 1

17 pages, 3239 KB  
Article
Heavy Metal Distribution Characteristics, Water Quality Evaluation, and Health Risk Evaluation of Surface Water in Abandoned Multi-Year Pyrite Mine Area
by Yiwen Jiao, Yitian Liu, Wei Wang, Yujiao Li, Wentong Chang, Ao Zhou and Ronglong Mu
Water 2023, 15(17), 3138; https://doi.org/10.3390/w15173138 - 1 Sep 2023
Cited by 24 | Viewed by 4624
Abstract
Acid mine drainage (AMD) is a major anthropogenic source of heavy metal discharge worldwide. However, little research has been carried out on the development of AMD in abandoned pyrite mines and the heavy metal contamination of mine surface water. The aim of this [...] Read more.
Acid mine drainage (AMD) is a major anthropogenic source of heavy metal discharge worldwide. However, little research has been carried out on the development of AMD in abandoned pyrite mines and the heavy metal contamination of mine surface water. The aim of this study was to investigate and assess heavy metal pollution in three streams within an abandoned pyrite mine area in southeastern Shaanxi Province, China. Surface water pollution was assessed using the pollution index assessment method and the health risk assessment model. The results showed that the combined heavy metal pollution indices of the surveyed rivers were Tielu Creek (4699.227), Jiancao Creek (228.840), and Daoban Creek (68.106). After multivariate statistical analysis, it was found that the tailings slag and mine chamber in the abandoned mine area were the main causes of AMD, and AMD posed a serious risk of heavy metal pollution to the surrounding waters. The risk of carcinogenicity of heavy metals is also quite high in the surface water of mining area. Therefore, there is an urgent need to ecologically manage heavy metal pollution from abandoned mine sites, and this study provides insights into understanding heavy metal pollution in the aquatic environment of abandoned mine sites. Full article
Show Figures

Figure 1

20 pages, 14116 KB  
Article
The Impact of Molybdenum Mining on Cd Pollution along Wenyu Stream in Qinling Mountains, Northwest China
by Huaqing Chen, Aning Zhao, Youning Xu, Jianghua Zhang and Min Yang
Water 2023, 15(15), 2779; https://doi.org/10.3390/w15152779 - 31 Jul 2023
Cited by 1 | Viewed by 2573
Abstract
Mining has brought many environmental problems to the surrounding soil, water, and air, with toxic elements contaminating surface water, threatening ecological balance and human health. This study selected the Wenyu watershed downstream from a large molybdenum mine in the Qinling Mountains as the [...] Read more.
Mining has brought many environmental problems to the surrounding soil, water, and air, with toxic elements contaminating surface water, threatening ecological balance and human health. This study selected the Wenyu watershed downstream from a large molybdenum mine in the Qinling Mountains as the study area, aiming to explore the impact of molybdenum mining on surface water quality. The content characteristics of Cd, Pb, Cu, Cr and Hg in surface water, sediment, and rock samples were analyzed by field sampling and chemical testing. The results showed only obvious Cd pollution. The pollution status and ecological risk level of surface water and sediment samples in the Wenyu Stream watershed were evaluated using the single pollution index method, geo-accumulation index method, and Hakanson potential ecological risk assessment method. Finally, the sources of Cd pollution and the impact of mining on Cd distribution in the Wenyu Stream were comprehensively discussed. The research results showed that Cd content in the Wenyu Stream was significantly affected by mining activity and the coefficient of variation of Cd content reached 99.44%. Among 22 surface water samples, 21 samples met the Class II water standard, indicating a clean overall water quality of the Wenyu Stream, and only one sample exceeded the Class II water standard with a mild pollution level. All 15 sediment samples were polluted to varying degrees and the most severely polluted sample had reached a moderate to strong pollution level. Most of the samples were at a moderate pollution level. The potential ecological hazard indexes of Cd content were at medium to very strong risk level, indicating that the overall sediment in the main ditch of the Wenyu Stream was under a strong ecological risk level. The main sources of Cd pollution, including acid mine drainage, regional geological background, sediment release, and atmospheric dry and wet deposition, were discussed. Full article
(This article belongs to the Special Issue Mine and Water)
Show Figures

Figure 1

15 pages, 3146 KB  
Article
Geochemical Response of Surface Environment to Mining of Sn-Pb-Zn Sulfide Deposits: A Case Study of Dachang Tin Polymetallic Deposit in Guangxi
by Bo Li, Tao Yu, Wenbing Ji, Xu Liu, Kun Lin, Cheng Li, Xudong Ma and Zhongfang Yang
Water 2023, 15(8), 1550; https://doi.org/10.3390/w15081550 - 14 Apr 2023
Cited by 10 | Viewed by 2956
Abstract
The rational development of mineral resources provides necessary materials for economic development, but environmental pollution caused by mining activities is an inevitable consequence. Here, we present a case study of Chehe Town in Guangxi, an area with integrated metals mining and smelting. The [...] Read more.
The rational development of mineral resources provides necessary materials for economic development, but environmental pollution caused by mining activities is an inevitable consequence. Here, we present a case study of Chehe Town in Guangxi, an area with integrated metals mining and smelting. The geochemical distribution, migration, and transformation behaviors of Cd and other heavy metals were studied in detail by systematically collecting surface media such as atmospheric dust, surface water and stream sediments, ores, tailings, mine drainage, soil, and crops in and around the mining area. We used these data to explore the geochemical response of the surface environment to mining and smelting of metal sulfide deposits. The annual flux of Cd and other heavy metals near the mining and smelting sites was high. Due to the topography, heavy metals in the atmosphere are mainly transported via vertical deposition, influencing areas downwind for 25 km. The mine drainage exceeded As and Zn standards but had little impact on the surface water. The surface water quality was good, without acidification. Risks due to ore were much higher than that for tailings. Heavy metals buffered by surrounding carbonate rocks and secondary minerals mainly migrated as solid particles, resulting in the contamination of stream sediment by heavy metals. In mountainous areas, rivers are mainly affected by topography, flowing fast and dominated by downcutting, which caused heavy metal pollution in the sediment have a limited effect on the soil near the river. Heavy metal concentrations in the cultivated soil were greatly influenced by external input such as substantial atmospheric dust. However, only Cd accumulated in the crops, with very high concentrations in rice, but safe and edible levels in corn. Thus, in the mining area, the most sensitive to heavy metals was the atmospheric environment. High concentrations of heavy metals beyond the ore district are mainly concentrated in the sediment, with distant impacts. Therefore, it is necessary to monitor and control risks associated with sediment transport, conduct treatment, and adjust crop planting. The soil, river, and agriculture respond differently to mining activities, but the risk is low and can be managed as needed. Full article
(This article belongs to the Special Issue Mine and Water)
Show Figures

Figure 1

15 pages, 4798 KB  
Article
Assessment of Microbial Contamination in the Infulene River Basin, Mozambique
by Clemêncio Nhantumbo, Nídia Cangi Vaz, Mery Rodrigues, Cândido Manuel, Sífia Rapulua, Jéssica Langa, Hélio Nhantumbo, Dominic Joaquim, Michaque Dosse, José Sumbana, Ricardo Santos, Silvia Monteiro and Dinis Juízo
Water 2023, 15(2), 219; https://doi.org/10.3390/w15020219 - 4 Jan 2023
Cited by 10 | Viewed by 6170
Abstract
Water microbial contamination is one of the major threats to human health. The study focus is on Infulene River Basin, a urban catchment with mainly informal settlements, with limited water supply and sanitation. In the catchment there are two wastewater treatment plants, one [...] Read more.
Water microbial contamination is one of the major threats to human health. The study focus is on Infulene River Basin, a urban catchment with mainly informal settlements, with limited water supply and sanitation. In the catchment there are two wastewater treatment plants, one hospital and beer factory located on the banks of the main stream; water from this stream is used for urban agriculture and domestic uses by some dwellers. These factors present a significant health risk from water-borne diseases. At the moment there is limited knowledge about the level of microbial contamination of the different sources of water at the disposal of the communities. Thus, a preliminary study on fecal microbial contamination was conducted targeting the Infulene River and the drainage system from the nearby Maputo city draining into the system, with additional investigation on the drinking water provided by the city water supply company. The quantification of Total Coliforms (TC) and Escherichia coli (EC) was conducted at several sampling locations. Results were compared with official drinking water standards. Eighty two percent (82%) and 61% of Infulene river water and drainage water samples were positive for TC (105 to 109 NPN/100 mL) and EC (105 to 107 NPN/100 mL), respectively. For drinking water samples, 63% and 23% were positive for TC (up to 6000 NPN/100 mL) and EC (up to 1000 NPN/100 mL), respectively. Higher microbial contamination was found in neighborhoods with the poorest sanitation and shallow groundwater, i.e., Chamanculo, Xipamanine, Mafalala, Aeroporto and Maxaquene, a situation that was more expressive during the rainy season. Overall, the study confirmed the high vulnerability to microbial contamination of all sources investigated due to poor sanitation and lack of drainage infrastructure. The risks to human health might be even higher considering that contaminated water is used for gardening of vegetable watering and domestic use. Full article
(This article belongs to the Special Issue Waterborne Pathogens—Threats to Water Quality)
Show Figures

Figure 1

21 pages, 9376 KB  
Article
Rapid Removal of Cr(VI) from Aqueous Solution Using Polycationic/Di-Metallic Adsorbent Synthesized Using Fe3+/Al3+ Recovered from Real Acid Mine Drainage
by Khathutshelo Lilith Muedi, Vhahangwele Masindi, Johannes Philippus Maree and Hendrik Gideon Brink
Minerals 2022, 12(10), 1318; https://doi.org/10.3390/min12101318 - 19 Oct 2022
Cited by 7 | Viewed by 2976
Abstract
The mining of valuable minerals from wastewater streams is attractive as it promotes a circular economy, wastewater beneficiation, and valorisation. To this end, the current study evaluated the rapid removal of aqueous Cr(VI) by polycationic/di-metallic Fe/Al (PDFe/Al) adsorbent recovered from real acid mine [...] Read more.
The mining of valuable minerals from wastewater streams is attractive as it promotes a circular economy, wastewater beneficiation, and valorisation. To this end, the current study evaluated the rapid removal of aqueous Cr(VI) by polycationic/di-metallic Fe/Al (PDFe/Al) adsorbent recovered from real acid mine drainage (AMD). Optimal conditions for Cr(VI) removal were 50 mg/L initial Cr(VI), 3 g PDFe/Al, initial pH = 3, 180 min equilibration time and temperature = 45 °C. Optimal conditions resulted in ≥95% removal of Cr(VI), and a maximum adsorption capacity of Q = 6.90 mg/g. Adsorption kinetics followed a two-phase pseudo-first-order behaviour, i.e., a fast initial Cr(VI) removal (likely due to fast initial adsorption) followed by a slower secondary Cr(VI) removal (likely from Cr(VI) to Cr(III) reduction on the surface). More than 90% of adsorbed Cr(VI) could be recovered after five adsorption–desorption cycles. A reaction mechanism involving a rapid adsorption onto at least two distinct surfaces followed by slower in situ Cr(VI) reduction, as well as adsorption-induced internal surface strains and consequent internal surface area magnification, was proposed. This study demonstrated a rapid, effective, and economical application of PDFe/Al recovered from bona fide AMD to treat Cr(VI)-contaminated wastewater. Full article
Show Figures

Figure 1

22 pages, 2885 KB  
Article
Application of Chemostratigraphic Methods to Floodplain Alluvial Deposits within the Big Harris Creek Basin, North Carolina
by Samantha N. Sullivan, Jerry R. Miller and Carmen L. Huffman
Geosciences 2022, 12(5), 187; https://doi.org/10.3390/geosciences12050187 - 26 Apr 2022
Cited by 2 | Viewed by 3067
Abstract
Big Harris Creek, North Carolina, possesses a geomorphic history and alluvial stratigraphic record similar to many drainages in southern Appalachian Piedmont. An approximately 1 km reach of Upper Stick Elliott Creek, a tributary to Big Harris Creek, was used herein to (1) explore [...] Read more.
Big Harris Creek, North Carolina, possesses a geomorphic history and alluvial stratigraphic record similar to many drainages in southern Appalachian Piedmont. An approximately 1 km reach of Upper Stick Elliott Creek, a tributary to Big Harris Creek, was used herein to (1) explore the use of chemostratigraphic methods to define and correlate late Holocene alluvial deposits along this relatively uncontaminated rural stream containing legacy sediments (historic, anthropogenically derived deposits), and (2) interpret depositional floodplain processes within small (<10 km2), headwater drainages. The lithofacies within four floodplain sections were described in channel banks and sampled at about 5 cm intervals. The 128 collected samples were then analyzed for grain size and the concentration of 22 elements using X-ray fluorescence. Well-defined chemostratigraphic units (facies) were defined on the basis of a multi-elemental fingerprint using a principal component analysis (PCA) and verified using discriminant analysis (DA). Chemostratigraphic units did not reflect grain size at a site (by design) but marginally correlated to lithofacies defined by field descriptions. Of significant importance, chemostratigraphic units could be quantitatively correlated between the four stratigraphic sections at a much higher spatial resolution (~5 cm) than could be performed using other sedimentologic parameters alone. In combination, the lithostratigraphic and chemostratigraphic architecture of the floodplain is consistent with a previously proposed sequence of deposition for the legacy deposits in which extensive land-use change associated with the onset of cotton farming in the 1860s led to upstream incision and gully formation and downstream deposition on the floodplain surface. Deposition appears to have progressed downvalley as incision deepened, probably in the form of crevasse splay deposits or proximal sandsheets that were occasionally interbedded with vertically accreted sediments. The results indicate that chemostratigraphy represents a highly useful approach to the assessment of floodplain depositional processes over (at least) relatively small temporal and spatial scales, even in areas with minimal sediment contamination. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

18 pages, 3296 KB  
Article
Mercury and Arsenic Discharge from Circumneutral Waters Associated with the Former Mining Area of Abbadia San Salvatore (Tuscany, Central Italy)
by Marta Lazzaroni, Marino Vetuschi Zuccolini, Barbara Nisi, Jacopo Cabassi, Stefano Caliro, Daniele Rappuoli and Orlando Vaselli
Int. J. Environ. Res. Public Health 2022, 19(9), 5131; https://doi.org/10.3390/ijerph19095131 - 23 Apr 2022
Cited by 6 | Viewed by 2639
Abstract
Dissolved and suspended toxic elements in water discharged from abandoned and active mining areas pose several critical issues, since they represent a threat to the environment. In this work, we investigated the water, suspended particulates, and stream sediments of a 2.1 km long [...] Read more.
Dissolved and suspended toxic elements in water discharged from abandoned and active mining areas pose several critical issues, since they represent a threat to the environment. In this work, we investigated the water, suspended particulates, and stream sediments of a 2.1 km long creek (Fosso della Chiusa) that is fed by waters draining the galleries of the abandoned Hg mining area of Abbadia San Salvatore (Mt. Amiata, Tuscany, central Italy). The geochemical results show evidence that the studied matrices are characterized by relatively high concentrations of Hg and As, whereas those of Sb are generally close to or below the instrumental detection limit. Independent of the matrices, the concentration of As decreases from the emergence point to the confluence with the Pagliola creek. In contrast, Hg concentrations display more complex behavior, as water and sediment are mainly characterized by concentrations that significantly increase along the water course. According to the geoaccumulation index (Igeo), sediments belong to Class 6 (extremely contaminated) for Hg. The Igeo of As varies from Class 6, close to the emergence, to Class 2 (moderately contaminated), dropping to Class 0 (uncontaminated) at the confluence with the Pagliola creek. Finally, the total mass load of Hg and As entering the Pagliola creek was computed to be 1.3 and 0.5 kg/year, respectively, when a mean flow rate of 40 L/s was considered. The calculated loads are relatively low, but, when the Fosso della Chiusa drainage basin is taken into account, the specific load is comparable to, or even higher than, those of other mining areas. Full article
Show Figures

Graphical abstract

23 pages, 4471 KB  
Article
Environmental Assessment Impact of Acid Mine Drainage from Kizel Coal Basin on the Kosva Bay of the Kama Reservoir (Perm Krai, Russia)
by Evgeniya Ushakova, Elena Menshikova, Sergey Blinov, Boris Osovetsky and Pavel Belkin
Water 2022, 14(5), 727; https://doi.org/10.3390/w14050727 - 24 Feb 2022
Cited by 17 | Viewed by 3928
Abstract
The Kosva Bay is permanently affected by acid mine drainage (AMD) from Kizel Coal Basin in the Perm Krai of Russia. This discharge is released in the middle part of the Kosva River from the abandoned mines. This study investigates the current trace [...] Read more.
The Kosva Bay is permanently affected by acid mine drainage (AMD) from Kizel Coal Basin in the Perm Krai of Russia. This discharge is released in the middle part of the Kosva River from the abandoned mines. This study investigates the current trace element (TE) concentrations for Zn, Cu, Pb, Ni, Cr, Cd, As, and Hg and the mineral composition, major oxides, grain size of sediments, and acute toxicity using two test organisms within the site of AMD downstream from the Kosva River and up to the Kosva Bay of Kama Reservoir. The objectives of this study were to analyze the quality of sediment and level pollution of Kosva Bay using pollution and ecotoxicological indices. The environmental indices, namely the contamination factor (CF), the geoaccumulation index (Igeo), and the potential ecological risk factor (Eri), indicate contamination by Cr and Pb in sediments at the site of AMD, with the highest values for Cr, Cu, and As in the Kosva Bay sediments downstream of abandoned coal mines. The results of Igeo and CF average values in bay of sediments showed different degrees of contamination, from moderate contamination to considerable contamination, respectively. According to the potential ecological risk index (RI) values, the Kosva Bay sediments exhibited low to moderate risk, and As and Cd have the highest contribution rate. According to LAWA and the Polish geochemical classification of sediments, sediments of the bay correspond to the highest levels (IV–III classes) for Cr, Ni, and Hg. Based on the SQGC, Hg, Cd, Cr, and Ni are the most probable for resulting in adverse effects on aquatic organisms in this study. The results of this study indicate that complex pollution and ecotoxicological indices must be supported by ecotoxicologal tests. High precipitation totals, low evaporation rates, and flow regulation stream by the Shirokovsky Reservoir located upstream from abandoned coal mines provide significant fluctuations in streamflow, which is probably the most important factor controlling the distribution and mobility of TE in the studied sediments. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

15 pages, 12895 KB  
Article
Elements’ Content in Stream Sediment and Wildfire Ash of Suburban Areas in West Attica (Greece)
by Maria Doufexi, Dimitra E. Gamvroula and Dimitrios E. Alexakis
Water 2022, 14(3), 310; https://doi.org/10.3390/w14030310 - 20 Jan 2022
Cited by 16 | Viewed by 3540
Abstract
The composition of sediments and other materials occurring in streams, geochemical processes within the drainage basin, and various land uses are among the main factors influencing stream water composition. Stream sediment and wildfire ash samples were gathered from the area studied. The applied [...] Read more.
The composition of sediments and other materials occurring in streams, geochemical processes within the drainage basin, and various land uses are among the main factors influencing stream water composition. Stream sediment and wildfire ash samples were gathered from the area studied. The applied methodology consists of aqua regia and Diethylene-Triamine-Penta-Acetic acid (DTPA) chemical extraction; Cation Exchange Capacity (CEC), pH, and soil organic matter (OM) determination; a Geographic Information System (GIS) database; factor analysis; and determination of the contamination factor (CF) for the assessment of contamination degree. This study aimed to evaluate the elements’ content in stream sediments of Kineta and Nea Peramos areas (West Attica, Greece) and investigate any relationship between elements (aqua regia and DTPA extracted) in stream sediment and ash in wildfire and flood-impacted areas. The stream sediments’ properties, the bioavailable forms of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn), and the total content of other potentially toxic elements in wildfire ash samples, are discussed. This research estimated moderate contamination for FeDTPA, MnDTPA and ZnDTPA in stream sediments of the study area. Contamination for CuDTPA and moderate contamination for ZnDTPA in the stream sediments of the Nea Peramos area was recorded. Factor analysis results suggested that the contents of FeDTPA, MnDTPA, CuDTPA and ZnDTPA in the study area’s stream sediments may affect the chemistry of stream water. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

25 pages, 934 KB  
Article
Urban Drool Water Quality in Denver, Colorado: Pollutant Occurrences and Sources in Dry-Weather Flows
by Forrest Gage Pilone, Pablo A. Garcia-Chevesich and John E. McCray
Water 2021, 13(23), 3436; https://doi.org/10.3390/w13233436 - 4 Dec 2021
Cited by 8 | Viewed by 4097
Abstract
Dry-weather flows in urban channels and streams, often termed “urban drool”, represent an important source of urban surface water impairment, particularly in semi-arid environments. Urban drool is a combination of year-round flows in urban channels, natural streams, and storm-sewer systems (runoff from irrigation [...] Read more.
Dry-weather flows in urban channels and streams, often termed “urban drool”, represent an important source of urban surface water impairment, particularly in semi-arid environments. Urban drool is a combination of year-round flows in urban channels, natural streams, and storm-sewer systems (runoff from irrigation return flow, car washes, street cleaning, leakage of groundwater or wastewater into streams or storm sewers, etc.). The purpose of this study was to better understand the extent and sources of urban drool pollution in Denver, Colorado by identifying relationships between urban catchment characteristics and pollutants. Water-quality samples were taken throughout Denver at urban drainage points that were representative of a variety of urban characteristics. Samples were analyzed for total suspended solids (TSS), coliforms, Escherichia Coli (E. coli), nutrients (nitrate, phosphorus, and potassium), dissolved and total organic carbon, and dissolved and total recoverable metals. Results from this study were as follows: (1) most contaminants (nitrate, phosphorus, arsenic, iron, manganese, nickel, selenium, and zinc) were concluded to be primarily loaded from shallow groundwater; (2) anthropogenic effects likely exacerbated groundwater pollutant concentrations and contributions to surface water; (3) nitrate, nickel, and manganese may be partially contributed by industrial inputs; (4) medical marijuana cultivation sites were identified as a potential source of nutrient and zinc pollution; (5) E. coli was a ubiquitous contaminant in all urban waterways; (6) erosion of contaminated urban soils, presumably from construction, was found to significantly increase concentrations of TSS, total phosphorus, and total metals. Increasing urbanization and predicted drier climates suggest that dry-weather flows will become more important to manage; the results from this study provide insight on dry-weather water quality management for the City and County of Denver. Full article
Show Figures

Figure 1

Back to TopTop