The Impact of Molybdenum Mining on Cd Pollution along Wenyu Stream in Qinling Mountains, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results
3.1. The Test Quality of the Five Elements in Surface Water and Sediment Samples
3.2. The Cd Exceedance in the Surface Water of the Wenyu Stream
3.3. The Cd Accumulation Degree of Stream Sediment
3.4. Potential Ecological Risk of Cd Content in Sediment
3.5. The Cd Content of Surrounding Rock
4. Discussion
4.1. Acid Mine Drainage Source of Cadmium in the Wenyu Stream
4.2. The Surrounding Rock Source of Cd in the Wenyu Stream
4.3. Sediment Sources of Cd in the Wenyu Stream
4.4. The Atmospheric Dust Fall Sources of Cd in the Wenyu Stream
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y. Investigation and research on the mine geological environment: Present status and outlook. Geol. Bull. China 2008, 27, 1235–1244. [Google Scholar]
- Li, J.; Zhang, J. Discussion on the work of mine geo-environmental investigation of China. Hydrogeol. Eng. Geol. 2018, 45, 169–172. [Google Scholar]
- Wu, Q. Study of classification of geologic environmental problems in mines in China. Hydrogeol. Eng. Geol. 2003, 5, 107–112. [Google Scholar]
- Tepe, A.Y. Toxic Metals: Trace Metals–Chromium, Nickel, Copper, and Aluminum. Encycl. Food Saf. 2014, 2, 356–362. [Google Scholar]
- Xu, Y.; Zhang, J. Contents of heavy metals in bottom sediments of the Taiyu River in the Tongguan gold mining area, Shaaxi, China, and contamination assessments. Geol. Bull. China 2008, 27, 1263–1671. [Google Scholar]
- Zhang, J.; Zhao, A.; Chen, H.; Xu, Y.; He, F. Evaluation of potential ecological risk of heavy- metal pollution in bottom mud of the Xiyu River in the Xiaoqinling gold mining area, China. Geol. Bull. China 2008, 27, 1286–1291. [Google Scholar]
- Liu, R.; Xu, Y.; Li, X.; Zhang, J.; Chen, H.; He, F.; Qiao, G.; Ke, H.; Shi, Y. The distribution and coupling relationship of heavy metal content in water and sediments in the gold mining area. Geol. Bull. China 2014, 33, 1220–1230. [Google Scholar]
- Huang, J.; Qin, M.; Ma, W.; Yu, J.; Peng, X.; Yang, L. Characteristics analysis and ecological risk assessment of heavy metals contamination in suspended solids in a river affected by acid mine drainage. Environ. Chem. 2016, 35, 2315–2326. [Google Scholar]
- Chen, Q.; Zhang, X.; Hu, M. Assessment of aquatic pollution of heavy metals in a copper- iron area. Environ. Sci. Technol. 2006, 29, 64–71. [Google Scholar]
- Kodat, M.; Tepe, Y. A holistic approach to the assessment of heavy metal levels and associated risks in the coastal sediment of Giresun, southeast Black Sea. Heliyon 2023, 9, e16424. [Google Scholar]
- Aydın, H.; Tepe, Y.; Ustaoğlu, F. A holistic approach to the eco-geochemical risk assessment of trace elements in the estuarine sediments of the Southeastern Black Sea. Mar. Pollut. Bull. 2023, 189, 114732. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, H.; Ren, L.; Gong, P.; Zhou, Q. Eco-toxicological Effects of Heavy Metals on the Inhibition of Seed Germination and Root Elongation of Chinese Cabbages in Soils. Environ. Sci. 2002, 23, 103–107. [Google Scholar]
- Wang, J.; Ma, Q.; Zhao, X.; Zhong, S.; Xu, Z. Influence of emergent cadmium pollution on fish species and health risk assessment in Longjiang River in Guangxi Autonomous Region. Ecol. Environ. Sci. 2019, 28, 974–982. [Google Scholar]
- Sun, D. Research Progress on Phytoremediation of Cd contaminated soil. Environ. Prot. Circ. Econ. 2014, 34, 53–55. [Google Scholar]
- Avenell, S. Japan’s long environmental sixties and the birth of a green leviathan. Jpn. Stud. 2012, 32, 423–444. [Google Scholar] [CrossRef]
- Jiang, J. The relationship of environmental geochemistry to human health and agricultural production. Geophys. Geochem. Exploration. 2004, 28, 330–332. [Google Scholar]
- Zhang, S.; Cui, Y. Protection and monitoring of the headwaters area in the Qinling mountains for south to north water transfer project. Yangtze River 2007, 38, 40–42. [Google Scholar]
- Yang, M.; Zhao, A.; Ke, H.; Chen, H. Geo-Environmental Factors’Influence on the Prevalence and Distribution of Dental Fluorosis: Evidence from Dali County, Northwest China. Sustainability 2023, 15, 1871. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, W.; Zhang, J.; Xiao, Y.; Zhang, L. Designing protected area systems in the Qinling Mountains based on biodiversity and ecosystem service evaluation. Acta Ecol. Sin. 2017, 37, 5334–5341. [Google Scholar]
- Wen, Y. Construction of Qinling Ecological Demonstration Area. J. Anhui Agri. Sci. 2011, 39, 14278–14280. [Google Scholar]
- Song, Z.; Song, G.; Tang, W.; Yan, D.; Zhao, Y.; Zhu, Y.; Wang, J.; Ma, Y. Molybdenum contamination dispersion from mining site to a reservoir. Ecotoxicol. Environ. Saf. 2021, 208, 111631. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-2018; Soil Environmental Quality–Risk Control Standard for Soil Contamination of Agricultural Land. China Environmental Science Press Co., Ltd.: Beijing, China, 2019.
- GB 3838-2002; Environmental Quality Standards for Surface Water. China Environmental Science Press Co., Ltd.: Beijing, China, 2002.
- Hu, J.; Qiu, S.; Luo, N.; Qing, G.; Huang, C. Multi-Dimensional Spatial and Temporal Variations of Ecosystem Service Values in the Li River Basin, 1990–2020. Remote Sens. 2023, 15, 2996. [Google Scholar] [CrossRef]
- Ren, T.; Zheng, J. Geological characteristics of the deep orebody in the north open pit of Jinduicheng molybdenum deposit, Huaxian County, Shaanxi Province. World Nonferrous Met. 2019, 10, 252–254. [Google Scholar]
- DD2005-03; Technical Code for China Geological Survey-Technical Requirements for Analysis of Ecological Geochemical Evaluation Samples (DD2005-03). China Geological Survey: Beijing, China, 2005.
- Luonan County Strengthens Pollution Control and Helps Rural Revitalization. Available online: https://www.luonan.gov.cn/xwzx/zxbd/112508.htm (accessed on 7 December 2021).
- NY/T 395-2012; Technical Rules for Monitoring of Environmental Quality of Farmland Soil. China Agriculture Press Co., Ltd.: Beijing, China, 2012.
- Niu, H.; Wu, Q.; Chen, X. Distribution characteristics and correlations of heavy metals in the surface sediments in Guangzhou section of the Pearl River. Ecol. Environ. 2006, 15, 954–959. [Google Scholar]
- Li, L.; Zeng, X.; Li, G.; Mei, X. Heavy metal pollution of Wenyu River sediment and its risk assessment. Acta Sci. Circumstantiate 2007, 27, 289–297. [Google Scholar]
- Mǜller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Farkas, A.; Erratico, C.; Viganò, L. Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere 2007, 68, 761–768. [Google Scholar] [CrossRef]
- Mǜller, G. Schwermetalle in den sedimenten des Rheins-Vernderungen seit 1971. Umschav 1979, 79, 778–783. [Google Scholar]
- Hakanson, L. An ecological risk index aquatic pollutioncontrol: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.; Ni, S.; Tuo, X.; Zhang, C. Calculation of Heavy Metals’ Toxicity Coefficient in theEvaluation of Potential Ecological Risk Index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar]
- Xu, Z.; Yang, X.; Wen, Y.; Chen, G.; Fang, J. Evaluation of the Heavy Metals Contamination and Its Potential Ecological Risk of the Sediments in Beijiang River’s Upper and Middle Reaches. Environ. Sci. 2009, 30, 3262–3268. [Google Scholar]
- Gao, Y.; Xu, Y.; Zhang, J. Evaluation of Cd pollution of a molybdenum ore area in Dongchuan River basin of the Qinling Mountain. Geol. Bull. China 2018, 37, 2241–2250. [Google Scholar]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Shojaei, N.; Sorooshian, A.; Soltani, N.; Delshab, H. Geochemistry and environmental effects of potentially toxic elements, polycyclic aromatic hydrocarbons and microplastics in coastal sediments of the Persian Gulf. Environ. Earth Sci. 2019, 78, 492. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, C.; Li, C. Geochemical Characteristics of Heavy Metal’s Contamination and Its Surface Geochemical Mechanism in Baiyin City, Gansu Province. Geol. Sci. Technol. Inf. 2010, 29, 124–131. [Google Scholar]
- Li, J.; Chen, H.; Teng, Y.; Dong, J. Contamination characteristics and source apportionment of soil heavy metals in Lalin River basin. Trans. Chin. Soc. Agric. Eng. 2016, 32, 226–233. [Google Scholar]
- Qiao, S.; Jiang, J.; Xiang, W.; Tang, J. Distribution of heavy metals in sediments in lakes in Wuhan with assessment on their potential ecological risk. Resour. Environ. Yangtze Basin 2005, 3, 353–357. [Google Scholar]
- Deng, H.; Li, L.; Kim, J.; Ling, F.; Beckingham, L.E.; Wammer, K.H. Bridging environmental geochemistry and hydrology. J. Hydrol. 2022, 613, 128448. [Google Scholar] [CrossRef]
- Gong, X.; Chen, C.; Zhou, W.; Jian, M.; Zhang, Z. Assessment on Heavy Metal Pollution in the Sediment of Poyang Lake. Environ. Sci. 2006, 27, 732–736. [Google Scholar]
- Bai, W.; Quan, X.; Tan, H.; Zhao, Q.; Zhao, G.; Zhu, Q. Pollution of heavy metals in sediments from Changshou lake in Chongqing and Its potential ecological risk assessment. Earth Environ. 2011, 39, 382–387. [Google Scholar]
- Zhu, W.; Huang, T.; Chai, B.; Zhang, Y.; Lu, J. The impact of the redox conditions on the speciation of the heavy metals in the sediment of the Fenhe reservoir and their assessments of the potential ecological risk. J. Arid Land Resour. Environ. 2009, 23, 34–40. [Google Scholar]
- Wang, L.; Zhou, X.; Zheng, B.; Fu, Q. Sediments eco-environmental quality assessment in the Changjiang Estuary and its adjacent waters. Acta Ecol. Sin. 2008, 28, 2191–2198. [Google Scholar]
- Jia, Z.; Liang, T.; Lin, J. Study on heavy metal contamination and potential ecological risk in Hong Kong Rivers. Acta Sci. Nat. Univ. Pekin. 1997, 33, 485–492. [Google Scholar]
- Pan, A.; He, Y.; Ma, R. Zoning of environmental geochemistry in Shaanxi Province. Adv. Earth Sci. 2004, 19, 439–443. [Google Scholar]
- Xiao, R.; Wang, S.; Li, R.; Wang, J.; Zhang, Z. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017, 141, 17–24. [Google Scholar] [CrossRef]
- Simeonov, V.; Einax, J.; Tsakovski, S.; Kraft, J. Multivariate statistical assessment of polluted soils. Cent. Eur. J. Chem. 2005, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Luo, Y.; Wu, L. Methods for source apportionment of soil pollutants and their advances in application to aoil environmental research. Soils 2007, 39, 190–195. [Google Scholar]
- Rezaie, B.; Anderson, A. Sustainable resolutions for environmental threat of the acid mine drainage. Sci. Total Environ. 2020, 717, 137211. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, X.; Yan, Z.; Zhao, H.; Zhao, P.; Yao, Y.; Chen, X. Heavy metal content and microbial characteristics of soil plant system in Dabaoshan mining area, Guangdong Province. PLoS ONE 2023, 18, e0285425. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Ding, Z.; Bi, Y.; Li, J.; Wen, S.; Bai, S. Resource Utilization of Acid Mine Drainage (AMD): A Review. Water 2022, 14, 2385. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Kurniawan, S.B.; Iwuozor, K.O.; Aniagor, C.; Ajala, O.J.; Oba, S.; Iwuchukwu, U.F.; Ahmadi, S.; Igwegbe, C.A. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Saf. Environ. Prot. 2022, 157, 37–58. [Google Scholar] [CrossRef]
- Xu, L.; Bi, X.; Zhang, X.; Huang, M.; Liu, G. Mantle contribution to the generation of the giant Jinduicheng porphyry Mo deposit, Central China: New insights from combined in-situ element and isotope compositions of zircon and apatite. Chem. Geol. 2023, 616, 121238. [Google Scholar] [CrossRef]
- Ye, X.; Pan, Z.; Li, C.; Liu, T.; Xia, B. The present situation and prospects of geochemical researches on cadmium. Acta Petrol. Mineral. 2005, 24, 339–348. [Google Scholar]
- Wang, J.; Jiang, Y.; Sun, J.; She, J.; Yin, M.; Fang, F.; Xiao, T.; Song, G.; Liu, J. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicol. Environ. Saf. 2020, 196, 110529. [Google Scholar] [CrossRef] [PubMed]
- Shi, M. Shanxi Section of WeiHe River Sediment Releasing Regularity and Its Influence on Water Quality Research. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2016. [Google Scholar]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Islam, A.R.M.T.; Islam, H.M.T.; Hasanuzzaman, M.; Ongoma, V.; Khan, R.; Malick, J. Water resources pollution associated with risks of heavy metals from Vatukoula Goldmine region, Fiji. J. Environ. Manag. 2021, 293, 112868. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Qian, J.; Wu, J.; Pan, T. Simulated study on phosphorus release of Chao Lake sediment. Acta Sci. Circumstantiae 2002, 6, 738–742. [Google Scholar]
- Fang, X.; Peng, B.; Wang, X.; Song, Z.; Zhou, D.; Wang, Q.; Qin, Z.; Tan, C. Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan province, China. Sci. Total Environ. 2019, 689, 557–570. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Zhang, Z.; Liu, C.; Sun, C.; Zhang, W.; Marhaba, T.F. pH effect on heavy metal release from a polluted sediment. J. Chem. 2018, 2018, 7597640. [Google Scholar] [CrossRef]
- Qiao, L.; Fan, B.; Zhang, Y. Reasearch composition and formation mechanism of rivee sediment. Environ. Sci. Manag. 2022, 47, 88–92. [Google Scholar]
- Yan, H.; Zhang, H.; Shi, Y.; Zhou, P.; Li, H.; Wu, D.; Liu, L. Simulation on release of heavy metals Cd and Pb in sediments. Trans. Nonferrous Met. Soc. China 2021, 31, 277–287. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wen, M.; Zheng, C.; Chai, S.; Huang, L.; Liu, P. Distribution Characteristics and Ecological Risk Assessment of Nitrogen, Phosphorus, and Some Heavy Metals in the Sediments of Yueliang Lake inWestern Jilin Province, Northeast China. Water 2022, 14, 3306. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Chen, S.; Ke, H. Distribution of contents of heavy metals in soil profile contaminated in different ways in Xiaoqinling gold mining area. J. Agro-Environ. Sci. 2008, 27, 200–206. [Google Scholar]
- Yuan, H.; Yin, H.; Yang, Z.; Yu, J.; Liu, E.; Li, Q.; Tai, Z.; Cai, Y. Diffusion kinetic process of heavy metals in lacustrine sediment assessed under different redox conditions by DGT and DIFS model. Sci. Total Environ. 2020, 741, 140418. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Nie, Y.; Hu, C. Migration and transformation of heavy metals at solid/water interface in Beiyunhe River. Chin. J. Environ. Eng. 2012, 6, 3455–3459. [Google Scholar]
- Ye, L.; Huang, M.; Zhong, B.; Wang, X.; Tu, Q.; Sun, H.; Wang, C.; Wu, L.; Chang, M. Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region (China): Characteristics, ecological risk assessment, and source apportionment. J. Environ. Sci. 2018, 70, 106–123. [Google Scholar] [CrossRef]
- Sun, Z.; Mou, X.; Tong, C.; Wang, C.; Xie, Z.; Song, H.; Sun, W.; Lv, Y. Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River estuary, China. Catena 2015, 126, 43–52. [Google Scholar] [CrossRef]
Pollution Level | No Pollution | Light Pollution | Moderate Pollution | Heavy Pollution | Extreme Pollution |
---|---|---|---|---|---|
The single pollution index (PCi) | PCi ≤ 0 | 0 < PCi ≤ 1 | 1 < PCi ≤ 4 | 4 < PCi ≤ 10 | 10 < PCi |
Pollution Level | No Pollution | Light Pollution | Moderate Pollution | Heavy Pollution | Extreme Pollution |
---|---|---|---|---|---|
The Nemerow pollution index (PNi) | PNi ≤ 1 | 1 < PNi ≤ 2 | 2 < PNi ≤ 3 | 3 < PNi ≤ 5 | 5 < PNi |
Pollution Level | No Pollution | No to Moderate Pollution | Moderate Pollution | Moderate to Severe Pollution | Severe Pollution | Severe to Extreme Pollution | Extreme Pollution |
---|---|---|---|---|---|---|---|
Index range | Igeo ≤ 0 | 0 < Igeo ≤ 1 | 1 < Igeo ≤ 2 | 2 < Igeo ≤ 3 | 3 < Igeo ≤ 4 | 4 < Igeo ≤ 5 | 5 < Igeo |
Level | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Ecological Risk Degree | Slight | Medium | Strong | Very Strong | Extremely Strong |
---|---|---|---|---|---|
Index range | <40 | 40 ≤ Eri < 80 | 80 ≤ Eri < 160 | 160 ≤ Eri < 320 | 320 ≤ Eri |
Elements | Cd | Cu | Pb | Cr | Hg | ||
---|---|---|---|---|---|---|---|
Water samples | 15 | Results (mg/L) | 0.00200 | 0.01300 | 0.00100 | 0.00100 | 0.00005 |
Duplicate results (mg/L) | 0.00190 | 0.00140 | 0.00090 | 0.00110 | 0.00005 | ||
RD (%) | 2.56 | 3.70 | 5.26 | 4.76 | 0.00 | ||
20 | Results (mg/L) | 0.00200 | 0.00900 | 0.00100 | 0.00100 | 0.00005 | |
Duplicate results (mg/L) | 0.00210 | 0.01030 | 0.00110 | 0.00090 | 0.00005 | ||
RD (%) | 2.44 | 6.74 | 4.76 | 5.26 | 0.00 | ||
T1 | Results (mg/L) | 0.00600 | 0.08700 | 0.00100 | 0.00100 | 0.00005 | |
Duplicate results (mg/L) | 0.00700 | 0.08900 | 0.00110 | 0.00105 | 0.00005 | ||
RD (%) | 7.69 | 1.14 | 4.76 | 2.44 | 0.00 | ||
Sediment samples | 3 | Results (mg/kg) | 3.78000 | 82.70000 | 620.00000 | 93.70000 | 1.28000 |
Duplicate results (mg/kg) | 3.95000 | 87.10000 | 646.00000 | 98.50000 | 1.17000 | ||
RD (%) | 2.20 | 2.95 | 2.05 | 2.50 | 4.49 | ||
5 | Results (mg/kg) | 1.76000 | 50.50000 | 221.00000 | 66.70000 | 0.13800 | |
Duplicate results (mg/kg) | 1.89000 | 56.30000 | 236.00000 | 63.20000 | 0.13100 | ||
RD (%) | 3.56 | 5.43 | 3.28 | 2.69 | 2.60 |
Elements | Mode (mg/L) | Mean (mg/L) | Median (mg/L) | Range (mg/L) | Range/Mode | Range/Average | Standard Deviation (mg/L) | Coefficient of Variation (%) | Limits (mg/kg) [23] | Average Single Pollution Index |
---|---|---|---|---|---|---|---|---|---|---|
Cd | 0.001 | 0.001 | 0.001 | 0.001–0.01 | 9.000 | 4.299 | 0.002 | 99.440 | 0.005 | 0.960 |
Pb | 0.001 | 0.001 | 0.001 | 0.001–0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 |
Cu | 0.001 | 0.021 | 0.008 | 0.001–0.280 | 86.000 | 4.151 | 0.019 | 93.800 | 1.000 | −0.984 |
Cr | 0.001 | 0.001 | 0.001 | 0.001–0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.050 | −0.980 |
Hg | 0.00005 | 0.00005 | 0.00005 | 0.00005–0.00005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00005 | 0.000 |
Elements | Mean (mg/kg) | Median (mg/kg) | Range (mg/kg) | Range/Average | Standard Deviation | Coefficient of Variation(%) | Limits [22] (mg/kg) | Average Single Pollution Index |
---|---|---|---|---|---|---|---|---|
Cd | 3.71 | 3.41 | 1.760–7.660 | 1.90 | 1.63 | 43.930 | 4.000 | 1.559 |
Pb | 178.100 | 138.000 | 23.100–564.000 | 3.037 | 141.579 | 79.494 | 1000.000 | −0.771 |
Cu | 57.988 | 49.200 | 16.600–151.000 | 2.318 | 36.226 | 62.471 | 200.000 | −0.673 |
Cr | 63.759 | 64.600 | 29.600–98.400 | 1.097 | 19.464 | 30.528 | 1300.000 | −0.949 |
Hg | 0.144 | 0.094 | 0.023–0.776 | 5.211 | 0.119 | 82.563 | 6.000 | −0.955 |
ID | Cd Content (mg/kg) | Mean (mg/kg) | The Cd Background of Shaanxi Province (mg/kg) [47] | The Cd Background of Soils of Guanzhong Basin (mg/kg) [48] |
---|---|---|---|---|
R1 | 0.20 | 0.58 | 0.14 | 0.118 |
R2 | 0.24 | |||
R3 | 0.36 | |||
R4 | 0.11 | |||
R5 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhao, A.; Xu, Y.; Zhang, J.; Yang, M. The Impact of Molybdenum Mining on Cd Pollution along Wenyu Stream in Qinling Mountains, Northwest China. Water 2023, 15, 2779. https://doi.org/10.3390/w15152779
Chen H, Zhao A, Xu Y, Zhang J, Yang M. The Impact of Molybdenum Mining on Cd Pollution along Wenyu Stream in Qinling Mountains, Northwest China. Water. 2023; 15(15):2779. https://doi.org/10.3390/w15152779
Chicago/Turabian StyleChen, Huaqing, Aning Zhao, Youning Xu, Jianghua Zhang, and Min Yang. 2023. "The Impact of Molybdenum Mining on Cd Pollution along Wenyu Stream in Qinling Mountains, Northwest China" Water 15, no. 15: 2779. https://doi.org/10.3390/w15152779
APA StyleChen, H., Zhao, A., Xu, Y., Zhang, J., & Yang, M. (2023). The Impact of Molybdenum Mining on Cd Pollution along Wenyu Stream in Qinling Mountains, Northwest China. Water, 15(15), 2779. https://doi.org/10.3390/w15152779