Stream Chemistry and Forest Recovery Assessment and Prediction Modeling in Coal-Mine-Affected Watersheds in Kentucky, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection, Preparation, and Analysis
2.2.1. Water Samples, Data Collection, and Analysis Method
2.2.2. Vegetation Cover Change Data Collection and Analysis Method
2.2.3. Topographic Data
- Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.
- The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:
- Group A: Soils having a high infiltration rate (low runoff potential);
- Group B: Soils having a moderate infiltration rate;
- Group C: Soils having a slow infiltration rate;
- Group D: Soils having a very slow infiltration rate (high runoff potential).
- If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Source: [80]
2.3. Empirical Models
- where,
2.4. Statistical Analyses
3. Results and Discussion
3.1. Variations in Measured Chemical Parameters
3.2. Descriptive Statistics
3.3. Bivariate Correlations
3.4. Multivariate Regression Model Results
3.4.1. Effects of Mined and Reclamation age Parameters on Conductivity
3.4.2. Effects of Vegetation Cover Change on Conductivity
3.4.3. Effects of Reclamation Age and Mined Operation (Mining Percentage) on Reclaimed Forest
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Focus Economics. Coal: The Story of the World’s Most Abundant Fossil Fuel—FocusEconomics. Available online: https://www.focus-economics.com/blog/coal-facts-commodity-explainer/ (accessed on 10 January 2024).
- National Geographic Society. Available online: https://education.nationalgeographic.org/ (accessed on 10 January 2024).
- CAT Force. Cradle to Grave: The Environmental Impacts from Coal; Spectrum Printing & Graphics, Inc.: Rockville, MD, USA, 2001. [Google Scholar]
- Jasansky, S.; Lieber, M.; Giljum, S.; Maus, V. An open database on global coal and metal mine production. Sci. Data 2023, 10, 52. [Google Scholar] [CrossRef]
- Maus, V.; Giljum, S.; Gutschlhofer, J.; Luckeneder, S.; Lieber, M. The Global Economy Uses More Than 100,000 km2 of Land for Mining—Fineprint. Available online: https://www.fineprint.global/publications/briefs/update_mining_polygons/ (accessed on 10 January 2024).
- Maus, V.; Giljum, S.; Gutschlhofer, J.; da Silva, D.M.; Probst, M.; Gass, S.L.B.; Luckeneder, S.; Lieber, M.; McCallum, I. A global-scale data set of mining areas. Sci. Data 2020, 7, 289. [Google Scholar] [CrossRef] [PubMed]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Belmer, N.; Wright, I.A. The regulation and impact of eight Australian coal mine waste water discharges on downstream river water quality: A regional comparison of active versus closed mines. Water Environ. J. 2020, 34, 350–363. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Sun, Y.; Gao, Y.; Zhu, L. Coal Mining Activities Driving the Changes in Microbial Community and Hydrochemical Characteristics of Underground Mine Water. Int. J. Environ. Res. Public Health 2022, 19, 13359. [Google Scholar] [CrossRef]
- Wolkersdorfer, C.; Mugova, E. Effects of Mining on Surface Water. In Encyclopedia of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2022; pp. 170–188. [Google Scholar] [CrossRef]
- Xiang, Y.; Peng, S.; Du, W. Trends and frontiers in coal mine groundwater research: Insights from bibliometric analysis. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 123. [Google Scholar] [CrossRef]
- Palmer, M.A.; Bernhardt, E.S.; Schlesinger, W.H.; Eshleman, K.N.; Foufoula-Georgiou, E.; Hendryx, M.S.; Lemly, A.D.; Likens, G.E.; Loucks, O.L.; Power, M.E.; et al. Mountaintop Mining Consequences. Science 2010, 327, 148–149. [Google Scholar] [CrossRef] [PubMed]
- Holzman, D.C. Mountaintop Removal Mining: Digging Into Community Health Concerns. Environ. Health Perspect. 2011, 119, a476–a483. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 247–269. [Google Scholar] [CrossRef]
- Evans, C.D.; Peacock, M.; Baird, A.J.; Artz, R.R.E.; Burden, A.; Callaghan, N.; Chapman, P.J.; Cooper, H.M.; Coyle, M.; Craig, E.; et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 2021, 593, 548–552. [Google Scholar] [CrossRef]
- NRDC. Land Facts. 2008. Available online: www.nrdc.org/policy (accessed on 10 January 2024).
- Cooke, C.A.; Drevnick, P.E. Transboundary Atmospheric Pollution from Mountaintop Coal Mining. Environ. Sci. Technol. Lett. 2022, 9, 943–948. [Google Scholar] [CrossRef]
- Kentucky Energy and Environment Cabinet (EEC). History of Coal in Kentucky. 2017. Available online: http://energy.ky.gov/Coal%20Facts%20Library/Kentucky%20Coal%20Facts%20-%2016th%20Edition%20(2016) (accessed on 18 August 2018).
- Energy Information Administration. Kentucky Coal Facts. Available online: https://www.eia.gov/state/?sid=KY#tabs-3 (accessed on 10 January 2024).
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Office of Surface Mining Reclamation and Enforcement (OSMRE). Laws, Regulations and Guidance. 2017. Available online: https://www.osmre.gov/lrg.shtm (accessed on 18 August 2017).
- Negley, T.L.; Eshleman, K.N. Comparison of stormflow responses of surface-mined and forested watersheds in the Appalachian Mountains, USA. Hydrol. Process 2006, 20, 3467–3483. [Google Scholar] [CrossRef]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. In Final Programmatic Environmental Impact Statement (PEIS) on Mountaintop Mining/Valley Fills in Appalachia. Available online: https://nepis.epa.gov/Exe/tiff2png.cgi/20005XA6.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX%20DATA%5C00THRU05%5CTIFF%5C00000722%5C20005XA6.TIF (accessed on 14 November 2017).
- U.S. Environmental Protection Agency. The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields. EPA/600/R-09/138F; 2011. Available online: www.epa.gov (accessed on 8 January 2024).
- Baes, C.F.; McLaughlin, S.B. Trace Elements in Tree Rings: Evidence of Recent and Historical Air Pollution. Science 1984, 224, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Coan, M.; Homer, C. The effect of Appalachian mountaintop mining on interior forest. Landsc. Ecol. 2007, 22, 179–187. [Google Scholar] [CrossRef]
- Gastauer, M.; Silva, J.R.; Junior, C.F.C.; Ramos, S.J.; Filho, P.W.M.S.; Neto, A.E.F.; Siqueira, J.O. Mine land rehabilitation: Modern ecological approaches for more sustainable mining. J. Clean. Prod. 2018, 172, 1409–1422. [Google Scholar] [CrossRef]
- IAWG. Recommendations to Improve Mining on Public Lands; IAWG: New York, NY, USA, 2023. [Google Scholar]
- Erener, A. Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast coal mine. Int. J. Coal Geol. 2011, 86, 20–26. [Google Scholar] [CrossRef]
- Zourarakis, D.P. Meeting Environmental Challenges with Remote Sensing Imagery—Catalog—UW-Madison Libraries. 2013. Available online: https://search.library.wisc.edu/catalog/9910193142702121 (accessed on 10 January 2024).
- Wei, X.; Wei, H.; Viadero, R.C. Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands. Sci. Total Environ. 2011, 409, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Skousen, J.; Zipper, C.E.; McDonald, L.M.; Hubbart, J.A.; Ziemkiewicz, P.F. Sustainable reclamation and water management practices. In Advances in Productive, Safe, and Responsible Coal Mining; Elsevier: Amsterdam, The Netherlands, 2019; pp. 271–302. [Google Scholar] [CrossRef]
- Phillips, J.D. Impacts of surface mine valley fills on headwater floods in eastern Kentucky. Environ. Geol. 2004, 45, 367–380. [Google Scholar] [CrossRef]
- Clubb, F.; Mudd, S.; Schildgen, T.; van der Beek, P.; Devrani, R.; Sinclai, H. Himalayan valley-floor widths controlled by tectonics rather than water discharge. 2022; preprint. [Google Scholar] [CrossRef]
- Clark, E.V.; Zipper, C.E. Vegetation influences near-surface hydrological characteristics on a surface coal mine in eastern USA. Catena 2016, 139, 241–249. [Google Scholar] [CrossRef]
- US EPA. History of the Clean Water Act|US EPA. Available online: https://www.epa.gov/laws-regulations/history-clean-water-act (accessed on 10 January 2024).
- Neuzil, S.G.; Dulong, F.T.; Cecil, C.B.; Fedorko, N.; Renton, J.J.; Bhumbla, D.K. Selenium Concentrations in Middle Pennsylvanian Coal-Bearing Strata in the Central Appalachian Basin. Open-File Report 2007–1090; 2007. Available online: http://www.usgs.gov/pubprod (accessed on 10 January 2024).
- Agouridis, C.T.; Angel, P.N.; Taylor, T.J.; Barton, C.D.; Warner, R.C.; Yu, X.; Wood, C. Water quality characteristics of discharge from reforested loose-dumped mine spoil in eastern Kentucky. J. Environ. Qual. 2012, 41, 454–468. [Google Scholar] [CrossRef]
- Hartman, K.J.; Kaller, M.D.; Howell, J.W.; Sweka, J.A. How much do valley fills influence headwater streams? Hydrobiologia 2005, 532, 91–102. [Google Scholar] [CrossRef]
- Pond, G.J.; Passmore, M.E.; Borsuk, F.A.; Reynolds, L.; Rose, C.J. Downstream effects of mountaintop coal mining: Comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. J. N. Am. Benthol. Soc. 2008, 27, 717–737. [Google Scholar] [CrossRef]
- Hopkins, R.L.; Altier, B.M.; Haselman, D.; Merry, A.D.; White, J.J. Exploring the legacy effects of surface coal mining on stream chemistry. Hydrobiologia 2013, 713, 87–95. [Google Scholar] [CrossRef]
- Green, J.; Passmore, M.A.; Childers, H. A Survey of the Condition of Steams in the Primary Region of Mountaintop Mining/Valley Fill Coal Mining; U.S. Environmental Protection Agency, Region III, Aquatic Biology Group: Wheeling, WV, USA, 2000; p. 154.
- Bryant, G.; Mcphilliamy, S.; Childers, H. A Survey of the Water Quality of Streams in the Primary Region of Mountaintop/Valley Fill Coal Mining. 2000. Available online: http://www.cet.edu/pdf/mtmvfchemistry (accessed on 9 December 2017).
- United States Environmental Protection Agency. Paleoenvironment of Coal and Its Relation to Drainage Quality. 1977. Available online: https://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=501593 (accessed on 4 May 2018).
- Altschuler, Z.S.; Schnepfe, M.M.; Silber, C.C.; Simon, F.O. Sulfur Diagenesis in Everglades Peat and Origin of Pyrite in Coal. Science 1983, 221, 221–227. [Google Scholar] [CrossRef]
- Casagrande, D.J. Sulphur in peat and coal. Geol. Soc. Spec. Publ. 1987, 32, 87–105. [Google Scholar] [CrossRef]
- Hower, J.C.; Bland, A.E. Geochemistry of the Pond Creek coal bed, Eastern Kentucky coalfield. Int. J. Coal Geol. 1989, 3–4, 205–226. [Google Scholar] [CrossRef]
- Younger, P.L. Environmental impacts of coal mining and associated wastes: A geochemical perspective. Geol. Soc. Spec. Publ. 2004, 236, 169–209. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry Chemical Equilibria and Rates in Natural Waters; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Rose, A.W.; Cravotta, C.A. Geochemistry of Coal Mine Drainage. 1998. Available online: http://www.techtransfer.osmre.gov/nttmainsite/Library/pub/cmdpppp/chapter1.pdf (accessed on 4 July 2017).
- Haidary, A.; Amiri, B.J.; Adamowski, J.; Fohrer, N.; Nakane, K. Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resour. Manag. 2013, 27, 2217–2229. [Google Scholar] [CrossRef]
- Chen, J.; Lu, J. Effects of Land Use, Topography and Socio-Economic Factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China. PLoS ONE 2014, 9, e102714. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, M.P.; Hartmann, J.; Acevedo, M.F. Seasonal variations of biogeochemical matter export along the Langtang-Narayani river system in central Himalaya. Geochim. Cosmochim. Acta 2018, 238, 208–234. [Google Scholar] [CrossRef]
- USGS. Mining and Water Quality|U.S. Geological Survey. Available online: https://www.usgs.gov/special-topics/water-science-school/science/mining-and-water-quality (accessed on 10 January 2024).
- Merricks, T.C.; Cherry, D.S.; Zipper, C.E.; Currie, R.J.; Valenti, T.W. Coal-mine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environ. Monit. Assess. 2007, 129, 359–378. [Google Scholar] [CrossRef]
- Petty, J.T.; Fulton, J.B.; Strager, M.P.; Merovich, G.T.; Stiles, J.M.; Ziemkiewicz, P.F. Landscape indicators and thresholds of stream ecological impairment in an intensively mined Appalachian watershed. J. N. Am. Benthol. Soc. 2010, 29, 1292–1309. [Google Scholar] [CrossRef]
- Lindberg, T.T.; Bernhardt, E.S.; Bier, R.; Helton, A.M.; Merola, R.B.; Vengosh, A.; Di Giulio, R.T. Cumulative impacts of mountaintop mining on an Appalachian watershed. Proc. Natl. Acad. Sci. USA 2011, 108, 20929–20934. [Google Scholar] [CrossRef]
- Merriam, E.R.; Petty, J.T.; Strager, M.P.; Maxwell, A.E.; Ziemkiewicz, P.F. Landscape-based cumulative effects models for predicting stream response to mountaintop mining in multistressor Appalachian watersheds. Freshw. Sci. 2015, 34, 1006–1019. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Lutz, B.D.; King, R.S.; Fay, J.P.; Carter, C.E.; Helton, A.M.; Campagna, D.; Amos, J. How many mountains can we mine? Assessing the regional degradation of Central Appalachian rivers by surface coal mining. Environ. Sci. Technol. 2012, 46, 8115–8122. [Google Scholar] [CrossRef]
- Kentucky Division of Water (KDOW). Kentucky Ambient/Watershed Water Quality Monitoring Standard Operating Procedure Manual. 2005. Available online: http://water.ky.gov/Documents/QA/Surface%20Water%20SOPs/Historic%20SOPs/ambient_SOP.pdf (accessed on 10 June 2017).
- Environmental Systems Research Institute (ESRI). ArcGIS Desktop. 2016. Version 10.5. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview (accessed on 10 January 2024).
- Cohen, W.B.; Fiorella, M. Comparison of Methods for Detecting Conifer Forest Change with Thematic Mapper Imagery; Ann Arbor Press: Ann Arbor, MI, USA, 1998. [Google Scholar]
- Coppin, P.; Lambin, E.; Jonckheere, I.; Muys, B. Digital change detection methods in natural ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Moran, E. Comparison of land-cover classification methods in the Brazilian Amazonia basin. Photogramm. Eng. Remote Sens. 2004, 70, 723–731. [Google Scholar] [CrossRef]
- Martínez, B.; Gilabert, M.A. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 2009, 113, 1823–1842. [Google Scholar] [CrossRef]
- Griffith, J.A. Geographic techniques and recent applications of remote sensing to landscape-water quality studies. Water Air Soil Pollut. 2002, 138, 181–197. [Google Scholar] [CrossRef]
- Miller, S.N.; Kepner, W.G.; Mehaffey, M.H.; Hernandez, M.; Miller, R.C.; Goodrich, D.C.; Devonald, K.K.; Heggem, D.T.; Miller, W.P. Integrating Landscape Assessment and Hydrologic Modeling for Land Cover Change ANALYSIS. J. Am. Water Resour. Assoc. 2002, 38, 915–929. [Google Scholar] [CrossRef]
- Chen, Y.; Takara, K.T.; Cluckie, I.D.; De Smedt’s, F.H. Application of GIS and Remote Sensing in Flood Modeling for Complex Terrain. 2009. Available online: https://www.researchgate.net/publication/201169420 (accessed on 10 January 2024).
- Genxu, W.; Yibo, W.; Ju, Q.; Qingbo, W. Land Cover Change and Its Impacts on Soil C and N in Two Watersheds in the Center of the Qinghai-Tibetan Plateau. Available online: https://bioone.org/journals/mountain-research-and-development/volume-26/issue-2/0276-4741_2006_26_153_LCCAII_2.0.CO_2/Land-Cover-Change-and-Its-Impacts-on-Soil-C-and/10.1659/0276-4741(2006)26[153:LCCAII]2.0.CO;2.full (accessed on 10 January 2024).
- Foley, J.A.; Asner, G.P.; Costa, M.H.; Coe, M.T.; DeFries, R.; Gibbs, H.K.; Howard, E.A.; Olson, S.; Patz, J.; Ramankutty, N.; et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- Sen, S.; Zipper, C.E.; Wynne, R.H.; Donovan, P.F. Identifying revegetated mines as disturbance/recovery trajectories using an interannual Landsat chronosequence. Photogramm. Eng. Remote Sens. 2012, 78, 223–235. [Google Scholar] [CrossRef]
- Li, J.; Zipper, C.E.; Donovan, P.F.; Wynne, R.H.; Oliphant, A.J. Reconstructing disturbance history for an intensively mined region by time-series analysis of Landsat imagery. Environ. Monit. Assess. 2015, 187, 557. [Google Scholar] [CrossRef]
- Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing Transformations and Their Effects on Multispectral Recognition. In Proceedings of the Sixth International Symposium on Remote Sensing of Environment; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 1969; Volume 2, p. 97. [Google Scholar]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Bakr, N.; Weindorf, D.C.; Bahnassy, M.H.; Marei, S.M.; El-Badawi, M.M. Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. Appl. Geogr. 2010, 30, 592–605. [Google Scholar] [CrossRef]
- Hayes, D.J.; Sader, S.A. Comparison of Change-Detection Techniques for Monitoring Tropical Forest Clearing and Vegetation Regrowth in a Time Series. Photogramm. Eng. Remote Sens. 2001, 67, 1067–1075. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson Education: London, UK, 2015; Volume 13, p. 658. Available online: https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5831484 (accessed on 10 January 2024). [CrossRef]
- Horton, R.E. Drainage-basin characteristics. Eos Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- USDA NRCS. Soil Viewer Tool. Hydrologic Soil Group Classification. Available online: https://www.nrcs.usda.gov/resources/data-and-reports/soil-data-viewer-62-download-and-install (accessed on 10 January 2024).
- Field, A. Discovering Statistics Using SPSS. 3rd Edition, Sage Publications Ltd., London.—References—Scientific Research Publishing. Available online: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1866193 (accessed on 10 January 2024).
- George, M.M. SPSS for Windows Step by Step a Simple Guide and Reference, 17.0 Update, 10th Edition, Pearson, Boston—References—Scientific Research Publishing. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2333867 (accessed on 10 January 2024).
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis. 7th Edition, Pearson Education, Upper Saddle River.—References—Scientific Research Publishing. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2190475 (accessed on 10 January 2024).
- Rogerson, P.A. Statistical Methods for Geography—Analysis of Variance. 2001, p. 368. Available online: https://pdfroom.com/books/statistical-methods-for-geography-2001en248s/7jgkR1AedMV (accessed on 18 August 2018).
- Niresh, J.A.; Velnampy, T. Firm Size and Profitability: A Study of Listed Manufacturing Firms ed Manufacturing Firms in Sri Lanka. Int. J. Bus. Manag. 2014, 9, 2014. [Google Scholar] [CrossRef]
- Igbokwe, I.O.; Igwenagu, E.; Igbokwe, N.A. Aluminium toxicosis: A review of toxic actions and effects. Interdiscip. Toxicol. 2019, 12, 45–70. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Amiri, R.J.; Pirzadeh, M.; Moghadamnia, A.A. Aluminum Poisoning with Emphasis on Its Mechanism and Treatment of Intoxication. Emerg. Med. Int. 2022, 2022, 1480553. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, A. Translation and Guidance of an Application of the Montana Natural Water Quality. Available online: https://www.google.com/search?client=safari&rls=en&q=4.+Steinmetz+A+(2014)+Translation+and+guidance+of+an+application+of+the+Montana+Natural+Water+Quality.+Criteria+for+sulfate%2C+Helena%2C+Montana%3A+Department+of+Environmental+Quality.+WQPBWQSTD-009%2C+pp.+1-9.&ie=UTF-8&oe=UTF-8 (accessed on 10 January 2024).
- US EPA. Health Effect from Exposure to High Level of Sulfate in Drinking Water Study. US EPA Office of the Water. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/200021IN.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1995+Thru+1999&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C95thru99%5CTxt%5C00000015%5C200021IN.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 10 January 2024).
- US EPA. Contaminant Candidate List Regulatory Determination Support Document for Sulfate. 2003. Available online: http://www.epa.gov/SAFEWATER/ccl/cclregdetermine.html (accessed on 10 January 2024).
- Pick, T.L. Assessing Water Quality for Human Consumption, Agriculture, and Aquatic Life Uses Tom Pick; United States Department of Agriculture Natural Resources Conservation Service: Washington, DC, USA, 2008.
- World Health Organization. Guidelines for Drinking-Water Quality, 4th edition, Incorporating the 1st Addendum. 2017. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 7 February 2024).
- Griffith, M.B.; Norton, S.B.; Alexander, L.C.; Pollard, A.I.; LeDuc, S.D. The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: A review. Sci. Total Environ. 2012, 417–418, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, E.S.; Palmer, M.A. The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. Ann. N. Y. Acad. Sci. 2011, 1223, 39–57. [Google Scholar] [CrossRef] [PubMed]
- McElfish James, M.; Beier, A.E. Environmental Regulation of Coal Mining: SMCRA’s Second Decade; Environmental Law Institute: Washington, DC, USA, 1990. [Google Scholar]
- Holl, K.D. Long-term vegetation recovery on reclaimed coal surface mines in the eastern USA. J. Appl. Ecol. 2002, 39, 960–970. [Google Scholar] [CrossRef]
- Groninger, J.; Skousen, J.; Angel, P.; Barton, C.; Burger, J.; Zipper, C. Mine Reclamation Practices to Enhance Forest Development through Natural Succession; ARRI: Munich, Germany, 2007. [Google Scholar]
Season | Unmined | Filled | Filled/Residential | Mined |
---|---|---|---|---|
Spring 1999 | 64 (19) n = 9 | 946 (614) n = 15 | 652 (237) n = 6 | 172 (90) n = 4 |
Summer 1999 | 140 (54) n = 2 | 1232 (643) n = 15 | 1124 (282) n = 6 | 385 (202) n = 3 |
Autumn 1999 | 91 (59) n = 2 | 958 (430) n = 14 | 984 (221) n = 6 | 260 n = 1 |
Winter 2000 | 73 (29) n = 9 | 836 (425) n = 14 | 844 (173) n = 6 | 254 (171) n = 3 |
Spring 2000 | 58 (28) n = 10 | 643 (382) n = 15 | 438 (249) n = 6 | 192 (155) n = 5 |
Classification | Producer | |||||
---|---|---|---|---|---|---|
Barren | Grass | Woods | Forest | Row Total | ||
(a) | ||||||
User | Barren | 21 | 1 | 0 | 2 | 24 |
Grass | 0 | 39 | 5 | 14 | 58 | |
Woods | 0 | 2 | 11 | 4 | 17 | |
Forest | 1 | 8 | 4 | 88 | 101 | |
Column Total | 22 | 50 | 20 | 108 | 200 | |
Omission Error (%) | 4.5 | 22 | 45 | 18.51 | ||
Producer Accuracy (%) | 95.5 | 78 | 55 | 81.5 | ||
Commission Error (%) | 12.5 | 48.7 | 35.3 | 12.9 | ||
User Accuracy (%) | 87.5 | 51.3 | 64.7 | 87.1 | ||
Overall Accuracy (%) = 79.5 | Kappa (%) = 67.6 | |||||
(b) | ||||||
User | Barren | 42 | 0 | 0 | 2 | 44 |
Grass | 1 | 41 | 5 | 19 | 66 | |
Woods | 0 | 1 | 19 | 7 | 27 | |
Forest | 0 | 1 | 3 | 59 | 63 | |
Column Total | 43 | 43 | 27 | 87 | 200 | |
Omission Error (%) | 2.3 | 4.6 | 29.6 | 32.1 | ||
Producer Accuracy (%) | 97.7 | 95.4 | 70.4 | 67.9 | ||
Commission Error (%) | 4.5 | 37.9 | 29.6 | 6.3 | ||
User Accuracy (%) | 95.5 | 62.1 | 70.4 | 93.7 | ||
Overall Accuracy (%) = 80.5 | Kappa (%) = 73.1 | |||||
(c) | ||||||
User | Barren | 5 | 0 | 0 | 0 | 5 |
Grass | 2 | 39 | 2 | 3 | 46 | |
Woods | 4 | 0 | 35 | 5 | 44 | |
Forest | 0 | 1 | 4 | 100 | 105 | |
Column Total | 11 | 40 | 41 | 108 | 200 | |
Omission Error (%) | 54.5 | 2.5 | 14.6 | 7.4 | ||
Producer Accuracy (%) | 45.5 | 97.5 | 85.4 | 92.6 | ||
Commission Error (%) | 0 | 15.2 | 20.4 | 4.8 | ||
User Accuracy (%) | 100 | 84.8 | 79.6 | 95.2 | ||
Overall Accuracy (%) = 89.5 | Kappa (%) = 83.1 |
Dependent Variable | Independent Variables | Description |
---|---|---|
Conductivity (µS/cm): measurement in a stream at exit point of a watershed. | Mined | Percentage of total mined area in a watershed from 1986 to 2017. |
Reclaimed Woods | Percentage of reclaimed woods since 1986 in a watershed. | |
Reclaimed Forest | Percentage of reclaimed forest land in a watershed since 1986. | |
Reclamation Age | Average years passed since reclamation was enacted. In case of multi-temporal occurrence of reclamation, the average age was calculated with a weighting average by using the area and year of reclamation. | |
Elevation | Mean elevation (m.) for a watershed. | |
Slope | Mean slope (deg.) value for a watershed. | |
Drainage Density | Ratio of total stream length to area of a watershed (km.km−2). | |
Infiltration | Numerical mean soil infiltration rate for a watershed which translated from categorical variable. | |
Reclaimed Forest (same as above) | Mined | Same as above. |
Reclamation Age | Same as above. | |
Elevation | Same as above. | |
Slope | Same as above. | |
Drainage Density | Same as above. | |
Infiltration | Same as above. |
Spring | |||||||||||
Watershed | Mined Total | Mined- (RF + RW) | Mined- RF | Rec. Age | Alk | EC | SO4 | Al | Ca | Fe | Mg |
(%) | (%) | (%) | Year | (mg/L) | (μS/cm) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | |
WHO Guideline | 30–400 | <400 | <250 | <0.2 | 100–300 | <0.3 | <50 | ||||
8 | 37.30 | 9.38 | 29.69 | 17.94 | 66.63 | 264.33 | 51.33 | 0.25 | 21.38 | 0.22 | 15.06 |
9 | 15.17 | 2.17 | 9.05 | 20.30 | 24.29 | 88.33 | 26.60 | 1.52 | 7.14 | 1.05 | 4.58 |
10 | 20.34 | 2.87 | 11.53 | 18.47 | 40.06 | 164.77 | 26.90 | 0.06 | 12.50 | 0.21 | 5.85 |
11 | 35.31 | 6.03 | 21.97 | 22.10 | 50.38 | 176.00 | 30.83 | 0.04 | 16.37 | 0.22 | 8.88 |
29 | 49.00 | 10.14 | 32.99 | 21.00 | 69.41 | 280.33 | 60.33 | 0.07 | 24.44 | 0.11 | 16.84 |
32 | 11.04 | 2.57 | 7.71 | 14.24 | 34.66 | 130.57 | 23.90 | 0.04 | 11.40 | 0.18 | 6.41 |
33 | 25.42 | 4.54 | 18.28 | 16.45 | 42.10 | 153.20 | 27.47 | 0.05 | 13.17 | 0.12 | 7.97 |
34 | 18.56 | 1.93 | 12.62 | 21.62 | 36.43 | 120.07 | 17.00 | 0.05 | 10.54 | 0.22 | 5.47 |
36 | 40.44 | 14.47 | 27.96 | 16.33 | 34.00 | 136.00 | 26.00 | 0.00 | 11.00 | 0.05 | 7.00 |
Summer | |||||||||||
9 | 15.17 | 2.17 | 9.05 | 20.30 | 71.81 | 203.00 | 26.30 | nd | 17.87 | nd | 10.17 |
10 | 20.34 | 2.87 | 11.53 | 18.47 | 100.99 | 279.00 | 26.67 | nd | 25.07 | nd | 10.01 |
11 | 35.31 | 6.03 | 21.97 | 22.10 | 135.45 | 348.00 | 40.20 | nd | 34.45 | nd | 17.21 |
13 | 14.87 | 0.54 | 4.00 | 28.90 | 35.69 | 117.17 | 17.57 | nd | 9.14 | nd | 5.32 |
15 | 3.72 | 1.20 | 2.47 | 12.55 | 22.16 | 73.10 | 9.95 | nd | 5.36 | nd | 3.03 |
18 | 62.88 | 52.25 | 62.44 | 2.79 | 310.76 | 2743.33 | 1906.70 | nd | 297.10 | nd | 311.10 |
29 | 49.00 | 10.14 | 32.99 | 21.00 | 131.86 | 627.33 | 173.00 | nd | 59.85 | nd | 37.68 |
32 | 11.04 | 2.57 | 7.71 | 14.24 | 64.28 | 173.80 | 10.17 | nd | 18.01 | nd | 5.94 |
33 | 25.42 | 4.54 | 18.28 | 16.45 | 89.51 | 245.67 | 21.57 | nd | 25.07 | nd | 9.71 |
34 | 18.56 | 1.93 | 12.62 | 21.62 | 109.67 | 266.33 | 18.57 | nd | 27.10 | nd | 10.27 |
35 | 27.77 | 3.84 | 13.84 | 27.95 | 107.25 | 483.33 | 127.67 | nd | 43.03 | nd | 27.23 |
46 | 54.28 | 33.19 | 50.81 | 6.09 | 116.21 | 1992.33 | 1090.00 | nd | 185.90 | nd | 176.90 |
48 | 63.97 | 14.10 | 52.55 | 11.13 | 93.99 | 1757.00 | 1016.70 | nd | 154.20 | nd | 160.90 |
51 | 46.33 | 22.65 | 43.06 | 9.43 | 177.61 | 2250.00 | 1270.00 | nd | 209.70 | nd | 205.28 |
52 | 37.90 | 3.77 | 19.62 | 23.76 | 32.45 | 539.00 | 201.33 | nd | 50.65 | nd | 26.58 |
67 | 14.46 | 1.85 | 9.88 | 12.81 | 66.88 | 448.00 | 130.33 | nd | 42.26 | nd | 19.80 |
68 | 13.63 | 2.31 | 11.19 | 16.14 | 84.48 | 504.67 | 141.33 | nd | 49.66 | nd | 21.64 |
71 | 31.62 | 10.30 | 28.01 | 12.13 | 213.97 | 761.07 | 174.33 | nd | 50.98 | nd | 61.65 |
72 | 11.93 | 1.31 | 8.10 | 14.81 | 153.05 | 387.33 | 50.37 | nd | 28.09 | nd | 26.82 |
75 | 19.12 | 4.95 | 15.50 | 20.74 | 164.23 | 502.00 | 84.07 | nd | 39.87 | nd | 33.33 |
76 | 27.93 | 4.03 | 24.01 | 13.96 | 270.96 | 1851.33 | 858.00 | nd | 153.20 | nd | 177.20 |
77 | 44.78 | 15.19 | 32.01 | 16.99 | 127.63 | 1009.67 | 457.33 | nd | 101.20 | nd | 66.13 |
Descriptive Statistics | |||
---|---|---|---|
Mean | Minimum | Maximum | |
Mined (%) | 38.09 | 2.52 | 92.23 |
Reclaimed Forest (%) | 8.21 | 0.42 | 30.41 |
Reclaimed Woods (%) | 17.42 | 1.27 | 44.01 |
Reclamation Age (year) | 15.99 | 4.12 | 27.95 |
Mined w/o RF (%) | 29.88 | 2.10 | 90.92 |
Conductivity (µS/cm) | 763.10 | 120.00 | 1970.00 |
Infiltration | 8.68 | 6.45 | 10.00 |
Drainage Density (km−1) | 1.67 | 0.57 | 2.89 |
Elevation (m.) | 369.49 | 313 | 437 |
Mined (%) | Mined w/o RF (%) | Reclaimed Forest (%) | Reclaimed Woods (%) | Reclamation Age (Years) | Alkalinity (mg/L) | Conductivity (µS/cm) | SO42− (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | |
(a) | ||||||||||
Mined (%) | 1 | 0.980 ** | 0.886 ** | 0.920 ** | 0.255 | 0.751 * | 0.761 * | 0.749 * | 0.776 * | 0.791 * |
Mined w/o RF (%) | 0.980 ** | 1 | 0.775 * | 0.940 ** | 0.155 | 0.785 * | 0.794 * | 0.775 * | 0.797 * | 0.837 ** |
Reclaimed Forest (%) | 0.886 ** | 0.775 * | 1 | 0.726 * | 0.443 | 0.553 | 0.563 | 0.568 | 0.601 | 0.558 |
Reclaimed Woods (%) | 0.920 ** | 0.940 ** | 0.726 * | 1 | 0.338 | 0.907 ** | 0.884 ** | 0.843 ** | 0.903 ** | 0.914 ** |
Reclamation Age (Years) | 0.255 | 0.155 | 0.443 | 0.338 | 1 | 0.241 | 0.158 | 0.182 | 0.218 | 0.159 |
Alkalinity (mg/L) | 0.751 * | 0.785 * | 0.553 | 0.907 ** | 0.241 | 1 | 0.985 ** | 0.897 ** | 0.993 ** | 0.962 ** |
Conductivity (µS/cm) | 0.761 * | 0.794 * | 0.563 | 0.884 ** | 0.158 | 0.985 ** | 1 | 0.933 ** | 0.987 ** | 0.969 ** |
SO4 (mg/L) | 0.749 * | 0.775 * | 0.568 | 0.843 ** | 0.182 | 0.897 ** | 0.933 ** | 1 | 0.921 ** | 0.964 ** |
Ca (mg/L) | 0.776 * | 0.797 * | 0.601 | 0.903 ** | 0.218 | 0.993 ** | 0.987 ** | 0.921 ** | 1 | 0.974 ** |
Mg (mg/L) | 0.791 * | 0.837 ** | 0.558 | 0.914 ** | 0.159 | 0.962 ** | 0.969 ** | 0.964 ** | 0.974 ** | 1 |
* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2 tailed). | ||||||||||
(b) | ||||||||||
Mined (%) | 1 | 0.940 ** | 0.125 | 0.616 ** | −0.340 | 0.467 * | 0.734 ** | 0.715 ** | 0.769 ** | 0.727 ** |
Mined w/o RF (%) | 0.940 ** | 1 | −0.221 | 0.495 * | −0.627 ** | 0.614 ** | 0.838 ** | 0.787 ** | 0.867 ** | 0.833 ** |
Reclaimed Forest (%) | 0.125 | −0.221 | 1 | 0.32 | 0.847 ** | −0.450 | −0.336 | −0.243 | −0.323 | −0.342 |
Reclaimed Woods (%) | 0.616 ** | 0.495 * | 0.32 | 1 | 0.017 | 0.294 | 0.508 * | 0.485 * | 0.483 * | 0.504 * |
Reclamation Age (Years) | −0.340 | −0.627 ** | 0.847 ** | 0.017 | 1 | −0.534 * | −0.603 * | −0.514 * | −0.610 * | −0.599 * |
Alkalinity (mg/L) | 0.467 * | 0.614 ** | −0.450 | 0.294 | −0.534 * | 1 | 0.705 ** | 0.604 * | 0.666 ** | 0.760 ** |
Conductivity (µS/cm) | 0.715 ** | 0.787 ** | −0.243 | 0.485 * | −0.514 * | 0.604 * | 0.980 ** | 1 | 0.972 ** | 0.960 ** |
SO4 (mg/L) | 0.734 ** | 0.838 ** | −0.336 | 0.508 * | −0.603 * | 0.705 ** | 1 | 0.980 ** | 0.988 ** | 0.992 ** |
Ca (mg/L) | 0.769 ** | 0.867 ** | −0.323 | 0.483 * | −0.610 * | 0.666 ** | 0.988 ** | 0.972 ** | 1 | 0.967 ** |
Mg (mg/L) | 0.727 ** | 0.833 ** | −0.342 | 0.504 * | −0.599 * | 0.760 ** | 0.992 ** | 0.960 ** | 0.967 ** | 1 |
* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). | ||||||||||
(c) | ||||||||||
Mined (%) | Reclaimed Forest (%) | Reclaimed Woods (%) | Reclamation Age (Year) | Conductivity (µS/cm) | Log Mined | Mined w/o RF (%) | Infiltration | |||
Mined (%) | 1 | 0.223 | 0.831 ** | −0.496 ** | 0.863 ** | 0.908 ** | 0.965 ** | −0.678 ** | ||
Reclaimed Forest (%) | 0.223 | 1 | 0.246 | 0.500 ** | −0.072 | 0.451 ** | −0.032 | −0.048 | ||
Reclaimed Woods (%) | 0.831 ** | 0.246 | 1 | −0.329 * | 0.720 ** | 0.796 ** | 0.799 ** | −0.591 ** | ||
Reclamation Age (year) | −0.496 ** | 0.500 ** | −0.329 * | 1 | −0.672 ** | 0.294 * | 0.636 ** | −0.396 ** | ||
Conductivity (µS/cm) | 0.863 ** | −0.072 | 0.720 ** | −0.672 ** | 1 | 0.726 * | 0.904 ** | −0.676 ** | ||
Log Mined | 0.908 ** | 0.451 ** | 0.796 ** | 0.294* | 0.726 ** | 1 | 0.823 ** | 0.580 ** | ||
Mined w/o RF (%) | 0.965 ** | −0.032 | 0.799 ** | 0.636 ** | 0.904 ** | 0.823 ** | 1 | −0.681 ** | ||
Infiltration | −0.678 ** | −0.048 | −0.591 ** | 0.396 ** | −0.676 ** | −0.580 ** | −0.681 ** | 1 | ||
* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at 0.01. | level |
(a) | ||||||||
Regression Model A Summary—Conductivity Prediction | ||||||||
Step | R | R2 | R2adj | ΔR2 | Fchg | p | df1 | df2 |
Mining Percentage | 0.863 a | 0.745 | 0.741 | 0.745 | 163.98 | <0.01 | 1 | 56 |
Reclamation Age | 0.908 b | 0.825 | 0.818 | 0.08 | 129.21 | <0.01 | 1 | 55 |
(b) | ||||||||
Coefficients for Final Model—Conductivity Prediction | ||||||||
Model | β | Β | t | p | Bivariate r | Partial r | ||
(Constant) | 610.732 | 4.303 | <0.01 | |||||
Mining Percentage | 16.956 | 0.703 | 10.804 | <0.01 | 0.863 | 0.61 | ||
Reclamation Age (year) | −30.860 | −0.324 | −4.979 | <0.01 | −0.672 | −0.281 |
(a) | ||||||||
Regression Model B Summary—Conductivity Prediction | ||||||||
Step | R | R2 | R2adj | ΔR2 | Fchg | p | df1 | df2 |
Mined w/o RF (%) | 0.904 | 0.816 | 0.813 | 0.816 | 249.09 | <0.01 | 1 | 56 |
Reclamation Age (years) | 0.912 | 0.832 | 0.826 | 0.016 | 5.26 | <0.026 | 1 | 55 |
(b) | ||||||||
Coefficients for Final Model—Conductivity Prediction | ||||||||
Model | β | B | t | p | Bivariate r | Partial r | ||
(Constant) | 429.2 | 2.85 | <0.01 | |||||
Mined w/o RF (%) | 19.54 | 0.799 | 11.17 | <0.01 | 0.904 | 0.617 | ||
Reclamation Age (years) | −15.64 | −0.164 | −2.29 | <0.026 | −0.672 | −0.127 |
(a) | ||||||||
Regression Model C Summary—Reclaimed Forest Prediction | ||||||||
Step | R | R2 | R2adj | ΔR2 | Fchg | p | df1 | df2 |
Reclamation Age (years) | 0.5 | 0.25 | 0.236 | 0.236 | 18.61 | <0.01 | 1 | 56 |
Log Mined | 0.8 | 0.641 | 0.628 | 0.392 | 35.65 | <0.01 | 1 | 55 |
(b) | ||||||||
Coefficients for Final Model Reclaimed Forest Prediction | ||||||||
Model | β | B | t | p | Bivariate r | Partial r | ||
(Constant) | −1.953 | −4.037 | <0.01 | |||||
Reclamation Age (years) | 0.121 | 0.692 | 8.185 | <0.01 | 0.5 | 0.741 | ||
Log Mined | 1.833 | 0.654 | 7.735 | <0.01 | 0.451 | 0.722 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sariyildiz, O.; Gyawali, B.R.; Antonious, G.F.; Semmens, K.; Zourarakis, D.; Bhatt, M.P. Stream Chemistry and Forest Recovery Assessment and Prediction Modeling in Coal-Mine-Affected Watersheds in Kentucky, USA. Environments 2024, 11, 40. https://doi.org/10.3390/environments11030040
Sariyildiz O, Gyawali BR, Antonious GF, Semmens K, Zourarakis D, Bhatt MP. Stream Chemistry and Forest Recovery Assessment and Prediction Modeling in Coal-Mine-Affected Watersheds in Kentucky, USA. Environments. 2024; 11(3):40. https://doi.org/10.3390/environments11030040
Chicago/Turabian StyleSariyildiz, Oguz, Buddhi R. Gyawali, George F. Antonious, Kenneth Semmens, Demetrio Zourarakis, and Maya P. Bhatt. 2024. "Stream Chemistry and Forest Recovery Assessment and Prediction Modeling in Coal-Mine-Affected Watersheds in Kentucky, USA" Environments 11, no. 3: 40. https://doi.org/10.3390/environments11030040
APA StyleSariyildiz, O., Gyawali, B. R., Antonious, G. F., Semmens, K., Zourarakis, D., & Bhatt, M. P. (2024). Stream Chemistry and Forest Recovery Assessment and Prediction Modeling in Coal-Mine-Affected Watersheds in Kentucky, USA. Environments, 11(3), 40. https://doi.org/10.3390/environments11030040