Integrated Characterization of Sediments Contaminated by Acid Mine Drainage: Mineralogical, Magnetic, and Geochemical Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Work and Sample Preparation
2.2. X-Ray Diffraction
2.3. Rock Magnetism
2.4. Chemical Analysis
3. Results and Discussion
3.1. Mineralogical Composition
3.2. Magnetic Properties
3.3. Geochemical Relationships
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gomes, P.; Valente, T.; Lemos, M. Potential accumulation of strategic elements in mining dams—From remining to rehabilitation. Comun. Geológicas 2025, 112, 217–220. [Google Scholar] [CrossRef]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef]
- Rezaie, B.; Anderson, A. Sustainable resolutions for environmental threat of the acid mine drainage. Sci. Total Environ. 2020, 717, 137211. [Google Scholar] [CrossRef]
- Chockalingam, E.; Subramaniam, S. Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage. Bioresour. Technol. 2009, 100, 615–621. [Google Scholar] [CrossRef]
- Valente, T.; Rivera, M.J.; Almeida, S.F.P.; Delgado, C.; Gomes, P.; Grande, A.; de la Torre, M.L.; Santisteban, M. Characterization of water reservoirs affected by acid mine drainage: Geochemical, mineralogical, and biological (diatoms) properties of the water. Environ. Sci. Pollut. Res. 2016, 23, 6002–6011. [Google Scholar] [CrossRef]
- Desenfant, F.; Petrovsky, E.; Rochette, P. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: Case study from South France. Water Air Soil Pollut. 2004, 152, 297–312. [Google Scholar] [CrossRef]
- Entwistle, J.A.; Hursthouse, A.S.; Marinho Reis, P.A.; Stewart, A.G. Metalliferous Mine Dust: Human Health Impacts and the Potential Determinants of Disease in Mining Communities. Curr. Pollut. Rep. 2019, 5, 67–83. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T. Seasonal impact of acid mine drainage on water quality and potential ecological risk in an old sulfide exploitation. Environ. Sci. Pollut. Res. 2024, 31, 21124–21135. [Google Scholar] [CrossRef]
- Aska, B.; Franks, D.M.; Stringer, M.; Sonter, L. Biodiversity conservation threatened by global mining wastes. Nat. Sustain. 2024, 7, 23–30. [Google Scholar] [CrossRef]
- Álvarez-Valero, A.M.; Pérez-López, R.; Matos, J.X.; Capitán, M.A.; Nieto, J.M.; Saez, R.; Delgado, J.; Caraballo, M. Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): Evidence from a chemical and mineralogical characterization. Environ. Geololgy 2008, 55, 1797–1809. [Google Scholar] [CrossRef]
- Matos, J.X.; Martins, L. Geological-geotechnical characterization of the S. Domingos mine open pit, Iberian Pyrite Belt. Actas IV Cong. Int. Património. Geol. Miner 2003, 539–557. [Google Scholar]
- Gomes, P.; Valente, T.; Pereira, P. Addressing quality and usability of surface water bodies in a Mediterranean semi-arid region. Environ. Process. 2018, 5, 707–725. [Google Scholar] [CrossRef]
- Hossain, M.M.; Jahan, I.; Dar, M.A.; Dhanavade, M.J.; Mamtaz, A.F.B.; Maxwell, S.J.; Han, S.; Zhu, D. A Review of Potentially Toxic Elements in Sediment, Water, and Aquatic Species from the River Ecosystems. Toxics 2025, 13, 26. [Google Scholar] [CrossRef]
- Kukier, U.; Fauziah, C.; Summer, M.E.; Miller, W.P. Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut. 2003, 123, 255–266. [Google Scholar] [CrossRef]
- Valente, T.; Gomes, P.; Sequeira Braga, M.A.; Dionísio, A.; Pamplona, J.; Grande, J.A. Iron and arsenic-rich nanoprecipitates associated to clay minerals in sulfide-rich waste dumps. Catena 2015, 131, 1–13. [Google Scholar] [CrossRef]
- Maher, B.A.; Alekseev, A.; Alekseeva, T. Magnetic mineralogy of soils across the Russian Steppe: Climatic dependence of pedogenic magnetite formation. Palaeogeogr. Palaeoclim. Palaeoecol. 2003, 201, 321–341. [Google Scholar] [CrossRef]
- Slotznick, S.P.; Swanson-Hysell, N.L.; Sperling, E.A. Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy. Proc. Natl. Acad. Sci. USA 2018, 115, 12938–12943. [Google Scholar] [CrossRef]
- Slotznick, S.P.; Webb, S.M.; Kirschvink, J.L.; Fischer, W.W. Mid-Proterozoic ferruginous conditions reflect postdepositional processes. Geophys. Res. Lett. 2019, 46, 3114–3123. [Google Scholar] [CrossRef]
- Liu, Q.; Roberts, A.P.; Larrasoaña, J.C.; Banerjee, S.K.; Guyodo, Y.; Tauxe, L.; Oldfield, F. Environmental magnetism: Principles and applications. Rev. Geophys. 2012, 50, RG4002. [Google Scholar] [CrossRef]
- Pan, H.; Lu, X.; Lei, K.; Shi, D.; Ren, C.; Yang, L.; Wang, L. Using magnetic susceptibility to evaluate pollution status of the sediment for a typical reservoir in northwestern China. Environ. Sci. Pollut. Res. 2018, 25, 14606–14617. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T.; Sequeira Braga, M.A.; Grande, J.A.; de la Torre, M.L. Enrichment of trace elements in the clay size fraction of mining soils. Environ. Sci. Pollut. Res. 2016, 23, 6039–6045. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Tripathy, S.; Panigrahi, M.K.; Equeenuddin, S.M. Mineralogy of Fe-Precipitates and Their Role in Metal Retention from an Acid Mine Drainage Site in India. Mine Water Environ. 2012, 31, 344–352. [Google Scholar] [CrossRef]
- Carrero, S.; Slotznick, S.P.; Fakra, S.C.; Sitar, M.C.; Bone, S.E.; Mauk, J.L.; Manning, A.H.; Swanson-Hysell, N.L.; Wiliams, K.H.; Banfield, J.F.; et al. Mineralogical, magnetic and geochemical data constrain the pathways and extent of weathering of mineralized sedimentary rocks. Geochim. Cosmochim. Acta 2023, 343, 180–195. [Google Scholar] [CrossRef]
- Essalhi, M.; Sizaret, S.; Barbanson, L.; Chen, Y.; Lagroix, F.; Demory, F.; Nieto, J.M.; Sáez, R.; Capitán, M.Á. A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating. Miner. Depos. 2011, 46, 981–999. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T.; Albuquerque, T.; Henriques, R.; Flor-Arnau, N.; Pamplona, J.; Macías, F. Algae in acid mine drainage and relationships with pollutants in a degraded mining ecosystem. Minerals 2021, 11, 110. [Google Scholar] [CrossRef]
- Brindley, G.W. Order-disorder in clay mineral structures. In Crystal Structures of Clay Minerals and Their X-Ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society: London, UK, 1980; pp. 125–195. [Google Scholar]
- Kruiver, P.P.; Dekkers, M.J.; Heslop, D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett. 2001, 189, 269–276. [Google Scholar] [CrossRef]
- Maxbauer, D.P.; Feinberg, J.M.; Fox, D.L. MAX UnMix: A web application for unmixing magnetic coercivity distributions. Comput. Geosci. 2016, 95, 140–145. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization/International Electrotechnical Committee: Geneva, Switzerland, 2017.
- Leistel, J.M.; Marcoux, E.; Thiéblemont, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Sáez, R. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Review and preface to the Thematic issue. Miner. Depos. 1998, 33, 2–30. [Google Scholar] [CrossRef]
- Sánchez-España, J.; Velasco, F.; Yusta, I. Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain). Appl. Geochem. 2000, 15, 1265–1290. [Google Scholar] [CrossRef]
- Bigham, J.M. Mineralogy of ochre deposits formed by sulfide oxidation. In Environmental Geochemistry of Sulfide Mine-Wastes; Jambor, J.L., Blowes, D.W., Eds.; Mineralogical Association of Canada: Sudbury, CN, Canada, 1994; pp. 103–132. [Google Scholar]
- Nordstrom, D.K.; Alpers, C.N. Geochemistry of acid mine waters. Rev. Econ. Geol. 1999, 6A, 133–160. [Google Scholar]
- Alpers, C.N.; Blowes, D.W.; Nordstrom, D.K.; Jambor, J.L. Secondary minerals and acid mine-water chemistry. In Environmental Geochemistry of Sulfide Mine-Wastes; Short Course Handbook; Jambor, J.L., Blowes, D.W., Eds.; Mineralogical Association of Canada: Sudbury, CN, Canada, 1994; Volume 22, pp. 247–270. [Google Scholar]
- Valente, T.; Gomes, C.L. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci. Total Environ. 2009, 407, 1135–1152. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T.; Marques, R.; Prudêncio, M.; Pamplona, J. Rare earth elements—Source and evolution in an aquatic system dominated by mine-influenced waters. J. Environ. Manag. 2022, 322, 116125. [Google Scholar] [CrossRef]
- Dearing, J. Environmental Magnetic Susceptibility. In Using the Bartington MS2 System, 2nd ed; Chi Publishing: England, UK, 1999; 54p. [Google Scholar]
- Maher, B.A.; Taylor, R.M. Formation of ultrafine-grained magnetite in soils. Nature 1988, 336, 368–370. [Google Scholar] [CrossRef]
- Egli, R. Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments. Stud. Geophys. Geod. 2004, 48, 391–446. [Google Scholar] [CrossRef]
- Hršelová, P.; Sracek, O.; Filip, J.; Hrazdil, V.; Maly, K. The role of jarosite group minerals in the attenuation of metals and arsenic in mine drainage system (example from the Pekelská Adit, Czech Republic). J. Geosci. 2024, 69, 99–111. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T.; Grande, J.A.; Cordeiro, M. Occurrence of sulphate efflorescences in São Domingos mine. Comun. Geológicas 2017, 104, 83–89. [Google Scholar]
- Meng, X.; Zhang, C.; Zhuang, J.; Zheng, G.; Zhou, L. Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction. Chemosphere 2020, 244, 125523. [Google Scholar] [CrossRef]
- Barroso, A.; Antunes, I.M.; Marinho-Reis, A.P.; Vasques, V.; Antelo, J.; Fiol, S.; Gomes, P.; Valente, V. The role of the iron oxyhydroxides and efflorescent sulfates in remediation by natural attenuation of mining contaminated systems. In Proceedings of the ICOBTE&ICHMET Congress, Wuppertal, Germany, 6–10 September 2023; University of Wuppertal: Wuppertal, Germany, 2023; p. 256. [Google Scholar]
- Cunha, P.; Gouveia, M.; Ferreira, C.; Martins, A.; Buylaert, J.; Murray, A.; Font, E.; Pereira, T.; Figueiredo, S.; Bridgland, D.; et al. The Lowermost Tejo River Terrace at Foz do Enxarrique, Portugal: A Palaeoenvironmental Archive from c. 60–35 ka and Its Implications for the Last Neanderthals in Westernmost Iberia. Quaternary 2019, 2, 3. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T.; Geraldo, D.; Ribeiro, C. Photosynthetic pigments in acid mine drainage: Seasonal patterns and as-sociations with stressful abiotic characteristics. Chemosphere 2020, 239, 124774. [Google Scholar] [CrossRef]
- Valente, T.; Gomes, P.; Pamplona, J.; de la Torre, M.L. Natural stabilization of mine waste-dumps—Evolution of the vegetation cover in distinctive geochemical and mineralogical environments. J. Geochem. Explor. 2012, 123, 152–161. [Google Scholar] [CrossRef]
- Sant’Ovaia, H.; Cruz, C.; Guedes, A.; Ribeiro, H.; Santos, P.; Pereira, S.; Espinha Marques, J.; Ribeiro, M.d.A.; Mansilha, C.; Martins, H.C.B.; et al. Contamination Fingerprints in an Inactive W (Sn) Mine: The Regoufe Mine Study Case (Northern Portugal). Minerals 2023, 13, 497. [Google Scholar] [CrossRef]
- Fortes, J.C.; Dávila, J.M.; Sarmiento, A.M.; Luís, A.T.; Santisteban, M.; Díaz-Curie, J.; Córdoba, F.; Grande, J.A. Corrosion of Metallic and Structural Elements Exposed to Acid Mine Drainage (AMD). Mine Water Environ. 2020, 39, 195–203. [Google Scholar] [CrossRef]
Drill | <2 mm Fraction |
---|---|
S1 | Q >> P >> Jt > Cm > Si > Mi >> Go >> Pyr > F |
S4 | Q >>> P >> Jt > Mi >> Cm > F >> Go |
Comp. 1 | Comp. 2 | Comp. 3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | d (cm) | χ (m3/kg) | Kdf (%) | SIRM (A/m) | % | B1/2 (mT) | DP | SIRM (A/m) | % | B1/2 (mT) | DP | SIRM (A/m) | % | B1/2 (mT) | DP |
S1-1 | 10 | 34.87 | 7.64 | 2.3 | 46 | 33 | 0.29 | 1.00 | 20 | 126 | 0.42 | 1.70 | 34 | 631 | 0.42 |
S1-2 | 20 | 55.42 | 5.96 | ||||||||||||
S1-3 | 30 | 41.64 | 6.25 | 2.2 | 73 | 25 | 0.25 | 0.40 | 13 | 126 | 0.35 | 0.40 | 13 | 661 | 0.25 |
S1-4 | 40 | 37.52 | 6.14 | ||||||||||||
S1-5 | 50 | 35.05 | 0.57 | 1.7 | 59 | 25 | 0.25 | 0.70 | 24 | 91 | 0.42 | 0.50 | 17 | 631 | 0.37 |
S1-6 | 60 | 44.11 | 3.50 | ||||||||||||
S1-7 | 70 | 61.17 | 9.59 | 3 | 70 | 24 | 0.26 | 0.80 | 19 | 100 | 0.35 | 0.50 | 12 | 603 | 0.3 |
S1-8 | 80 | 55.57 | 10.95 | ||||||||||||
S1-9 | 90 | 47.45 | 5.60 | ||||||||||||
S1-10 | 100 | 64.41 | 7.92 | 4.5 | 75 | 28 | 0.32 | 1.30 | 22 | 158 | 0.45 | 0.20 | 3 | 724 | 0.45 |
S4-1 | 10 | 15.14 | 0.00 | 1.2 | 30 | 26 | 0.27 | 2.00 | 50 | 126 | 0.23 | 0.80 | 20 | 562 | 0.50 |
S4-2 | 20 | 10.66 | 2.44 | ||||||||||||
S4-3 | 30 | 21.22 | 5.44 | 2.1 | 51 | 26 | 0.27 | 1.30 | 32 | 135 | 0.29 | 0.72 | 17 | 1148 | 0.37 |
S4-4 | 40 | 30.63 | |||||||||||||
S4-5 | 50 | 25.85 | 7.28 | 2.5 | 55 | 29 | 0.26 | 1.25 | 27 | 158 | 0.37 | 0.80 | 18 | 1995 | 0.40 |
S4-6 | 60 | 52.24 | 5.65 | ||||||||||||
S4-9 | 80 | 106.00 | 6.29 | ||||||||||||
S4-10 | 90 | 125.33 | 11.57 | 7.1 | 78 | 23 | 0.28 | 1.35 | 15 | 141 | 0.40 | 0.70 | 8 | 891 | 0.35 |
S4-11 | 100 | 178.58 | 13.15 | ||||||||||||
S4-12 | 110 | 163.56 | 9.43 | ||||||||||||
S4-13 | 120 | 119.98 | 8.52 | ||||||||||||
S4-14 | 130 | 171.15 | 12.72 | 10.7 | 79 | 22 | 0.26 | 1.70 | 13 | 178 | 0.35 | 1.20 | 9 | 1585 | 0.35 |
S4-15 | 140 | 96.19 | 9.86 | ||||||||||||
S4-16 | 150 | 123.96 | 10.73 | ||||||||||||
S4-17 | 160 | 152.00 | 12.75 | ||||||||||||
S4-18 | 170 | 155.24 | 10.38 | 8.9 | 78 | 22 | 0.26 | 1.20 | 11 | 132 | 0.29 | 1.25 | 11 | 1023 | 0.38 |
Samples | Fe (%) | S (%) | Ti (%) | Mg (%) | Pb (mg/kg) | As (mg/kg) | Cu (mg/kg) | Al (mg/kg) | |
---|---|---|---|---|---|---|---|---|---|
SI drill | S1-1 | 11.6 | 1.76 | 0.38 | 0.22 | 16,700 | 3300 | 946 | 6.72 |
S1-3 | 13.9 | 1.1 | 0.31 | 0.26 | 5410 | 3030 | 443 | 8.39 | |
S1-5 | 7.76 | 0.99 | 0.39 | 0.32 | 4860 | 1720 | 666 | 10.2 | |
S1-7 | 9.85 | 1.05 | 0.4 | 0.28 | 5580 | 1530 | 420 | 8.54 | |
S1-10 | 13 | 2.12 | 0.37 | 0.25 | 12,000 | 2590 | 880 | 6.38 | |
S4 drill | S4-1 | 9.69 | 1.68 | 0.48 | 0.22 | 923 | 575 | 144 | 6.15 |
S4-3 | 6.69 | 1.36 | 0.48 | 0.26 | 1180 | 464 | 229 | 6.22 | |
S4-5 | 5.76 | 0.68 | 0.56 | 0.36 | 485 | 288 | 184 | 7.5 | |
S4-10 | 10 | 1.43 | 0.46 | 0.33 | 1070 | 606 | 266 | 7.32 | |
S4-14 | 4.67 | 0.58 | 0.52 | 0.31 | 617 | 360 | 128 | 6.18 | |
S4-18 | 6.48 | 0.87 | 0.55 | 0.39 | 1250 | 676 | 167 | 7.92 |
(S1) | (S4) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SIRM | MS | Fe | Pb | As | Cu | SIRM | MS | Fe | Pb | As | Cu | |
SIRM | 1 | 1 | ||||||||||
MS | 0.975 | 1 | 1.000 | 1 | ||||||||
Fe | 0.3 | 0.41 | 1 | −0.543 | −0.543 | 1 | ||||||
Pb | 0 | 0.205 | 0.3 | 1 | 0.029 | 0.029 | 0.429 | 1 | ||||
As | −0.5 | −0.36 | 0.6 | 0.5 | 1 | 0.086 | 0.086 | 0.6 | 0.829 | 1 | ||
Cu | −0.4 | −0.31 | 0.1 | 0.6 | 0.7 | 1 | −0.257 | −0.26 | 0.6 | 0.314 | 0.2 | 1 |
S1 | S4 | Foz de Enxarique | |
---|---|---|---|
SIRM magnetite | 1.9–4.6 | 1.6–10.7 | 1.2–3.7 |
SIRM hematite | 1.2–1.7 | 1.2–1.7 | 0.3–0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, P.; Valente, T.; Font, E. Integrated Characterization of Sediments Contaminated by Acid Mine Drainage: Mineralogical, Magnetic, and Geochemical Properties. Minerals 2025, 15, 786. https://doi.org/10.3390/min15080786
Gomes P, Valente T, Font E. Integrated Characterization of Sediments Contaminated by Acid Mine Drainage: Mineralogical, Magnetic, and Geochemical Properties. Minerals. 2025; 15(8):786. https://doi.org/10.3390/min15080786
Chicago/Turabian StyleGomes, Patrícia, Teresa Valente, and Eric Font. 2025. "Integrated Characterization of Sediments Contaminated by Acid Mine Drainage: Mineralogical, Magnetic, and Geochemical Properties" Minerals 15, no. 8: 786. https://doi.org/10.3390/min15080786
APA StyleGomes, P., Valente, T., & Font, E. (2025). Integrated Characterization of Sediments Contaminated by Acid Mine Drainage: Mineralogical, Magnetic, and Geochemical Properties. Minerals, 15(8), 786. https://doi.org/10.3390/min15080786