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Abstract: Water microbial contamination is one of the major threats to human health. The study
focus is on Infulene River Basin, a urban catchment with mainly informal settlements, with limited
water supply and sanitation. In the catchment there are two wastewater treatment plants, one
hospital and beer factory located on the banks of the main stream; water from this stream is used
for urban agriculture and domestic uses by some dwellers. These factors present a significant
health risk from water-borne diseases. At the moment there is limited knowledge about the level of
microbial contamination of the different sources of water at the disposal of the communities. Thus,
a preliminary study on fecal microbial contamination was conducted targeting the Infulene River
and the drainage system from the nearby Maputo city draining into the system, with additional
investigation on the drinking water provided by the city water supply company. The quantification
of Total Coliforms (TC) and Escherichia coli (EC) was conducted at several sampling locations. Results
were compared with official drinking water standards. Eighty two percent (82%) and 61% of Infulene
river water and drainage water samples were positive for TC (105 to 109 NPN/100 mL) and EC (105 to
107 NPN/100 mL), respectively. For drinking water samples, 63% and 23% were positive for TC (up to
6000 NPN/100 mL) and EC (up to 1000 NPN/100 mL), respectively. Higher microbial contamination
was found in neighborhoods with the poorest sanitation and shallow groundwater, i.e., Chamanculo,
Xipamanine, Mafalala, Aeroporto and Maxaquene, a situation that was more expressive during the
rainy season. Overall, the study confirmed the high vulnerability to microbial contamination of all
sources investigated due to poor sanitation and lack of drainage infrastructure. The risks to human
health might be even higher considering that contaminated water is used for gardening of vegetable
watering and domestic use.

Keywords: microbial contamination; river water; total coliforms; Escherichia coli; drinking water

1. Introduction

Rivers are important sources of water, playing an important role by providing water
for domestic and industrial activities, livestock production, agriculture, drinking water
and other uses [1,2]. Nevertheless, anthropogenic activities cause water contamination
through direct discharge of effluents into the receiving water bodies and streams. Globally,
more than 80% of wastewater is discharged directly into the environment without proper
treatment, which leads to contamination by pathogenic microorganisms such as bacteria,
viruses, protozoa and helminths [3,4].
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Microbial pollution in aquatic environments is one of the pressing issues affecting
the sanitary state of water sources for domestic water uses, recreational activities and har-
vesting seafood [5]. Pathogenic organisms are natural livings things of all ecosystems, but
microbiological contamination with fecal bacteria from anthropogenic activity is increas-
ingly contributing to the degradation of water sources throughout the rivers and drinking
water systems worldwide [4,6–8]. There is an increased body of literature reporting on
microbial contaminated waters from human and animal activities affecting river water
quality, with prominent impacts on the lower reaches of the cities [9–11].

Assessment of human enteric pathogens in eight rivers used as rural household
drinking water sources in the northern region of South Africa showed that the indicator
bacteria counts exceeded drinking water quality guideline limits [11]. Another study
conducted in Kelani River Basin, Sri Lanka revealed that the entire river was contaminated
with total coliform and E. coli bacteria at almost all the sampling locations [10].

Recently, the reliability of fecal indicators as a means of assuring water safety is consid-
ered increasingly challenging for the water quality and public health sectors [8]. While in
developing countries, water-borne pathogens are the second cause of gastrointestinal dis-
eases of children, where 21% of children do not reach the age of five, with about 2.5 million
of deaths per year [12].

In Mozambique, there are many cases of diarrhea associated with consumption of
contaminated water, especially after the rainy season, with diarrhea being the third cause
of death in infants and young children [13–15]. Among diseases that cause gastroenteritis,
cholera is endemic in Mozambique and Maputo with 65% of total cases in the whole country.
This situation has nevertheless improved between 2011 and 2017; of the 278 cases, only one
fatality was reported [16]. Additionally, the same study revealed the occurrence of EC, TC
and V. cholerae in drinking water in Maputo [16]. Peri-urban areas with unplanned settle-
ment seem to be much more affected by the problem due to lack of sanitation compounded
by poor water supply services.

This study focuses on the Infulene River, a small river of approximately a 20 km
stretch. It is located in the Southern part of Mozambique between the cities of Maputo and
Matola, flowing into Espirito Santo estuary [17]. The land use of the basin encompasses
urban, peri-urban characterized by informal settlements with poor sanitation systems
and rural areas. The informal settlements are characterized by low quality domestic water
distribution services, with intermittent water supply, together with poor sanitation. In these
circumstances, when water supply is interrupted and hydraulic pressure in the distribution
system decreases, there is a possibility of ingress of contaminated water into the distribution
pipes, especially during the rainy seasons [18]. Additionally, surface runoff contributes to
the spreading of contaminants from the informal settlements, thus decreasing the water
quality of receiving streams [19].

A study recently published aims to assess the microbiological quality of water sold by
street vendors along the main drainage channel in Maputo city, targeting the determination
of the antibiotic resistance profile of selected Enterobacteriaceae isolates. The study reported
that 88% of samples analyzed were positive for fecal coliforms and 66% were positive for
EC on bottled water. These results where compared to samples of tap water, and 64% were
found positive for fecal coliforms and 28% were positive for EC [20]. Additionally, of the
44 selected Enterobacteriaceae isolates from water samples (28 isolates of EC and 16 isolates
of Klebsiella spp.), 45.5% were not susceptible to the beta-lactams ampicillin and imipenem,
43.2% to amoxicillin, and 31.8% to amoxicillin/clavulanic acid. Regarding non-beta-lactam
antibiotics, there was a high percentage of isolates with tolerance to tetracycline (52.3%) and
azithromycin (31.8%) [20]. Another study on microbial contamination in Maputo Bay, in
the part of Maputo city center which has better sanitation infrastructure, demonstrated that
pathogens are common at some sites [21]. While both studies demonstrated prevalence of
contaminated water used in some areas of the city, none of them have been specific in terms
of determining the origins of the waters analyzed. For example, the first study was more
concerned in comparing the quality of water from street vendors without examining the
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sources, while the second study evaluated the efficacy of the drainage system in eliminating
pollution of the receiving waters at the Maputo Bay.

This study aims to reduce the knowledge gap on the status of microbial contamination
of the Influene system, as well as detect the patterns of spreading of contaminated water
during rainy season in a urban catchment [22]. To this end, an integrated study covering
the drainage system, natural stream, as well as drinking water is conducted to map the
potentially spreading of microorganisms during the rainy season.

2. Methods
2.1. Study Area
2.1.1. Infulene River

The Infulene River has a total area of 147 km2 and its longest stream is approximately
20 km. The basin boundaries are Marracuene District to the north, Maputo Bay to the
south, Maputo City to the east and Matola City to the west, Figure 1. The climate of the
area shows a clearly distinguishable rainy season (October to March) and a dry season
(April–September). The annual rainfall ranges from 400 to 1000 mm. The mean annual
temperature varies from 22 ◦C to 29 ◦C. The relative air humidity varies between 67.3%
and 80.5%.
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Figure 1. Study area and sampling points.

2.1.2. Drainage System

In part of the basin there is a sanitation infrastructure designed to safely collect domes-
tic and industrial wastewater and rainwater to discharge points. This minimizes the risk
of flooding and prevents the pollutants from reaching the receiving environments [23,24].
In the Municipality of Maputo, during the rainy season, the wastewater and rainwater
drainage networks are interconnected, constituting a combined sewer system. The high
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population density in the informal settlements that characterize the peri-urban areas, cou-
pled with lack of sanitation leads to direct discharge of domestic wastewater into the
drainage ditches, causing not only microbiological contamination, but also attracting in-
sects and a bad smell. This situation is further exacerbated by the high groundwater table
that limits infiltration and makes the construction of pit latrines difficult [25].

2.1.3. Drinking Water Systems

This study conducts a comprehensive assessment of water used by the communities
from different sources in order to identify the main macrobiotic contamination risks associ-
ated with it. Three main drinking water sources are used in the study area, Figure 2. The
conventional city water distribution system serves two distinct areas: (a) the consolidated
urban area with sanitation system and (b) the informal settlement with both low-quality wa-
ter distribution system and sanitation. There are also small, reticulated water distribution
systems in suburbs that tap into groundwater using shallow water wells.
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The consolidate city center is served by a water system that includes a conventional
water treatment process, where the chlorination is the final step, aiming to disinfect and
prevent re-contamination post treatment. Nevertheless, in the informal settlements the
sanitation system is poor, where latrines are flooded during rainy season contaminating
surface runoff, with a high probability of sewage water entering the pipes at the time of
low pressure, or following a water supply pipe burst, Figure 2c.

In peri-urban areas and informal settlement, there are small pipe water distribution
systems that tap into the groundwater through conventional boreholes and store water in
elevated tanks for distribution to nearby unserved households or those experiencing low
quality of services from the main water system, Figure 2b. In the majority of cases, water is
distributed to the final consumers without treatment. This leads to a high probability of
water quality degradation in tanks, the water distribution system or even at the household
storage of the final user.

In some of the areas, because of financial limitations to construct deep boreholes,
dwellers dig shallow large diameter water wells, tapping into the phreatic groundwater
aquifer system, Figure 2a. The water is collected using small buckets tied with a rope and
carried in 20 L containers to final consumers where it is stored and used without treatment.
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In this case, the water is more vulnerable to contamination both at the unprotected well
and at the household storage.

2.2. Sampling

For the current study, the sampling campaign was conducted between 25 July and
6 August 2022, coinciding with the dry season. Seventy-nine (79) sampling points were
selected within the river basin, covering the main pollution sources and water abstraction
for agriculture and domestic uses, as well as drinking water sources, Figure 1. The sampling
points encompass 13 points on the main river streams, 2 points at the outlets of wastewater
treatment plants, 13 points along the stormwater drainage system, and 51 points to evaluat-
ing drinking water at the end user. Sampling points for drinking water were selected to
gather comparative water quality information for the three main drinking water source
used by communities as described above.

Water samples were collected in duplicate at a depth of 10–15 cm and stored in 1-L
sterile plastic containers. Thereafter, the samples were refrigerated and transported to
the Environmental Engineering Laboratory in the Chemical Engineering Department at
Eduardo Mondlane University and kept at a temperature of about 4 ◦C, for no longer than
24 hours for further analyses.

2.3. Physicochemical and Environmental Parameters

Water quality parameters including temperature, conductivity, dissolved oxygen (DO),
turbidity and pH of the river water and drinking water were measured in situ using a
multi-parameter monitoring instrument (Hach HQ40d, Hach, Loveland, CO, USA). The
equipment was calibrated prior to use following the internal standard reference materials,
based on the manufacturer’s instructions to ensure detection precision.

2.4. Laboratory Analysis

The laboratory analysis focused on the most relevant chemical and biological environ-
mental parameters for this study. For chemical parameters, the chemical oxygen demand
(COD), nitrates, and phosphates where considered, while biological parameters included
Total Coliforms (TC) and Escherichia coli (EC).

For measuring phosphates, a total phosphorus test (USEPA PhosVer 3® (Ascorbic
Acid), Method 8048 Powder Pillows or AccuVac® Method, Hach, Johannesburg, South
Africa) was used. For nitrates, a Cadmium Reduction Method was used (Method 8039
Powder Pillows; AccuVac® Ampuls, Hach, Johannesburg, South Africa). While for COD, a
TNT 822 Chemical Oxygen Demand test was used (TNTplus®—Method 8000, Hach, Johan-
nesburg, South Africa). All the results were measured using a DR9000 spectrophotometer
(Hach, Johanesburg, South Africa) [26].

The Total Coliforms (TC) and Escherichia coli (EC) where determined using the Colilert-
18 Test, Product Number: 98-27164-00, Cat. No WP100I-18 (IDEXX, Westbrook, ME, USA),
following the manufacturer’s instructions. One hundred ml (100 mL) of each water sample
was incubated at 35 ◦C for 18 h and the number of positive wells were converted into a
most-probable number (MPN) using the MPN table.

Parameters values were compared with standard threshold values described in Gov-
ernment Decree No. 18/2004 approving the Regulation on Environmental Quality and
Effluents’ Emissions [27].

2.5. Data Analysis

Data was analyzed using statistical and GIS tools. The statistical methods were em-
ployed using excel to determine the statistical properties of the data, specifically the average,
the errors and variance where average values of measured parameters were calculated
and compared with standards and the associated errors and variabilities were further
analyzed. The GIS methods were employed using the QGIS Desktop 3.20 software [28],
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where spatial distribution of the most relevant parameters was analyzed to identify more
vulnerable areas.

3. Results and Discussion
3.1. Characterization of the Area: Point Pollution Sources

Possible point and diffuse pollution sources can be found in the Infulene River Basin,
Figure 3. The possible point pollution sources are two wastewater treatment plants, one
hospital, one paper manufacturing company, and one beer factory. The likely diffuse
pollution sources are urban agriculture—that is developed on the riverbanks, drainage
and wastewater from the dense urban areas—and suburbs (informal settlements) with a
deficient sanitation system, Figures 3 and 4. These activities create conditions for possible
contamination by microorganisms, nutrients, and organic matter.

The use of a combined system that mixes wastewater and stormwater, such is the case
of Maputo, is the most well-known reason of spreading of pathogens, such as bacteria,
viruses, and protozoa. Additionally, certain microorganisms adapt and reproduce in the
drainage systems [29]. The presence of these contaminants in the urban drainage system
can have environmental consequences for the aquatic biota present in the receiving body
and for human health [23].
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3.2. Water Quality Parameters

The results of water quality parameters analyzed are divided in two groups: (1) Group
I that includes two outlets of wastewater treatment plants, drainage, and river water and
(2) Group II that includes drinking water from different sources available in the area, i.e.,
water from boreholes, conventional distribution system and shallow water wells.

3.2.1. Group I—Outlet of Wastewater Treatment Plants, Drainage, and River Water

For the 28 sampling points of river water, drainage system, and the two outlets of
wastewater treatment plants, the average values of water quality parameters are temper-
ature [22.3 (±0.4) ◦C], pH [7.07 ± 0.05], DO [4.4 (±2.5) mg/L], electrical conductivity
[1218 (±411) µS/cm], and COD [75 (±150) mg/L], Figure 5. The results of river water,
drainage water, and outlets from the wastewater treatment plants were further analyzed
separately. The temperature and pH values were similar for the three sources of water,
Figure 5a,c,e. The DO was low for the river water and outlets of wastewater treatment
plant, demonstrating a low aeration rate in the river and a heavy load of organic matter in
the outlets of wastewater treatment plant, confirmed by the values of COD, Figure 5a,c. In
the drainage water, the DO was high which is explained by a high aeration rate because the
values of COD were high demonstrating high concentration of organic matter, Figure 5e.

For the case of Infulene River Basin, where agriculture takes place in the margins of the
stream, the temperature is within the suitable temperature range, with the optimal range of
water for irrigation between 20–30 ◦C [30]. The pH of the Infulene river is also within the
standards, which is 7.25 for natural waters and it may vary between 6.5 to 8.5 [31]. The DO
is not in the normal range, (3.2 mg/L), as the level of DO usually required for most of the
fish population is between 5 to 6 ppm [31]. Additionally, the value of COD is above the
standard, which is 4.0 mg/L [31].
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Figure 5. Results of water quality parameters from Group I: (a) Standard water quality parameters,
including Dissolved oxygen (DO), Chemical Oxygen Demand (COD), nitrates and phosphates in river
water; (b) Biological parameters in river water; (c) Standard water quality parameters, including DO,
COD, nitrates and phosphates in the outlets of wastewater treatment plants (WWTPs); (d) Biological
parameters in the outlets of WWTPs; (e) Standard water quality parameters, including DO, COD,
nitrates and phosphates in the drainage water; (f) Biological parameters in the in the drainage water.

The average nutrients concentration in Group I waters are 7.8 (±6.4) mg/L and
1.7 (±2.1) mg/L] for nitrates and phosphates, respectively. Considering only the nitrogen
and phosphorus within the nitrate and phosphate ions, the average concentration of
nitrogen and phosphorus are 1.8 mg/L and 0.54 mg/L, falling in the eutrophic level by
being above 1.5 mg/L and 0.075 mg/L for nitrogen and phosphorus, respectively [32].
However, the average concentration of nitrogen and phosphorus, in the river water only,
considering the nitrogen and phosphorus within the nitrate and phosphate leads to better
results, which are 1.2 mg N/L and 0.35 mg P/L.

The TC [56,000,000 ± 161,000,000 MPN/100 mL] and EC [4,300,000 ± 13,000,000
MPN/100 mL] exhibit both high values and variability. Thus, the parameters were con-
sidered for spatial variability analyses of water quality of Group I. Separate analysis of
river water, outlets from the wastewater treatment plant, and drainage water demonstrated
lower concentration of TC and EC in river water samples and higher concentrations in the
outlets of wastewater treatment plants and drainage water, Figure 5b–d.

Additionally, from the 28 samples of river water and drainage water analyzed, 82%
and 61% of samples were positive for TC and EC, respectively. Sixty seven percent (67%)
and twenty seven percent (27%) of the river water samples were positive for TC and EC,
respectively, while all samples of drainage water and the outlets from the wastewater
treatment plants were positive for both TC and EC.

3.2.2. Group II—Water from Boreholes, the Conventional Drinking Water Distribution
System, and Shallow Water Wells

The results from the 51 drinking water sampling points exhibit a similar pattern as the
results from the river stream and drainage system, with a temperature of [24.1 (±0.2) ◦C],
pH [7.6 ± 2.5], DO [7.1 (±2.5) mg/L], electrical conductivity [612 (±364) µS/cm], and
turbidity [1.34 ± 1.30] which are within standard values, as the standard values for drink-
ing water are (Temperature = not defined, pH = 6.5 to 8.5, DO = not defined, electrical
conductivity = 50 to 2000 µS/cm and turbidity = 5 NUTs) [26]. Nevertheless, turbid-
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ity exhibited a larger variability, Figure 6. The TC [541 (±1523) MPN/100 mL] and EC
[43 (±183) MPN/100 mL] exhibit both high values that exceed the standards for drinking
water [27]. Thus, these two parameters will be used for the spatial variability analyses of
drinking water quality.
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Figure 6. Results of water quality parameters from Group II—drinking water sources: (a) Standard
water quality parameters, including Dissolved oxygen (DO) and Turbidity in the boreholes water;
(b) Biological parameters in the boreholes water; (c) Standard water quality parameters, including DO
and Turbidity in the samples collected from the conventional drinking water system; (d) Biological
parameters in the samples collected from the conventional drinking water system; (e) Standard water
quality parameters, including DO and Turbidity in the shallow water wells; (f) Biological parameters
in the shallow water wells; Spatial Analysis.

Separate analysis was done for samples of water collected from boreholes, the conven-
tional drinking water system, and shallow water wells. The results of standard parameters
(temperature, pH, electrical conductivity, and turbidity) did not exhibit considerably dif-
ferent values for the three classes of sources of water, Figure 6a,c,e. Nevertheless, the
concentration of TC and EC were considerably low for samples of water collected in
the conventional drinking water system compared to the concentration of TC and EC in
samples collected from boreholes and shallow water wells, Figure 6b,d.

Similarly, from the 51 samples of drinking water analyzed, 63% and 23% were positive
for TC and EC, respectively. The discrimination between the different sources of drinking
water showed that for boreholes and water samples, 92% and 38% of samples were positive
for TC and EC, respectively; for conventional water distribution systems 29% and 8% were
positive for TC and EC, respectively; and for shallow water wells, 100% of water samples
were positive for TC and 50% of water samples were positive for EC.

When analyzing the occurrence of TC within the river basin, considering Group I
water sources, it was observed that the concentration is high along the drainage system with
considerably higher concentration at the outlet of the drainage system, Figure 7. TC were
ubiquitous in the river and drainage system waters, with extremely high concentrations.
High concentrations of TC were also registered from residual waters, in particular, at the
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outlets of wastewater treatment plants (the discharge of Zimpeto wastewater treatment
plant and discharge of the wastewater from the beer company).
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Figure 7. Spatial analysis of concentration of TC within the Infulene River Basin, considering both
the river water, drainage water; and drinking water.

For better visualization, data on TC from the river and drainage system is further
presented separately from the drinking water, Figure 8. A high concentration of TC, around
109 MPN/100 mL, are observed at the outlet of the wastewater coming from the beer com-
pany. The drainage system also transports a high concentration of TC with the drainage
from Chamanculo and Xipamanine contributing more with TC, followed by the drainage
from Mafalala, Aeroporto, and Maxaquene which are areas characterized by informal settle-
ments with very limited sanitation system (Figures 7 and 8a). However, the concentration of
TC along the river stream before the interception with the drainage system is low compared
to the water from the drainage system, except at the two points, the point immediately
before the interception with the drainage system and the interception with the outlet of
Zimpeto wastewater treatment plant that exhibited values around 107 NPN/100 mL.

When analyzing the drinking water separately, high concentrations of up to
6000 MPN/100 mL are observed for TC at the end users in water from boreholes and
shallow wells. The occurrence of TC in boreholes does not show any spatial pattern
(Figure 9b). Although being present in 29% of the samples, water from conventional water
samples showed lower concentrations of TC (up to 300 NPN/100 mL).
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As expected, EC was found at lower concentrations than TC in most of the sampling
sites following the same distribution as TC. The concentration observed at the outlet of the
wastewater from the beer company is around 107 MPN/100 mL and the drainage system
exhibits values between (105 to 107 MPN/100 mL), Figure 8. The points immediately before
mixing with the drainage water and near the outlet of the Zimpeto wastewater treatment
plant exhibit concentrations between 106 and 107 MPN/100 mL, respectively.

The occurrence of TC and EC in the boreholes and shallow water wells is explained by
the lack of disinfection, poor sanitation, and shallow water table in the areas where those
sources are used for drinking water. The borehole water normally is contaminated during
storage and utilization while the water from the shallow wells can be contaminated directly
at the source. The water from the conventional water distribution system is disinfected at
the drinking treatment plant and it carries residual chlorine that is expected to continue
disinfecting the water through the distribution system. However, the presence of TC and
EC that is observed in some of the sample in some places at the end user might be caused
by the depletion of residual chlorine. This fact could be associated with a situation whereby
there is poor sanitation, pipes that allow ingress of external contaminated water, as well as
the intermittent water supply that characterizes the water supply in informal settlements
of Chamanculo, Xipamanine, Mafalala, Aeroporto, and Maxaquene. A previous study
on the Maputo Water Supply has shown that drinking water from treatment plants with
residual chlorine and without EC gets contaminated in the distribution system when the
water supply is intermittent [33].

Another study conducted in Bairro dos Pescadores revealed that the concentration of
TC in Costa do Sol, Ponta Vermelha, and Zambi were 465 MPN/100 mL, 225 MPN/100 mL,
and 136 MPN/100 mL, respectively [21]. These results, although from a different part of the
city, found similar concentrations of TC in drinking water. Additionally, a study conducted
in the city of Maputo analyzing drinking water, showed the existence of microbiological
contamination on water sold by street vendors along the main drainage channel. This study
also included the antibiotic resistance profile of selected Enterobacteriaceae isolates [20]. In
the present study, high levels of fecal contamination on tap water samples and even higher
in small water suppliers that rely on boreholes were observed. Similar results on TC and
EC were observed on studies about river water quality around the world, involving other
developing countries [10].

With the finding in the current study, there is a pressing need to identify potential solu-
tions on how to improve the microbial quality of drinking water within the Infulene River
Basin. Still, some common solutions should be applied such as introducing disinfection for
the small water suppliers that rely on boreholes and shallow wells and increase the chlorine
dose in the water treatment plant and/or introduce or improve the disinfection in the
storages along the conventional water distribution system. The last solutions were tested
in an experiment that demonstrated that increasing chlorine dosage in drinking water at
the water treatment plant reduces the probability of having microbiological contamination
at the end user [33].

3.2.3. Spreading of Contaminated Water

The high concentration of TC and EC in Group I water was observed in the southern
part of the Infulene River Basin. As stated before, the southern part is the area with informal
settlements, with limited sanitation, and the water is supplied from a conventional water
distribution system with an intermittent supply and poor piping. During rain events, the
area is flooded and the contaminants are spread throughout the area and the quality of
shallow water might be affected significantly.

4. Conclusions and Recommendations
4.1. Conclusions

Five points and diffuse sources of pollution were identified in the Infulene River Basin:
two wastewater treatment plants, one hospital, one paper manufacturing company, and
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one beer factory. Data analysis was performed dividing the set of data in two groups,
one related to water in the natural environment and the second dealing with domestic
water supplied from different sources in an underserved peri-urban area in a developing
world country.

Group I water sources—represented by river water, outlets of wastewater plants,
and the drainage system—have been found to present poor results in terms of water
quality when comparing most of measured parameters with the standard values. Dissolved
oxygen was found to be low in the river water and outlets of wastewater, posing a risk
of eutrophication events. Eighty-two (82%) and sixty-one (61%) percent of Group I water
samples were positive for TC and EC, respectively. The TC and EC exhibited higher
concentrations in the outlets of wastewater treatment plants and drainage waters, with all
samples positive, compared to river waters with sixty seven (67%) and twenty seven (27%)
percent positive for TC and EC, respectively.

Group II drinking water sources, represented by boreholes, a conventional drinking
water distribution system, and shallow water wells, have also been found to have water of
poor quality in relation to specific measures parameters threshold values contained in the
National Standards for drinking water quality. Observed values of microbial parameters
analyzed are TC [541 (±1523) MPN/100 mL] and EC [43 (±183) MPN/100 mL].

Sixty three (63%) and twenty-three (23%) percent of Group II drinking water was
positive for TC and EC, respectively. Within the group, the borehole and shallow water wells
exhibited a considerably higher concentration of TC and EC, compared to the conventional
drinking water distribution system water. For samples collected in boreholes, 92% and
38% of samples were positive for TC and EC, respectively; for conventional drinking water
distribution systems, 29% and 8% were positive for TC and EC, respectively; and for
shallow water wells, 100% of samples were positive for TC and 50% of samples for EC.

4.2. Recommendations

Considering the threshold value in the National Standards for water quality param-
eters for various uses, the river water is good for urban agriculture. However, microbial
contamination is an issue that must be considered and impairs its uses for drinking water
for example. Further studies require aiming to generate recommendations on how to
reduce the risk of use of water for irrigation and on safe handling and consumption of
agricultural products from these fields using microbially contaminated water.

Regarding drinking water, studies on the level of residual chlorine at the end users
in the conventional drinking water distribution system and how to ensure that there is no
microbial contamination before the end user are required. For borehole and shallow well
water, a treatment process must be considered to eliminate microbial contamination.
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