Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (151)

Search Parameters:
Keywords = contaminant hydrogeology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4061 KiB  
Article
The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS)
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2239; https://doi.org/10.3390/w17152239 - 27 Jul 2025
Viewed by 331
Abstract
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in [...] Read more.
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in coastal regions, agricultural areas, and contaminated sites, where variable-density flow poses a challenge. Numerical simulations assessed hydrogeological properties such as hydraulic conductivity, anisotropy, specific yield, mechanical dispersion, and molecular diffusion. A conceptual model integrated hydraulic conditions with spatial and temporal discretization using the FLOPY API for MODFLOW 6 and the IFM API for FEFLOW 10. Python algorithms were run within the high-performance computing (HPC) server, executing simulations in parallel to efficiently process a large number of scenarios, including both preprocessing input data and post-processing results. The study simulated 6950 scenarios, each modeling flow and transport processes over 3000 days of method implementation and focusing on mass extraction efficiency under different initial salinity conditions (3.5 to 35 kg/m3). The results show that the MAR-MASS effectively removed salts from aquifers, with higher hydraulic conductivity prolonging mass removal efficiency. Of the scenarios, 88% achieved potability (0.5 kg/m3) in under five years; among these, 79% achieved potability within two years, and 92% of cases with initial concentrations of 3.5–17.5 kg/m3 reached potability within 480 days. This study advances scientific knowledge by providing a robust model for optimizing managed aquifer recharge, with practical applications in rehabilitating salinized aquifers and improving water quality. Future research may explore MAR-MASS adaptation for diverse hydrogeological contexts and its long-term performance. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 340
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 5241 KiB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Viewed by 520
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

23 pages, 6037 KiB  
Article
Integrated Assessment of Groundwater Vulnerability and Drinking Water Quality in Rural Wells: Case Study from Ceanu Mare Commune, Northern Transylvanian Basin, Romania
by Nicolae-Leontin Petruța, Ioana Monica Sur, Tudor Andrei Rusu, Timea Gabor and Tiberiu Rusu
Sustainability 2025, 17(14), 6530; https://doi.org/10.3390/su17146530 - 17 Jul 2025
Viewed by 474
Abstract
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality [...] Read more.
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality in rural wells in the Ceanu Mare commune, Cluj County, Romania—a representative area of the Northern Transylvania Basin, characterized by diverse geological structures, intensive agricultural activities, and incomplete public water infrastructure. This study combines detailed hydrochemical analyses, household-level studies, and geological context to identify and quantify key factors influencing nitrate and microbial contamination in rural wells, providing a comprehensive perspective on water quality challenges in the central part of Romania. This study adopts a multidisciplinary approach, integrating detailed geotechnical investigations conducted through four strategically located boreholes. These are complemented by extensive hydrogeological and lithological characterization, as well as rigorous chemical and microbiological analyses of nearby wells. The results reveal persistently elevated concentrations of NO3 and NO2, commonly associated with inadequate livestock waste management and the proximity of manure storage areas. Microbiological contamination was also frequent. In this study, the NO3 levels in well water ranged from 39.7 to 48 mg/L, reaching up to 96% of the EU/WHO threshold (50 mg/L), while the NO2 concentrations varied from 0.50 to 0.69 mg/L, exceeding the legal limit (0.5 mg/L) in 87% of the sampled wells. Ammonium (NH4+) was detected (0.25–0.34 mg/L) in all the wells, below the maximum allowed limit (0.5 mg/L) but indicative of ongoing organic pollution. All the well water samples were non-compliant for microbiological parameters, with E. coli detected in 100% of cases (5–13 CFU/100 mL). The regional clay–marl substrate offers only limited natural protection against pollutant infiltration, primarily due to lithological heterogeneity and discontinuities observed within the clay–marl layers in the study area. This research delivers a replicable model for rural groundwater assessment and addresses a critical gap in regional and European water safety studies. It also provides actionable recommendations for sustainable groundwater management, infrastructure development, and community risk reduction in line with EU water directives. Full article
Show Figures

Figure 1

27 pages, 2740 KiB  
Article
GIS-Based Spatial Autocorrelation and Multivariate Statistics for Understanding Groundwater Uranium Contamination and Associated Health Risk in Semiarid Region of Punjab, India
by Umakant Chaudhari, Disha Kumari, Sunil Mittal and Prafulla Kumar Sahoo
Water 2025, 17(14), 2064; https://doi.org/10.3390/w17142064 - 10 Jul 2025
Viewed by 381
Abstract
To provide safe drinking water in contaminated hydrogeological environments, it is essential to have precise geochemical information on contamination hotspots. In this study, Geographic Information System (GIS) and multivariate statistics were utilized to analyze the spatial patterns, occurrence, and major factors controlling uranium [...] Read more.
To provide safe drinking water in contaminated hydrogeological environments, it is essential to have precise geochemical information on contamination hotspots. In this study, Geographic Information System (GIS) and multivariate statistics were utilized to analyze the spatial patterns, occurrence, and major factors controlling uranium (U) concentrations in groundwater. The global and local Moran’s I indices were utilized to detect hotspots and cool spots of U distribution. The substantial positive global Moran’s I index (at a p-value of 0.05) revealed a geographical pattern in U occurrences. The spatial clusters displayed patterns of drinking water source with U concentrations below and above the WHO limit, categorized as “regional U cool spots” and “regional U hotspots”, respectively. Spatial autocorrelation plots revealed that the high–high potential spatial patterns for U were situated in the northeastern region of the study area. As the order of queen’s contiguity increased, prospective low–high spatial patterns transitioned from the Faridkot district to the Muktsar district for U. Further, the multivariate statistical analysis methods such as correlation and principal component analysis (PCA) plots revealed substantial positive associations (p-value < 0.05) between U and total dissolved solids (TDS), salinity (SL), bicarbonate (HCO3), and sodium (Na) in groundwater from both shallow and deeper depth, indicating that these water quality parameters can significantly influence the occurrence of U in the groundwater. The output of the random forest model shows that among the groundwater parameters, TDS is the most influential variable for enrichment of U in groundwater, followed by HCO3, Na, F, SO42−, Mg, Cl, pH, NO3, and K concentrations. Additionally, the results of health risk assessment indicate that 47.86% and 41.3% of samples pose risks to children and adults, respectively, due to F−contamination. About 93.49% and 89.14% of samples pose a risk to children and adults, respectively, due to U contamination, whereas 51.08% and 39.13% of samples pose a risk to children and adults, respectively, from NO3 contamination. The current data indicates an urgent need to create cost-effective and efficient remediation techniques for groundwater contamination in this region. Full article
(This article belongs to the Special Issue Environmental Fate and Transport of Organic Pollutants in Water)
Show Figures

Figure 1

19 pages, 1654 KiB  
Article
Groundwater Impacts and Sustainability in Italian Quarrying: Evaluating the Effectiveness of Existing Technical Standards
by Matteo Paoletti
Water 2025, 17(14), 2044; https://doi.org/10.3390/w17142044 - 8 Jul 2025
Viewed by 314
Abstract
Quarrying is a key driver in economic growth but also poses significant environmental impacts, particularly on groundwater resources. With approximately 4000 active quarries and diverse hydrological and hydrogeological conditions across Italy, the need for effective regulations that ensure both sustainable extraction and groundwater [...] Read more.
Quarrying is a key driver in economic growth but also poses significant environmental impacts, particularly on groundwater resources. With approximately 4000 active quarries and diverse hydrological and hydrogeological conditions across Italy, the need for effective regulations that ensure both sustainable extraction and groundwater protection is paramount. This study analyzed the European directives, national legislation, and regional quarrying plans governing extractive activities, with a particular focus on groundwater protection. By analyzing the Italian quarries and their main hydrogeological characteristics, the most prevalent hydrogeological scenarios associated with quarrying activities across the country have been identified. The findings reveal significant gaps in the current regulatory framework, characterized by fragmentation and inconsistency across regions. Critical concerns across the quarry lifecycle (planning, excavation, and reclamation) are not comprehensively addressed, and mandatory monitoring and safeguard requirements are lacking. A more structured regulatory approach could incorporate key parameters identified in this study, particularly quarry size and groundwater level depth relative to the excavation plan. Additionally, hydrogeological vulnerability must be considered to guide risk assessment, particularly for alluvial and limestone hydrogeological complexes, which host a substantial number of Italian quarries and require stricter safeguards due to their high susceptibility to contamination and hydrodynamic alterations. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
An Interdisciplinary Perspective of the Karst Springs’ Areas as Drinking Water: Perusal from Northeastern Slovenia
by Natalija Špeh and Anja Bubik
Pollutants 2025, 5(3), 19; https://doi.org/10.3390/pollutants5030019 - 1 Jul 2025
Viewed by 679
Abstract
Karst aquifer systems are highly vulnerable due to their unique underground water flow characteristics, making them prone to contamination and abandonment. This study compares an active karst water source (Ljubija) with a previously abandoned one (Rečica) to assess freshwater quality and water protection [...] Read more.
Karst aquifer systems are highly vulnerable due to their unique underground water flow characteristics, making them prone to contamination and abandonment. This study compares an active karst water source (Ljubija) with a previously abandoned one (Rečica) to assess freshwater quality and water protection risks, especially as water scarcity becomes a concern during dry summer periods. The Ljubija and Rečica catchments, designated as water protection areas (WPAs), were monitored over a year (January–December 2020). Groundwater (GW) and surface water (SW) were analyzed twice a month during both dry and wet periods, adhering to European and national guidelines. An interdisciplinary approach integrated natural and human impact indicators, linking water quality to precipitation, hydrogeography, and landscape characteristics. After Slovene regulation standards (50 mg/L), the Ljubija source demonstrated stable water quality, with low nitrate levels (average 2.6 mg/L) and minimal human impact. In contrast, the Rečica catchment was more vulnerable, with its GW excluded from drinking use since the 1990s due to organic contamination, worsened by the area’s karst hydrogeology. In 2020, its nitrate concentration averaged 6.0 mg/L. These findings highlight the need for improved monitoring regulations, particularly for vulnerable karst water sources, to safeguard water quality and ensure sustainable use. Full article
Show Figures

Figure 1

16 pages, 5939 KiB  
Article
Modeling the Effects of Underground Brine Extraction on Shallow Groundwater Flow and Oilfield Fluid Leakage Pathways in the Yellow River Delta
by Jingang Zhao, Xin Yuan, Hu He, Gangzhu Li, Qiong Zhang, Qiyun Wang, Zhenqi Gu, Chenxu Guan and Guoliang Cao
Water 2025, 17(13), 1943; https://doi.org/10.3390/w17131943 - 28 Jun 2025
Viewed by 399
Abstract
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow [...] Read more.
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow River Delta (YRD) lies in its relatively short formation time, the frequent salinization and freshening alternation associated with changes in the course of the Yellow River, and the extensive impacts of oil production and underground brine extraction. This study employed a detailed hydrogeological modeling approach to investigate groundwater flow and the impacts of oil field brine leakage in the YRD. To characterize the heterogeneity of the aquifer, a sediment texture model was constructed based on a geotechnical borehole database for the top 30 m of the YRD. A detailed variable-density groundwater model was then constructed to simulate the salinity distribution in the predevelopment period and disturbance by brine extraction in the past decades. Probabilistic particle tracking simulation was implemented to assess the alterations in groundwater flow resulting from brine resource development and evaluate the potential risk of salinity contamination from oil well fields. Simulations show that the limited extraction of brine groundwater has significantly altered the hydraulic gradient and groundwater flow pattern accounting for the less permeable sediments in the delta. The vertical gradient increased by brine pumping has mitigated the salinization process of the shallow groundwater which supports the coastal wetlands. The low groundwater velocity and long travel time suggest that the peak salinity concentration would be greatly reduced, reaching the deep aquifers accounting for dispersion and dilution. Further detailed investigation of the complex groundwater salinization process in the YRD is necessary, as well as its association with alternations in the hydraulic gradient by brine extraction and water injection/production in the oilfield. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 9661 KiB  
Article
Regional Groundwater Flow and Advective Contaminant Transport Modeling in a Typical Hydrogeological Environment of Northern New Jersey
by Toritseju Oyen and Duke Ophori
Hydrology 2025, 12(7), 167; https://doi.org/10.3390/hydrology12070167 - 27 Jun 2025
Viewed by 527
Abstract
This study develops a numerical model to simulate groundwater flow and contaminant transport in a “typical hydrogeological environment” of northern New Jersey, addressing freshwater decline. Focusing on the Lower Passaic water management area (WMA), we model chloride transport in a fractured-rock aquifer, where [...] Read more.
This study develops a numerical model to simulate groundwater flow and contaminant transport in a “typical hydrogeological environment” of northern New Jersey, addressing freshwater decline. Focusing on the Lower Passaic water management area (WMA), we model chloride transport in a fractured-rock aquifer, where fracture networks control hydraulic conductivity and porosity. The urbanized setting—encompassing Montclair State University (MSU) and municipal wells—features heterogeneous groundwater systems and critical water resources, providing an ideal case study for worst-case contaminant transport scenarios. Using MODFLOW and MODPATH, we simulated flow and tracked particles over 20 years. Results show that chloride from MSU reached the Third River in 4 years and the Passaic River in 10 years in low-porosity fractures (0.2), with longer times (8 and 20 years) in high-porosity zones (0.4). The First Watchung Mountains were identified as the primary recharge area. Chloride was retained in immobile pores but transported rapidly through fractures, with local flow systems (MSU to Third River) faster than regional systems (MSU to Passaic River). These findings confirm chloride in groundwater, which may originate from road salt application, can reach discharge points in 4–20 years, emphasizing the need for recharge-area monitoring, salt-reduction policies, and site-specific assessments to protect fractured-rock aquifers. Full article
Show Figures

Figure 1

15 pages, 1939 KiB  
Article
Tailings Reuse in Low-Permeability Reactive Geochemical Barriers
by Roberto Rodríguez-Pacheco, Joanna Butlanska and Aldo Onel Oliva-González
Processes 2025, 13(6), 1870; https://doi.org/10.3390/pr13061870 - 13 Jun 2025
Viewed by 325
Abstract
This paper presents the physical, hydrogeological, and geochemical characterizations of two types of tailings: one from the nickel–cobalt (Ni–Co) and the other from the lead–zinc (Pb–Zn) industries. The study is restricted only to Ni and Zn ions behavior. The mineralogical composition of the [...] Read more.
This paper presents the physical, hydrogeological, and geochemical characterizations of two types of tailings: one from the nickel–cobalt (Ni–Co) and the other from the lead–zinc (Pb–Zn) industries. The study is restricted only to Ni and Zn ions behavior. The mineralogical composition of the studied tailings is primarily composed of oxides and hydroxides of iron, aluminum, and silica. Based on their grain size, these wastes are geotechnically classified as low plasticity silts, with permeability ranging from 10−8 m/s to less than 10−9 m/s. Batch and column flow tests, along with metal transport tests using heavy metal-contaminated wastewater, reveal that these tailings have an adsorption capacity for metals such as nickel (Ni) and zinc (Zn) ranging from 2000 to 6000 mg/kg of solid. This high adsorption capacity surpasses that of many clayey soils used for sealing municipal, industrial, mining, and metallurgical waste deposits. Additionally, these wastes can neutralize the acidity of wastewater. The results indicate that the mineralogical composition and pH of these tailings are key factors determining their adsorption characteristics and mechanisms. Due to their characteristics, these tailings could be evaluated for use as low-permeability reactive geochemical barriers (LPRGB) in the conditioning of repositories for the storage of industrial, urban, mining and metallurgical waste. This would allow large volumes of tailings to be repurposed effectively. Full article
Show Figures

Figure 1

22 pages, 3617 KiB  
Review
Groundwater Vulnerability in the Kou Sub-Basin, Burkina Faso: A Critical Review of Hydrogeological Knowledge
by Tani Fatimata Andréa Coulidiati, Angelbert Chabi Biaou, Moussa Diagne Faye, Roland Yonaba, Elie Serge Gaëtan Sauret, Nestor Fiacre Compaoré and Mahamadou Koïta
Water 2025, 17(9), 1317; https://doi.org/10.3390/w17091317 - 28 Apr 2025
Cited by 1 | Viewed by 1371
Abstract
Groundwater resources in the Kou sub-basin of southwestern Burkina Faso play a critical role in supporting domestic water supply, agriculture, and industry in and around Bobo-Dioulasso, the second-largest city in Burkina Faso. This study synthesizes over three decades of research on groundwater vulnerability, [...] Read more.
Groundwater resources in the Kou sub-basin of southwestern Burkina Faso play a critical role in supporting domestic water supply, agriculture, and industry in and around Bobo-Dioulasso, the second-largest city in Burkina Faso. This study synthesizes over three decades of research on groundwater vulnerability, recharge mechanisms, hydrochemistry, and residence time across the region’s sedimentary aquifers. The Kou basin hosts a complex stratified system of confined and unconfined aquifers, where hydrochemical analyses reveal predominantly Ca–Mg–HCO3 facies, alongside local nitrate (0–860 mg/L), iron (0–2 mg/L) and potassium (<6.5 mg/L–190 mg/L) contamination. Vulnerability assessments—using parametric (DRASTIC, GOD, APSU) and numerical (MODFLOW/MT3D) models—consistently indicate moderate to high vulnerability, especially in alluvial and urban/peri-urban areas. Isotopic results show a deep recharge for a residence time greater than 50 years with deep groundwater dating from 25,000 to 42,000 years. Isotopic data confirm a vertically stratified system, with deep aquifers holding fossil water and shallow units showing recent recharge. Recharge estimates vary significantly (0–354 mm/year) depending on methodology, reflecting uncertainties in climatic, geological, and anthropogenic parameters. This review highlights major methodological limitations, including inconsistent data quality, limited spatial coverage, and insufficient integration of socio-economic drivers. To ensure long-term sustainability, future work must prioritize high-resolution hydrogeological mapping, multi-method recharge modeling, dynamic vulnerability assessments, and strengthened groundwater governance. This synthesis provides a critical foundation for improving water resource management in one of Burkina Faso’s most strategic aquifer systems. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

30 pages, 2923 KiB  
Article
Assessing the Relationship Between Groundwater Availability, Access, and Contamination Risk in Arizona’s Drinking Water Sources
by Simone A. Williams, Adriana A. Zuniga-Teran, Sharon B. Megdal, David M. Quanrud and Gary Christopherson
Water 2025, 17(7), 1097; https://doi.org/10.3390/w17071097 - 6 Apr 2025
Cited by 1 | Viewed by 2256
Abstract
Groundwater is a critical drinking water source in arid regions globally, where reliance on groundwater is highest. However, disparities in groundwater availability, access, and quality pose challenges to water security. This case study employs geostatistical tools, multivariate regression, and clustering analysis to examine [...] Read more.
Groundwater is a critical drinking water source in arid regions globally, where reliance on groundwater is highest. However, disparities in groundwater availability, access, and quality pose challenges to water security. This case study employs geostatistical tools, multivariate regression, and clustering analysis to examine the intersection of groundwater level changes (availability), socioeconomic and regulatory factors (access), and nitrate and arsenic contamination (quality) across 1881 groundwater-supplied drinking water service areas in Arizona. Groundwater availability declined over 20-year and 10-year periods, particularly outside designated management areas, with mean annual decline rates ranging from −15.97 to −0.003 m/year. In contrast, increases (0.003 to 13.41 m/year) were concentrated in urban and managed areas. Karst aquifers show long-term resilience but short-term vulnerability. Non-designated areas exhibit mixed effects, reflecting variable management effectiveness. Disparities in groundwater access emerge along various socioeconomic and regulatory lines. Communities with higher Black populations are twice as likely (OR = 2.01, p < 0.001) to experience groundwater declines, while Hispanic/Latino communities have lower depletion risks (OR = 0.92, p < 0.001). Tribal oversight significantly reduces groundwater decline risk (OR = 0.62, p < 0.001), whereas state–primacy areas show mixed effects. Higher female populations correlate with increased groundwater declines, while older populations (65+) experience greater stability. Married-family households and institutional housing are associated with greater declines. Migrant worker housing shows protective effects in long-term models. Rising groundwater levels are associated with higher nitrate and arsenic detection, reinforcing recharge-driven contaminant mobilization. Nitrate exceedance (OR = 1.05) responds more to short-term groundwater changes, while arsenic exceedance persists over longer timescales (OR = 1.01–1.05), reflecting their distinct hydrogeochemical behaviors. Community water systems show higher pollutant detection rates than domestic well areas, suggesting monitoring and infrastructure differences influence contamination patterns. Tribal primacy areas experience lower groundwater declines but show mixed effects on water quality, with reduced nitrate exceedance probabilities; yet they show variable arsenic contamination patterns, suggesting that governance influences availability and contamination dynamics. These findings advance groundwater sustainability research by quantifying disparities across multiple timescales and socio-hydrogeological drivers of groundwater vulnerability. The results underscore the need for expanded managed aquifer recharge, targeted regulatory interventions, and strengthened Tribal water governance to reduce inequities in availability, access, and contamination risk to support equitable and sustainable groundwater management. Full article
Show Figures

Figure 1

40 pages, 3271 KiB  
Article
Efficiency Evaluation of a Photovoltaic-Powered Water Treatment System with Natural Sedimentation Pretreatment for Arsenic Removal in High Water Vulnerability Areas: Application in La Yarada Los Palos District, Tacna, Peru
by Luis Johnson Paúl Mori Sosa
Sustainability 2025, 17(7), 2987; https://doi.org/10.3390/su17072987 - 27 Mar 2025
Viewed by 741
Abstract
Arsenic contamination poses a severe health risk in regions with high water vulnerability and limited treatment infrastructure. This study evaluates a photovoltaic-powered water treatment system for arsenic removal in La Yarada Los Palos District, Tacna, Peru, where arsenic concentrations reached up to 0.0417 [...] Read more.
Arsenic contamination poses a severe health risk in regions with high water vulnerability and limited treatment infrastructure. This study evaluates a photovoltaic-powered water treatment system for arsenic removal in La Yarada Los Palos District, Tacna, Peru, where arsenic concentrations reached up to 0.0417 mg/L, significantly surpassing the World Health Organization (WHO) limit of 10 µg/L (0.01 mg/L) for drinking water. The system integrates a natural sedimentation pretreatment stage in a geomembrane-lined reservoir, followed by oxidation with sodium hypochlorite, coagulation, and adsorption. Arsenic removal efficiencies ranged from 99.72% to 99.85%, reducing residual concentrations below WHO guidelines. Pretreatment significantly improved performance, reducing turbidity by up to 66.67% and TSS by up to 70.37%, optimizing subsequent treatment stages. Operationally, pretreatment decreased cleaning frequency from six to four cleanings per month, while backwashing energy consumption dropped by 33% (from 45.72 kWh to 30.48 kWh). The photovoltaic system leveraged the region’s high solar radiation, achieving an average daily generation of 20.31 kWh and an energy surplus of 33.08%. The system’s performance was evaluated within the context of existing arsenic removal technologies, demonstrating that the integration of natural sedimentation and renewable energy constitutes a viable operational alternative. Given the regulatory framework in Peru, where arsenic limits align with WHO standards, conventional water treatment systems are normatively and technically unfeasible under national legislation. Furthermore, La Yarada Los Palos District faces challenges due to its limited infrastructure for conventional electrification via power grid, as identified in national reports on rural electrification and gaps in access to basic services. Beyond its performance in the study area, the system’s modular design allows adaptation to diverse water sources with varying arsenic concentrations, turbidity levels, and other physicochemical characteristics. In remote regions with limited access to the power grid, such as the study site, photovoltaic energy provides a self-sustaining and replicable alternative, particularly in arid and semi-arid areas with high solar radiation. These conditions are not exclusive to Latin America but are also prevalent in remote regions of Africa, the Middle East, Asia, and Oceania, where groundwater arsenic contamination is a significant issue and renewable energy availability can enhance water treatment sustainability. These findings underscore the potential of using sustainable energy solutions to address water contamination challenges in remote areas. The modular and scalable design of this system enables its replication in regions with adverse hydrogeological conditions, integrating renewable energy and pretreatment strategies to enhance water treatment performance. The framework presented in this study offers a replicable and efficient approach for implementing eco-friendly water treatment systems in regions with similar environmental and resource constraints. Full article
Show Figures

Figure 1

22 pages, 30211 KiB  
Article
Changes in Groundwater Vulnerability Due to Land Reclamation in Mining Areas: An Assessment Using the DRASTIC Method
by Ewa Krogulec, Przemysław Bukowski, Katarzyna Niedbalska, Katarzyna Sawicka, Joanna Trzeciak and Sebastian Zabłocki
Water 2025, 17(5), 702; https://doi.org/10.3390/w17050702 - 28 Feb 2025
Viewed by 584
Abstract
Reclaiming land after mining activities and ensuring environmental protection are mandatory aspects of the decommissioning process for mining sites. Groundwater assessments, particularly those evaluating vulnerability to contamination using the DRASTIC rank method, are critical tools for guiding and controlling reclamation efforts. By analysing [...] Read more.
Reclaiming land after mining activities and ensuring environmental protection are mandatory aspects of the decommissioning process for mining sites. Groundwater assessments, particularly those evaluating vulnerability to contamination using the DRASTIC rank method, are critical tools for guiding and controlling reclamation efforts. By analysing changes in hydrogeological and environmental factors, as well as parameter classes through sensitivity analyses, the DRASTIC method can be optimised to predict the effects of reclamation. Results indicate that reclamation typically decreases groundwater vulnerability, as evidenced by a shallower water table, reduced recharge volume, groundwater flow within new waste rock formations, changes in soil types, lower slopes, and reduced conductivity. Vulnerability changes during reclamation vary spatially, including both decreases and localised increases. Reclamation planning should prioritise groundwater vulnerability assessments to ensure effective land use and environmental protection. Modifications to groundwater-monitoring networks, especially in areas prone to flooding and significant surface changes, are also essential for comprehensive reclamation management. Full article
Show Figures

Figure 1

45 pages, 21790 KiB  
Article
Remediation Geology and Process-Based Conceptual Site Models to Optimize Groundwater Remediation
by Richard Cramer, Beth L. Parker and James Mark Stapleton
Sustainability 2025, 17(5), 2027; https://doi.org/10.3390/su17052027 - 26 Feb 2025
Viewed by 1237
Abstract
The Environmental Consulting Industry in the United States has historically prioritized engineering approaches over geologic science in addressing groundwater contamination. This engineering-centric bias has often resulted in oversimplified conceptual site models (CSMs) that fail to capture subsurface heterogeneity, limiting the effectiveness of groundwater [...] Read more.
The Environmental Consulting Industry in the United States has historically prioritized engineering approaches over geologic science in addressing groundwater contamination. This engineering-centric bias has often resulted in oversimplified conceptual site models (CSMs) that fail to capture subsurface heterogeneity, limiting the effectiveness of groundwater remediation strategies. Recognizing the critical role of geology, the industry is increasingly adopting a Remediation Geology approach, which emphasizes the development of robust geologic models as the foundation for remediation programs. Geologic models optimize site lithologic data to define subsurface permeability architecture. The geologic model primarily serves as the structure to develop a Process-Based CSM, which is a holistic model that supports the entire remediation life cycle. A Process-Based CSM addresses the physical, chemical, and biological processes governing contaminant occurrence with the goal of modeling and predicting subsurface conditions for improved decision making with respect to monitoring programs and remediation design. Case studies highlight the transformative impact of Remediation Geology and Process-Based CSMs, demonstrating significant improvements in cleanup efficiency and resource optimization across diverse hydrogeologic settings. By addressing site complexities such as fine-grained units and fracture networks, Remediation Geology and Process-Based CSMs have proven effective for contaminants ranging from chlorinated solvents to per- and polyfluoroalkyl substances (PFASs) and radionuclides. Full article
Show Figures

Figure 1

Back to TopTop