Groundwater Impacts and Sustainability in Italian Quarrying: Evaluating the Effectiveness of Existing Technical Standards
Abstract
1. Introduction
2. Materials and Methods
- Location, referring to the geographic coordinates of the quarry site;
- Quarry Area, indicating the total surface extent of the quarry footprint or operational zone, measured in hectares;
- Hydrogeological complex of the quarry area, that is, a geological unit or multiple geological units characterized by a homogeneous degree and type of permeability and of a significant size for the scale of groundwater flow [31];
- Average yearly effective infiltration of the quarry area, derived from the “BIGBANG 4.0” model [32], which determines the water balance equation for the entire Italian territory, using 1 km2 grid cells and considering the annual average precipitation and evapotranspiration data from 1951 to 2019;
- Water table depth, representing the vertical distance from the quarry floor or natural ground surface to the saturated zone. This parameter was determined by integrating the ISPRA national borehole dataset [33], providing information on wells and boreholes deeper than 30 m, the Regional Water Protection Plans, detailing wells and springs, and available hydrogeological maps supporting the PRAEs or developed at a regional scale;
- Distance of each quarry from surface water bodies, derived from the national hydrographic network [34].
3. Results
3.1. The European, National, and Regional Regulatory Framework
3.1.1. EU Legislative Acts
3.1.2. National Regulations
3.1.3. Regional Regulations
- Reference reports: geological and hydrogeological studies of the excavation area to manage aquifers and watercourses, and to obtain the operating license;
- Monitoring wells and piezometers: protocols specifying placement, technical specifications, and hydrogeological monitoring methods, along with regulations for extraction below the water table and preventing interactions between shallow and deeper aquifers;
- Groundwater protection: runoff management to prevent contamination of water resources and to mitigate erosion and flood risks;
- Water runoff: regulations aimed at reducing water infiltration on the quarry site and preventing groundwater contamination;
- Water infiltration: protocols for groundwater and surface water monitoring plans near extraction sites;
- Monitoring plan: required assessment for the protection of water resources in karst and carbonate environments;
- Karst areas: required assessment for the protection of water resources in karst and carbonate environments;
- Reclamation: requirements for environmental reclamation ensuring morphological restoration, water resource protection, and erosion prevention.
3.2. The Panorama of Quarrying in Italy with Reference to Hydrogeological Conditions
4. Discussion
- determining the depth of the hydrogeological investigations in the design and exploitation phase of the quarry;
- defining the number and location of observation wells, as well as the frequency of sampling, for monitoring the quality and quantity of groundwater;
- establishing the strictness of the groundwater safeguarding systems during exploitation and post-exploitation;
- mandating flow and contaminant transport modeling to predict the most probable scenarios of the impact of the quarry on groundwater.
- the altitude of the quarry compared with the hydraulic head of the basal groundwater circulation and therefore the location of the associated springs;
- the groundwater drainage systems differentiate between diffuse flow in the fracture network and flow within the karst conduits;
- the unsaturated zone properties, which determine recharge through diffuse infiltration of precipitation, concentrated secondary infiltration of surface runoff through sinkholes and joints, and karst drainage system in the epikarst;
- the hydraulic heterogeneity of the aquifer due to triple porosity (matrix, fracture, and conduit), which determines the velocity and amount of groundwater transmitted and stored in the aquifer and consequently the high vulnerability to contamination and its persistence.
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Businesses in the Mining and Quarrying Sector. 2025. Available online: https://ec.europa.eu/eurostat/statistics-explained/SEPDF/cache/10085.pdf (accessed on 7 March 2025).
- Bendixen, M.; Iversen, L.L.; Best, J.; Franks, D.M.; Hackney, C.R.; Latrubesse, E.M.; Tusting, L.S. Sand, Gravel, and UN Sustainable Development Goals: Conflicts, Synergies, and Pathways Forward. One Earth 2021, 4, 1095–1111. [Google Scholar] [CrossRef]
- Schoderer, M.; Ott, M. Contested Water- and Miningscapes—Explaining the High Intensity of Water and Mining Conflicts in a Meta-Study. World Dev. 2022, 154, 105888. [Google Scholar] [CrossRef]
- Green, J.A.; Pavlish, J.A.; Merritt, R.G.; Leete, J.L. Hydraulic Impacts of Quarries and Gravel Pits; Legislative Commission on Minnesota Resources: Saint Paul, MN, USA, 2005; Available online: https://files.dnr.state.mn.us/publications/waters/hdraulic-impacts-of-quarries.pdf (accessed on 7 March 2025).
- Darwish, T.; Khater, C.; Jomaa, I.; Stehouwer, R.; Shaban, A.; Hamzé, M. Environmental impact of quarries on natural resources in Lebanon. Land Degrad. Dev. 2011, 22, 345–358. [Google Scholar] [CrossRef]
- Misra, A.K. Influence of stone quarries on groundwater quality and health in Fatehpur Sikri, India. Int. J. Sustain. Built Environ. 2013, 2, 73–88. [Google Scholar] [CrossRef]
- Newman, C.; Agioutantis, Z.; Jimenez Leon, G.B. Assessment of potential impacts to surface and subsurface water bodies due to longwall mining. Int. J. Min. Sci. Technol. 2017, 27, 57–64. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Addison, T.; Roe, A. Extractive Industries: The Management of Resources as a Driver of Sustainable Development; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Piccini, L.; Di Lorenzo, T.; Costagliola, P.; Galassi, D.M.P. Marble slurry’s impact on groundwater: The case study of the Apuan Alps karst aquifers. Water 2019, 11, 2462. [Google Scholar] [CrossRef]
- Dubois, C.; Goderniaux, P.; Deceuster, J.; Poulain, A.; Kaufmann, O. Hydrogeological characterization and modelling of weathered karst aquifers. Environ. Earth Sci. 2019, 78, 99. [Google Scholar] [CrossRef]
- Huang, W.; Sui, L.; Wang, Y.; Zhang, C.; Jiang, D.; Cai, X.; Yang, Z. Study of the mining and aquifer interactions in complex geological conditions and its management. Sci. Rep. 2023, 13, 9462. [Google Scholar] [CrossRef]
- Wolkersdorfer, C.; Mugova, E. Effects of Mining on Surface Water. In Encyclopedia of Inland Waters; Mehner, T., Tockner, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 170–188. [Google Scholar] [CrossRef]
- Piscopo, V.; Sbarbati, C.; Lotti, F.; Lana, L.; Petitta, M. Sustainability indicators of groundwater withdrawal in a heavily stressed system: The case of the Acque Albule Basin (Rome, Italy). Sustainability 2022, 14, 15248. [Google Scholar] [CrossRef]
- Piscopo, V.; Sbarbati, C.; Sebestyén, Z.; Varga, Z. Combining groundwater and game-theoretical models for determining the sustainable yield in a heavily stressed aquifer system. J. Hydrol. 2024, 633, 130965. [Google Scholar] [CrossRef]
- Tomiyama, S.; Igarashi, T. The potential threat of mine drainage to groundwater resources. Curr. Opin. Environ. Sci. Health 2022, 27, 100347. [Google Scholar] [CrossRef]
- Levy, M.A. Is the environment a national security issue? Int. Secur. 1995, 20, 35–62. [Google Scholar] [CrossRef]
- Anderson, B.; Berry, D.; Shields, D. Sustainable Development and Its Influence on Mining Operations on Federal Lands: A Conversation in Plain Language; U.S. Bureau of Land Management: Washington, DC, USA, 2002; Available online: https://archive.org/details/sustainabledevelunit (accessed on 7 March 2025).
- Sigam, C.; Garcia, L. Extractive Industries: Optimizing Value Retention in Host Countries; UNCTAD: Geneva, Switzerland, 2012; Available online: https://unctad.org/system/files/official-document/suc2012d1_en.pdf (accessed on 7 March 2025).
- Admiraal, R.; Sequeira, A.R.; McHenry, M.P.; Doepel, D. Maximizing the impact of mining investment in water infrastructure for local communities. Extr. Ind. Soc. 2017, 4, 240–250. [Google Scholar] [CrossRef]
- De Sa, P. Mining and sustainable development: Territorializing the mining industry. Miner. Econ. 2019, 32, 131–143. [Google Scholar] [CrossRef]
- UNEP. Mineral Resource Governance in the 21st Century: Gearing Extractive Industries Towards Sustainable Development; United Nations: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Monteiro, N.B.R.; Bezerra, A.K.L.; Moita Neto, J.M.; Silva, E.A.d. Mining Law: In Search of Sustainable Mining. Sustainability 2021, 13, 867. [Google Scholar] [CrossRef]
- ISTAT. Attività Estrattive da Cave e Miniere. Anni 2015, 2016; Istituto Nazionale di Statistica: Rome, Italy, 2019; Available online: https://www.istat.it/it/files/2019/01/Report_Attivit%C3%A0_estrattive_2015-2016.pdf (accessed on 7 March 2025).
- Auci, S.; Vignani, D. Mines and quarries production: A driver analysis of withdrawals in Italy. Resour. Policy 2020, 67, 101657. [Google Scholar] [CrossRef]
- Paoletti, M.; Piscopo, V.; Sbarbati, C.; Scarelli, A. Categorization of the potential impact of Italian quarries on water resources through a multi-criteria decision aiding-based model. Sustainability 2024, 16, 2804. [Google Scholar] [CrossRef]
- Lee, C.; Asbjörnsson, G.; Hulthén, E.; Evertsson, M. The Environmental Impact of Extraction: A Holistic Review of the Quarry Lifecycle. Clean. Environ. Syst. 2024, 13, 100201. [Google Scholar] [CrossRef]
- ISTAT. Attività Estrattive da Cave e Miniere. Anno 2018; Istituto Nazionale di Statistica: Rome, Italy, 2020; Available online: https://www.istat.it/it/archivio/246015 (accessed on 7 March 2025).
- Copernicus Land Monitoring Service. CORINE Land Cover 2018; EEA: Copenhagen, Denmark, 2020; Available online: https://land.copernicus.eu/en/products/corine-land-cover (accessed on 7 March 2025).
- ISPRA. Carta Uso del Suolo 2022; Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2023; Available online: https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/carta-di-copertura-del-suolo/uso-del-suolo-2022 (accessed on 7 March 2025).
- Gafà, R.M.; Martarelli, L.; Monti, G.; Silvi, A.; La Vigna, F. Preliminary elaboration of a permeability map of Italy starting from the information of the lithological map of Italy. Acque Sotter. Ital. J. Groundw. 2019, 8, 75–77. [Google Scholar] [CrossRef]
- Braca, G.; Bussettini, M.; Lastoria, B.; Mariani, S.; Piva, F. Il Bilancio Idrologico GIS Based a Scala Nazionale su Griglia Regolare–BIGBANG: Metodologia e Stime; ISPRA: Rome, Italy, 2021. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/il-bilancio-idrologico-gis-based-a-scala-nazionale-su-griglia-regolare-bigbang (accessed on 8 March 2025).
- ISPRA. Dati Geognostici e Geofisici–Archivio Indagini nel Sottosuolo (Legge 464/84); Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2025. Available online: https://www.isprambiente.gov.it/it/banche-dati/banche-dati-folder/suolo-e-territorio/dati-geognostici-e-geofisici (accessed on 7 March 2025).
- Ministero Dell’ambiente e Della Sicurezza Energetica (MASE). Geoportale Nazionale. Reticolo Idrografico. Available online: http://wms.pcn.minambiente.it/ogc?map=/ms_ogc/wfs/Aste_fluviali.map (accessed on 7 March 2025).
- European Parliament and Council. Directive 2000/60/EC. 2000. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj/eng (accessed on 7 March 2025).
- European Parliament and Council. Directive 2006/21/EC. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006L0021 (accessed on 7 March 2025).
- European Parliament and Council. Directive 2006/118/EC. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX%3A32006L0118 (accessed on 7 March 2025).
- European Parliament and Council. Directive 2001/42/EC. 2001. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1714957499848&uri=CELEX%3A32001L0042 (accessed on 7 March 2025).
- European Parliament and Council. Directive 2011/92/EU. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32011L0092 (accessed on 7 March 2025).
- European Parliament. Resolution on Access to Water as a Human Right–The External Dimension. 2022. Available online: https://www.europarl.europa.eu/doceo/document/TA-9-2022-0346_EN.html (accessed on 7 March 2025).
- Ministero delle Imprese e del Made in Italy (MIMIT). Regio Decreto 29 luglio 1927, n. 1443 “Norme di Carattere Legislativo per Disciplinare la Ricerca e la Coltivazione delle Miniere nel Regno”. Available online: https://www.mimit.gov.it/images/stories/energia/1443rd27.pdf (accessed on 8 March 2025).
- Decreto del Presidente Della Repubblica 9 Aprile 1959, n. 128. Norme di Polizia delle Miniere e delle Cave. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:presidente.repubblica:decreto:1959-04-09;128 (accessed on 8 March 2025).
- Decreto del Presidente della Repubblica 14 Gennaio 1972, n. 2. Trasferimento alle Regioni a Statuto Ordinario delle Funzioni Amministrative Statali in Materia di Acque Minerali e Termali, di Cave e Torbiere e di Artigianato e del Relativo Personale. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:presidente.repubblica:decreto:1972-01-14;2 (accessed on 8 March 2025).
- Decreto Legislativo 3 Aprile 2006, n. 152. Norme in Materia Ambientale. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2006-04-03;152 (accessed on 8 March 2025).
- Decreto Legislativo 30 Maggio 2008, n. 117. Attuazione Della Direttiva 2006/21/CE Relativa alla Gestione dei Rifiuti delle Industrie Estrattive e che Modifica la Direttiva 2004/35/CE. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2008-05-30;117 (accessed on 8 March 2025).
- Decreto Legislativo 16 marzo 2009, n. 30. Attuazione Della Direttiva 2006/118/CE, Relativa alla Protezione delle Acque Sotterranee Dall’inquinamento e dal Deterioramento. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2009-03-16;30 (accessed on 8 March 2025).
- ARPAT. Le Componenti Suolo, Sottosuolo e Risorsa Idrica Nella Valutazione Ambientale dell’attività Estrattiva; Agenzia Regionale per la Protezione Ambientale: Florence, Italy, 2010; Available online: https://www.arpat.toscana.it/documentazione/catalogo-pubblicazioni-arpat/le-componenti-suolo-sottosuolo-e-risorsa-idrica-nella-valutazione-ambientale-dell2019attivita-estrattiva (accessed on 7 March 2025).
- Legambiente. Rapporto Cave 2021; Legambiente: Rome, Italy, 2021; Available online: https://www.legambiente.it/rapporti-e-osservatori/rapporto-cave-2021/ (accessed on 8 March 2025).
- Beretta, G.P.; La Vigna, F.; Camera, C.A.S.; Gafà, R.M.; Citrini, A.; Martarelli, L.; Monti, G.M.; Roma, M.; Silvi, A.; Vitale, V.; et al. Carta Idrogeologica d’Italia alla Scala 1:500.000–4 Fogli, Note Integrative e Tabelle Online–Hydrogeological Map of Italy 1:500,000 Scale. 4 Sheets, Supplementary Notes and Online Tables; ISPRA-Dipartimento per il Servizio Geologico d’Italia-Geological Survey of Italy: Roma, Italy, 2025. Available online: https://www.isprambiente.gov.it/it/attivita/geologia/carta-idrogeologica-italia (accessed on 20 June 2025).
- Zini, L.; Calligaris, C.; Treu, F.; Iervolino, D.; Lippi, F. Risorse Idriche Sotterranee del Friuli Venezia Giulia: Sostenibilità Dell’attuale utilizzo; EUT Edizioni Università di Trieste: Trieste, Italy, 2011. [Google Scholar]
- Civita, M.V. L’assetto idrogeologico del territorio italiano: Risorse e problematiche. Quad. Soc. Geol. Ital. 2008, 3, 34. [Google Scholar]
- Ministero dell’Ambiente e della Sicurezza Energetica (MASE). Linee Guida per la Predisposizione del Progetto di Monitoraggio Ambientale (PMA); Ministero Dell’ambiente e Della Sicurezza Energetica: Rome, Italy, 2014. Available online: https://va.mite.gov.it/it-it/ps/datiestrumenti/specifichetecnicheelineeguida (accessed on 8 March 2025).
- Streetly, M. Dewatering and environmental monitoring for the extractive industry. Q. J. Eng. Geol. 1998, 31, 125–127. [Google Scholar] [CrossRef]
- Parise, M. A present risk from past activities: Sinkhole occurrence above underground quarries. Carbonates Evaporites 2012, 27, 109–118. [Google Scholar] [CrossRef]
- Bozan, C.; Wallis, I.; Cook, P.G.; Dogramaci, S. Groundwater-level recovery following closure of open-pit mines. Hydrogeol. J. 2022, 30, 1819–1832. [Google Scholar] [CrossRef]
- European Commission. Report on the Application and Effectiveness of the EIA Directive (Directive 85/337/EEC); Brussels, Belgium, 2003. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52003DC0334 (accessed on 2 March 2025).
- European Commission. Report on the Application and Effectiveness of the EIA Directive (Directive 85/337/EEC, as Amended); Brussels, Belgium, 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52009DC0378 (accessed on 2 March 2025).
- OECD. OECD Economic Surveys: Italy 2011; OECD Publishing: Paris, France, 2011; Available online: https://www.oecd.org/en/publications/oecd-economic-surveys-italy-2011_eco_surveys-ita-2011-en.html (accessed on 10 March 2025).
- Nilsson, M.; Zamparutti, T.; Petersen, J.E.; Nykvist, B.; Rudberg, P.; McGuinn, J. Understanding policy coherence: Analytical framework and examples of sector–environment policy interactions in the EU. Environ. Policy Gov. 2012, 22, 395–423. [Google Scholar] [CrossRef]
- Narcisi, R.; Taddia, G.; Gizzi, M. Distribution of quarries in the Piedmont region: The regional plan of mining activities (PRAE) as a tool for mining activities regulation and characterisation. Environ. Earth Sci. 2025, 84, 101. [Google Scholar] [CrossRef]
- Parliament of the United Kingdom. Water Resources Act 1991. 1991. Available online: https://www.legislation.gov.uk/ukpga/1991/57/contents (accessed on 10 March 2025).
- Bundeministerium der Justiz. Wasserhaushaltsgesetz (WHG). 2010. Available online: https://www.gesetze-im-internet.de/whg_2009/ (accessed on 10 March 2025).
- Celico, P. Idrogeologia dei Massicci Carbonatici, delle Piane Quaternarie e delle Aree Vulcaniche Dell’italia Centro-Meridionale; Quaderni della Cassa per il Mezzogiorno: Rome, Italy, 1983. [Google Scholar]
- Francani, V.; Gattinoni, P. Hydrogeological aspects of Lombard Prealps karstification. Ital. J. Eng. Geol. Environ. 2009, 1, 117–135. [Google Scholar] [CrossRef]
- Kuniansky, E.L.; Taylor, C.J.; Paillet, F. Introduction to Karst Aquifers; Groundwater Project: Guelph, ON, Canada, 2022. [Google Scholar] [CrossRef]
- White, W.B.; Culver, D.C.; Herman, J.S. Karst lands: The dissolution of carbonate rock produces unique landscapes and poses significant hydrological and environmental concerns. Am. Sci. 1995, 83, 450–459. [Google Scholar]
- White, W.B. Karst hydrology: Recent developments and open questions. Eng. Geol. 2002, 65, 85–105. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: New York, NY, USA, 2007; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118684986 (accessed on 11 March 2025).
EU Directive | Main Contents |
---|---|
Directive 2000/60/EC | Comprehensive framework for the protection of all water bodies, including inland surface waters, transitional waters, coastal areas, and groundwater. |
Directive 2001/42/EC | The directive applies to a wide range of public plans and programs; however, it does not refer to policies that constitute the highest level of strategic planning and does not provide a precise list of plans/programs. |
Directive 2004/35/EC | Directive 2004/35/EC establishes a framework to prevent and address environmental damage across the European Union, focusing on minimizing the negative impacts on water, air, soil, fauna, flora, and landscapes, as well as managing risks to human health. |
Directive 2006/21/EC | Directive 2006/21/EC ensures safe management of waste from extractive industries to protect human health and the environment. It covers waste extraction and handling. |
Directive 2006/118/EC | This directive establishes specific measures to prevent and control groundwater pollution under Directive 2000/60/EC. |
Directive 2011/92/EU | The Environmental Impact Assessment (EIA) Directive aims to protect the environment by integrating environmental considerations in the planning of public and private projects. |
European Parliament Resolution (5 October 2022) | The resolution reaffirms the recognition of access to safe drinking water and sanitation services as fundamental human rights, emphasizing their complementary nature and making such recognition a key step toward promoting greater social and environmental justice. |
Region/Province | Source | Reference Reports | Monitoring Well Piezometer | Groundwater Protection | Water Runoff | Water Infiltration | Monitoring Plan | Karst Areas | Reclamation |
---|---|---|---|---|---|---|---|---|---|
Abruzzo | PRAE | X | X | X | X | X | |||
Basilicata | L.R. | X | X | ||||||
Bolzano (Prov) | L.P. | X | |||||||
Calabria | L.R. | X | |||||||
Campania | PRAE | X | X | X | X | X | |||
Emilia-Romagna | PPAE Bo | X | X | X | X | X | X | ||
PPAE Ra | X | X | X | X | X | ||||
PPAE Pr | X | X | X | X | X | X | X | ||
Friuli-Venezia Giulia | PRAE draft | X | X | X | X | X | X | X | |
Lazio | PRAE | X | X | X | X | X | X | ||
Liguria | PRAE | X | X | X | X | ||||
Lombardia | PRAE | X | X | X | X | ||||
Marche | PRAE | X | X | X | |||||
Molise | L.R. | X | X | ||||||
Piemonte | PRAE | X | X | X | X | X | |||
Puglia | PRAE | X | X | X | |||||
Sardegna | L.R. | X | |||||||
Sicilia | PRAE | X | X | X | X | ||||
Toscana | PRAE | X | X | X | X | X | X | X | |
Trento (Prov) | PPAE | X | X | X | |||||
Umbria | PRAE | X | X | X | X | ||||
Valle D’aosta | PRAE | X | |||||||
Veneto | PRAE | X | X | X | X |
Element | Monitoring Points | Parameters to Monitor | Methods | Period |
---|---|---|---|---|
Groundwater |
|
|
|
|
Extraction in Aquifer |
|
|
|
|
Near Watercourses |
|
|
|
|
Surface Water |
|
|
|
|
Hydrogeological Complex | Number | % | Mean | Std | Min | 25% | 50% | 75% | Max |
---|---|---|---|---|---|---|---|---|---|
Coarse alluvial | 1843 | 45.58 | 10.06 | 16.48 | 0.049 | 2.399 | 4.905 | 10.35 | 297.8 |
Crystalline | 234 | 5.79 | 17.58 | 73.08 | 0.193 | 2.31 | 4.78 | 11.78 | 1076.3 |
Dolostone | 98 | 2.42 | 15.15 | 22.45 | 0.607 | 3.34 | 7.797 | 19.67 | 174.49 |
Evaporitic | 13 | 0.32 | 7.99 | 5.47 | 1.882 | 4.402 | 5.923 | 9.83 | 19.15 |
Flysch | 276 | 6.83 | 10.31 | 17.47 | 0.245 | 2.03 | 4.732 | 10.86 | 144.58 |
Limestone | 983 | 24.31 | 14.9 | 29.31 | 0.128 | 2.33 | 6.366 | 16.33 | 436.99 |
Medium/fine alluvial | 35 | 0.87 | 13.86 | 24.17 | 0.775 | 2.94 | 5.343 | 9.17 | 124.06 |
Pelitic | 71 | 1.76 | 14.94 | 22.13 | 0.494 | 1.8415 | 6.697 | 21.58 | 123.71 |
Pyroclastic | 103 | 2.55 | 17.97 | 20.58 | 0.495 | 3.6985 | 9.198 | 29.19 | 116.52 |
Sandstone/Conglomerate | 312 | 7.72 | 11.81 | 17.27 | 0.126 | 2.3065 | 4.577 | 12.911 | 108.26 |
Volcanic | 75 | 1.86 | 16.68 | 29.06 | 0.71 | 2.446 | 5.665 | 19.07 | 203.06 |
Total | 4043 | 100 | 12.38 | 27.26 | 0.049 | 2.369 | 5.359 | 12.97 | 1076.31 |
Hydrogeological Complex | Number | <2 | 2–8 | 8–20 | 20–40 | >40 |
---|---|---|---|---|---|---|
Coarse alluvial | 1843 | 488 | 280 | 277 | 437 | 361 |
Crystalline rocks | 234 | 21 | 6 | 9 | 57 | 141 |
Dolostone | 98 | 5 | 1 | 10 | 25 | 57 |
Evaporitic | 13 | 0 | 0 | 1 | 6 | 6 |
Flysch | 276 | 26 | 4 | 26 | 105 | 115 |
Limestone | 983 | 41 | 50 | 95 | 250 | 547 |
Medium/fine alluvial | 35 | 17 | 8 | 5 | 3 | 2 |
Pelitic | 71 | 11 | 4 | 7 | 22 | 27 |
Pyroclastic | 103 | 9 | 4 | 15 | 24 | 51 |
Sandstone/Conglomerate | 312 | 22 | 21 | 53 | 86 | 130 |
Volcanic | 75 | 6 | 5 | 7 | 30 | 27 |
Total | 4043 | 646 | 383 | 505 | 1045 | 1464 |
Hydrogeological Complex | Number | <50 | 50–100 | 100–300 | 300–500 | >500 |
---|---|---|---|---|---|---|
Coarse alluvial | 1843 | 598 | 122 | 317 | 151 | 655 |
Crystalline rocks | 234 | 30 | 9 | 28 | 17 | 150 |
Dolostone | 98 | 10 | 3 | 13 | 3 | 69 |
Evaporitic | 13 | 0 | 1 | 3 | 0 | 9 |
Flysch | 276 | 43 | 18 | 30 | 19 | 166 |
Limestone | 983 | 34 | 16 | 59 | 41 | 833 |
Medium/fine alluvial | 35 | 10 | 3 | 8 | 1 | 13 |
Pelitic | 71 | 15 | 2 | 13 | 7 | 34 |
Pyroclastitic | 103 | 7 | 3 | 6 | 6 | 81 |
Sandstone/Conglomerate | 312 | 29 | 8 | 32 | 29 | 214 |
Volcanic | 75 | 2 | 0 | 5 | 2 | 66 |
Total | 4043 | 778 | 185 | 514 | 276 | 2290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoletti, M. Groundwater Impacts and Sustainability in Italian Quarrying: Evaluating the Effectiveness of Existing Technical Standards. Water 2025, 17, 2044. https://doi.org/10.3390/w17142044
Paoletti M. Groundwater Impacts and Sustainability in Italian Quarrying: Evaluating the Effectiveness of Existing Technical Standards. Water. 2025; 17(14):2044. https://doi.org/10.3390/w17142044
Chicago/Turabian StylePaoletti, Matteo. 2025. "Groundwater Impacts and Sustainability in Italian Quarrying: Evaluating the Effectiveness of Existing Technical Standards" Water 17, no. 14: 2044. https://doi.org/10.3390/w17142044
APA StylePaoletti, M. (2025). Groundwater Impacts and Sustainability in Italian Quarrying: Evaluating the Effectiveness of Existing Technical Standards. Water, 17(14), 2044. https://doi.org/10.3390/w17142044