Assessing the Relationship Between Groundwater Availability, Access, and Contamination Risk in Arizona’s Drinking Water Sources
Abstract
:1. Introduction
1.1. Groundwater Sustainability Through a Trivalent Framework
1.2. Background—Groundwater Dynamics Through an Equity Lens
1.3. Research Questions and Hypothesis
2. Material and Methods
2.1. Study Area
2.2. Data Input and Sources
2.3. Measures for Assessing Groundwater Availability, Access, and Quality
2.4. Statistical and Spatiotemporal Analysis
3. Results
3.1. Temporal Patterns in Rates of Groundwater Level Change
3.2. Spatial Distribution of Groundwater Level Changes
3.3. Groundwater Access and Pollution
3.3.1. Groundwater Level Change and Contaminant Detection
3.3.2. Temporal Changes in Groundwater Availability and MCL Exceedance
3.4. Temporal Associations: Groundwater Level Change and Arsenic MCL Exceedance
3.5. Temporal Relationship Between Groundwater Availability and Predictors
3.6. Main and Interaction Effects of Predictors on Groundwater Decline
3.6.1. Water Quality Variables
3.6.2. Water Policy
3.6.3. Service Area Socioeconomic Characteristics
3.6.4. Groundwater Sustainability: Interaction Dynamics and Asymmetrical Drivers
4. Discussion
4.1. Spatial and Temporal Shifts in Groundwater Availability
4.2. Water Quality
4.3. Water Access
4.3.1. Policy
4.3.2. Community Socioeconomic Characteristics
4.3.3. Implications of Interactions and Asymmetrical Drivers in Groundwater Dynamics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model: 20-Year GWL and Nitrate | Model: 10-Year GWL and Nitrate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Estimate | Std Error | Statistic | p Value | Log Odds | Estimate | Std Error | Statistic | p Value | Log Odds |
Water Quality | ||||||||||
Nitrate (NO3) | 0.228 | 0.012 | 18.79 | <0.001 | 1.26 | 0.105 | 0.007 | 15.499 | <0.001 | 1.11 |
Race (%) | ||||||||||
Black | 0.698 | 0.03 | 23.5 | <0.001 | 2.01 | 0.237 | 0.017 | 14.25 | <0.001 | 1.27 |
Hispanic/Latino | −0.085 | 0.004 | −19.36 | <0.001 | 0.92 | −0.054 | 0.002 | −21.931 | <0.001 | 0.95 |
Native American | −0.003 | 0.009 | −0.285 | 0.776 | 1.00 | −0.097 | 0.005 | −18.844 | <0.001 | 0.91 |
Gender and Age | ||||||||||
Female | 0.122 | 0.01 | 12.81 | <0.001 | 1.13 | 0.088 | 0.005 | 16.453 | <0.001 | 1.09 |
Age < 5 | 0.032 | 0.005 | 6.445 | <0.001 | 1.03 | 0.021 | 0.003 | 7.384 | <0.001 | 1.02 |
Age 65+ | −0.009 | 0.001 | −14.88 | <0.001 | 0.99 | −0.006 | 0.000 | −17.777 | <0.001 | 0.99 |
Housing Type (%) | ||||||||||
Rural | 0.047 | 0.002 | 19.14 | <0.001 | 1.05 | 0.001 | 0.001 | 0.426 | 0.67 | 1.00 |
Married w/Children | −0.100 | 0.009 | −10.83 | <0.001 | 0.91 | −0.072 | 0.005 | −13.910 | <0.001 | 0.93 |
Family Households | 0.165 | 0.009 | 18.25 | <0.001 | 1.18 | 0.090 | 0.005 | 17.691 | <0.001 | 1.09 |
Migrant Workers | −0.254 | 0.049 | −5.202 | <0.001 | 0.78 | −0.356 | 0.027 | −13.010 | <0.001 | 0.70 |
Rental Units | −0.385 | 0.025 | −15.15 | <0.001 | 0.68 | −0.102 | 0.014 | −7.174 | <0.001 | 0.90 |
Fully Owned Homes | −0.206 | 0.006 | −35 | <0.001 | 0.81 | −0.076 | 0.003 | −23.011 | <0.001 | 0.93 |
Renter−Occupied | −0.154 | 0.006 | −24.29 | <0.001 | 0.86 | −0.074 | 0.004 | −20.765 | <0.001 | 0.93 |
Group Housing (%) | ||||||||||
Seasonal Housing | −0.088 | 0.006 | −15.16 | <0.001 | 0.92 | −0.011 | 0.003 | −3.243 | 0.001 | 0.99 |
Non−Institutional Housing | 0.008 | 0.002 | 3.436 | 0.001 | 1.01 | −0.004 | 0.001 | −2.951 | 0.003 | 1.00 |
Correctional Facilities | −0.061 | 0.004 | −15.65 | <0.001 | 0.94 | −0.055 | 0.002 | −25.074 | <0.001 | 0.95 |
Juvenile Facilities | −0.042 | 0.006 | −6.883 | <0.001 | 0.96 | −0.012 | 0.003 | −3.660 | <0.001 | 0.99 |
Nursing Homes | −0.054 | 0.003 | −16.15 | <0.001 | 0.95 | −0.011 | 0.002 | −5.988 | <0.001 | 0.99 |
Student Housing | −0.188 | 0.005 | −35.87 | <0.001 | 0.83 | −0.050 | 0.003 | −16.865 | <0.001 | 0.95 |
Military Housing | −0.013 | 0.01 | −1.261 | 0.207 | 0.99 | 0.004 | 0.006 | 0.638 | 0.524 | 1.00 |
Variable Interaction Terms | ||||||||||
Rural × BIPOC (%) | 0.000 | 0.000 | −8.258 | <0.001 | 1.00 | 0.000 | 0.000 | 0.496 | 0.62 | 1.00 |
Karst × Native American (%) | 0.070 | 0.016 | 4.408 | <0.001 | 1.07 | 0.106 | 0.009 | 11.796 | <0.001 | 1.11 |
Tribal Primacy × Karst Aquifer | −3.898 | 1.436 | −2.714 | 0.007 | 0.02 | −6.644 | 0.806 | −8.242 | <0.001 | 0.00 |
NDA × Rural (%) | −0.056 | 0.003 | −16.28 | <0.001 | 0.95 | −0.036 | 0.002 | −18.573 | <0.001 | 0.96 |
Model: 20-Year GWL and Arsenic | Model: 10-Year GWL and Arsenic | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Estimate | Std Error | Statistic | p Value | Log Odds | Estimate | Std Error | Statistic | p Value | Log Odds |
Water Quality | ||||||||||
Arsenic (As) | 91.637 | 6.129 | 14.951 | <0.001 | 6E+39 | 38.494 | 3.942 | 9.764 | <0.001 | 5E+16 |
Race (%) | ||||||||||
Black | 0.63 | 0.039 | 16.041 | <0.001 | 1.88 | 0.309 | 0.025 | 12.232 | <0.001 | 1.36 |
Hispanic/Latino | −0.085 | 0.005 | −16.05 | <0.001 | 0.92 | −0.029 | 0.003 | −8.399 | <0.001 | 0.97 |
Native American | −0.064 | 0.006 | −11.37 | <0.001 | 0.94 | −0.031 | 0.004 | −8.565 | <0.001 | 0.97 |
Gender and Age | ||||||||||
Female | 0.239 | 0.011 | 20.869 | <0.001 | 1.27 | 0.097 | 0.007 | 13.206 | <0.001 | 1.10 |
Age < 5 | 0.054 | 0.01 | 5.309 | <0.001 | 1.06 | 0.009 | 0.006 | 1.314 | 0.189 | 1.01 |
Age 65+ | −0.010 | 0.001 | −18.02 | <0.001 | 0.99 | −0.006 | 0.000 | −15.27 | <0.001 | 0.99 |
Housing Type (%) | ||||||||||
Rural | −0.015 | 0.003 | −4.814 | <0.001 | 0.98 | −0.02 | 0.002 | −9.684 | <0.001 | 0.98 |
Married w/Children | −0.216 | 0.01 | −21.34 | <0.001 | 0.81 | −0.119 | 0.007 | −18.363 | <0.001 | 0.89 |
Family Households | 0.172 | 0.01 | 17.111 | <0.001 | 1.19 | 0.093 | 0.006 | 14.47 | <0.001 | 1.10 |
Migrant Workers | −0.543 | 0.057 | −9.46 | <0.001 | 0.58 | −0.722 | 0.037 | −19.559 | <0.001 | 0.49 |
Rental Units | −0.318 | 0.033 | −9.76 | <0.001 | 0.73 | −0.173 | 0.021 | −8.253 | <0.001 | 0.84 |
Fully Owned Homes | −0.169 | 0.007 | −23.03 | <0.001 | 0.84 | −0.081 | 0.005 | −17.14 | <0.001 | 0.92 |
Renter−Occupied | −0.240 | 0.008 | −30.45 | <0.001 | 0.79 | −0.132 | 0.005 | −26.09 | <0.001 | 0.88 |
Group Housing (%) | ||||||||||
Seasonal Housing | −0.161 | 0.008 | −21.02 | <0.001 | 0.85 | −0.056 | 0.005 | −11.35 | <0.001 | 0.95 |
Non−Institutional Housing | −0.001 | 0.003 | −0.349 | 0.727 | 1.00 | −0.007 | 0.002 | −4.095 | <0.001 | 0.99 |
Correctional Facilities | −0.075 | 0.005 | −16.25 | <0.001 | 0.93 | −0.031 | 0.003 | −10.55 | <0.001 | 0.97 |
Juvenile Facilities | −0.012 | 0.008 | −1.399 | 0.162 | 0.99 | 0.019 | 0.005 | 3.493 | <0.001 | 1.02 |
Nursing Homes | −0.002 | 0.004 | −0.564 | 0.573 | 1.00 | 0.001 | 0.003 | 0.19 | 0.849 | 1.00 |
Student Housing | −0.056 | 0.007 | −7.778 | <0.001 | 0.95 | −0.014 | 0.005 | −3.054 | 0.002 | 0.99 |
Military Housing | 0.119 | 0.013 | 8.794 | <0.001 | 1.13 | 0.066 | 0.009 | 7.614 | <0.001 | 1.07 |
Variable Interaction Terms | ||||||||||
Rural × BIPOC (%) | 0.000 | 0.000 | −7.578 | <0.001 | 1.00 | 0.000 | 0.000 | −6.932 | <0.001 | 1.00 |
Karst × Native American (%) | −0.014 | 0.008 | −1.803 | 0.071 | 0.99 | 0.040 | 0.005 | 7.968 | <0.001 | 1.04 |
Tribal Primacy × Karst Aquifer | −6.087 | 0.582 | −10.46 | <0.001 | 0.00 | −1.568 | 0.374 | −4.188 | <0.001 | 0.21 |
NDA × Rural (%) | 0.013 | 0.004 | 3.263 | 0.001 | 1.01 | −0.001 | 0.003 | −0.529 | 0.597 | 1.00 |
References
- Cid-Escobar, D.; Folch, A.; Ferrer, N.; Katuva, J.; Sanchez-Vila, X. An assessment tool to improve rural groundwater access: Integrating hydrogeological modelling with socio-technical factors. Sci. Total Environ. 2024, 912, 168864. [Google Scholar] [CrossRef]
- Ciampi, L.; Plumpton, H.J.; Osbahr, H.; Cornforth, R.J.; Petty, C. Building resilience through improving groundwater management for sustainable agricultural intensification in African Sahel. CABI Agric. Biosci. 2022, 3, 63. [Google Scholar] [CrossRef]
- Schaider, L.A.; Swetschinski, L.; Campbell, C.; Rudel, R.A. Environmental justice and drinking water quality: Are there socioeconomic disparities in nitrate levels in U.S. drinking water? Environ. Health 2019, 18, 3. [Google Scholar] [CrossRef]
- Allaire, M.; Wu, H.; Lall, U. National trends in drinking water quality violations. Proc. Natl. Acad. Sci. USA 2018, 115, 2078–2083. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.; Balazs, C.; Bangia, K.; Depsky, N.; Renteria, A.; Morello-Frosch, R.; Cushing, L.J. Inequities in Drinking Water Quality Among Domestic Well Communities and Community Water Systems, California, 2011–2019. Am. J. Public Health 2022, 112, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Thiros, S.A.; Paul, A.P.; Bexfield, L.M.; Anning, D.W. Water Quality in Basin-Fill Aquifers of the Southwestern United States: Arizona, California, Colorado, Nevada, New Mexico, and Utah, 1993–2009. U.S. Geol. Surv. Circ. 1358 2014. [Google Scholar] [CrossRef]
- Switzer, D.; Teodoro, M.P. The Color of Drinking Water. J. (Am. Water Work. Assoc.) 2017, 109, 40–45. [Google Scholar] [CrossRef]
- Vanderslice, J. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations. Am. J. Public Health 2011, 101, S109–S114. [Google Scholar] [CrossRef]
- Balazs, C.L.; Ray, I. The drinking water disparities framework: On the origins and persistence of inequities in exposure. Am. J. Public Health 2014, 104, 603–611. [Google Scholar] [CrossRef]
- Spaur, M.; Lombard, M.A.; Ayotte, J.D.; Harvey, D.E.; Bostick, B.C.; Chillrud, S.N.; Navas-Acien, A.; Nigra, A.E. Associations between private well water and community water supply arsenic concentrations in the conterminous United States. Sci. Total Environ. 2021, 787, 147555. [Google Scholar] [CrossRef]
- Nigra, A.E.; Chen, Q.; Chillrud, S.N.; Wang, L.; Harvey, D.; Mailloux, B.; Factor-Litvak, P.; Navas-Acien, A. Inequalities in Public Water Arsenic Concentrations in Counties and Community Water Systems across the United States, 2006–2011. Environ. Health Perspect. 2020, 128, 127001. [Google Scholar] [CrossRef] [PubMed]
- Delpla, I.; Benmarhnia, T.; Lebel, A.; Levallois, P.; Rodriguez, M.J. Investigating social inequalities in exposure to drinking water contaminants in rural areas. Environ. Pollut. 2015, 207, 88–96. [Google Scholar]
- Balazs, C.L.; Morello-Frosch, R.; Hubbard, A.E.; Ray, I. Environmental justice implications of arsenic contamination in California’s San Joaquin Valley: A cross-sectional, cluster-design examining exposure and compliance in community drinking water systems. Environ. Health Glob. Access Sci. Sour. 2012, 11, 84. [Google Scholar] [CrossRef]
- Balazs, C.; Morello-Frosch, R.; Hubbard, A.; Ray, I. Social disparities in nitrate-contaminated drinking water in California’s San Joaquin Valley. Environ. Health Perspect. 2011, 119, 1272–1278. [Google Scholar] [CrossRef]
- Nigra, A.E.; Navas-Acien, A. Arsenic in US correctional facility drinking water, 2006–2011. Environ. Res. 2020, 188, 109768. [Google Scholar] [CrossRef] [PubMed]
- Hoover, J.; Gonzales, M.; Shuey, C.; Barney, Y.; Lewis, J. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA. Expos. Health 2017, 9, 113–124. [Google Scholar] [CrossRef]
- Foster, S.A.; Pennino, M.J.; Compton, J.E.; Leibowitz, S.G.; Kile, M.L. Arsenic Drinking Water Violations Decreased across the United States Following Revision of the Maximum Contaminant Level. Environ. Sci. Technol. 2019, 53, 11478–11485. [Google Scholar] [CrossRef] [PubMed]
- Gerlak, A.K.; House-Peters, L.; Varady, R.G.; Albrecht, T.; Zúñiga-Terán, A.; De Grenade, R.R.; Cook, C.; Scott, C.A. Water security: A review of place-based research. Environ. Sci. Policy 2018, 82, 79–89. [Google Scholar] [CrossRef]
- Scott, C.A.; Meza, F.J.; Varady, R.G.; Tiessen, H.; McEvoy, J.; Garfin, G.M.; Wilder, M.; Farfán, L.M.; Pablos, N.P.; Montaña, E. Water Security and Adaptive Management in the Arid Americas. Ann. Assoc. Am. Geogr. 2013, 103, 280–289. [Google Scholar] [CrossRef]
- Aslam, R.A.; Shrestha, S.; Pandey, V.P. Groundwater vulnerability to climate change: A review of the assessment methodology. Sci. Total Environ. 2018, 612, 853–875. [Google Scholar] [CrossRef]
- WHO/UNICEF. Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Kumar, D.M.; Shah, T. Groundwater Pollution and Contamination in India: The Emerging Challenge; International Water Management Institute: New Delhi, India, 2006. [Google Scholar]
- UN-Water. Groundwater: Making the Invisible Visible; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2022; p. 246. [Google Scholar]
- Mondal, M. Risk of groundwater depletion in Jaipur district, India: A prediction of groundwater for 2028 using artificial neural network. Rend. Lincei. Sci. Fis. E Nat. 2024, 35, 971–984. [Google Scholar] [CrossRef]
- Tadych, D.E.; Ford, M.; Colby, B.G.; Condon, L.E. Historical patterns of well drilling and groundwater depth in Arizona considering groundwater regulation and surface water access. JAWRA J. Am. Water Resour. Assoc. 2024, 60, 1193–1208. [Google Scholar] [CrossRef]
- Williams, S.A. Enhancing Assessment of Groundwater Vulnerability and Contamination Risk in Arid Lands. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 2024. [Google Scholar]
- Williams, S.A.; Megdal, S.B.; Zuniga-Teran, A.A.; Quanrud, D.M.; Christopherson, G. Mapping Groundwater Vulnerability in Arid Regions: A Comparative Risk Assessment Using Modified DRASTIC Models, Land Use, and Climate Change Factors. Land 2024, 14, 58. [Google Scholar] [CrossRef]
- Williams, S.A.; Megdal, S.B.; Zuniga-Teran, A.A.; Quanrud, D.M.; Christopherson, G. Equity Assessment of Groundwater Vulnerability and Risk in Drinking Water Supplies in Arid Regions. Water 2024, 16, 3520. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Yang, X.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Taghavi, N.; Niven, R.K.; Paull, D.J.; Kramer, M. Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Sci. Total Environ. 2022, 822, 153486. [Google Scholar] [CrossRef]
- Mussa, K.R.; Mjemah, I.C.; Muzuka, A.N.N. A review on the state of knowledge, conceptual and theoretical contentions of major theories and principles governing groundwater flow modeling. Appl. Water Sci. 2020, 10, 146. [Google Scholar] [CrossRef]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Kalhor, K.; Ghasemizadeh, R.; Rajic, L.; Alshawabkeh, A. Assessment of groundwater quality and remediation in karst aquifers: A review. Groundw. Sustain. Dev. 2019, 8, 104–121. [Google Scholar] [CrossRef]
- Chaudhry, A.K.; Kumar, K.; Alam, M.A. Groundwater flow and contaminant transport models–a short review. Desalin. Water Treat. 2021, 211, 80–91. [Google Scholar] [CrossRef]
- Megdal, S.B.; Gerlak, A.K.; Varady, R.G.; Huang, L.-Y. Groundwater Governance in the United States: Common Priorities and Challenges. Groundwater 2015, 53, 677–684. [Google Scholar] [CrossRef]
- Williams, S.A.; Eden, S.; Megdal, S.B.; Joe-Gaddy, V. Diversity, Equity, Inclusion, and Justice in Water Dialogues: A Review and Conceptualization. J. Contemp. Water Res. Educ. 2023, 177, 113–139. [Google Scholar] [CrossRef]
- Varady, R.G.; Zuniga-Teran, A.A.; Gerlak, A.K.; Megdal, S.B. Modes and approaches of groundwater governance: A survey of lessons learned from selected cases across the globe. Water 2016, 8, 417. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.A.; Mussetta, P.C.; Lutz Ley, A.N.; Díaz-Caravantes, R.E.; Gerlak, A.K. Analyzing water policy impacts on vulnerability: Cases across the rural-urban continuum in the arid Americas. Environ. Dev. 2021, 38, 100552. [Google Scholar] [CrossRef]
- Weary, D.J.; Doctor, D.H. Karst in the United States: A Digital Map Compilation and Database. 2014–1156; U.S. Geological Survey: Reston, VA, USA, 2014; p. 23. [Google Scholar]
- Elshall, A.S.; Arik, A.D.; El-Kadi, A.I.; Pierce, S.; Ye, M.; Burnett, K.M.; Wada, C.A.; Bremer, L.L.; Chun, G. Groundwater sustainability: A review of the interactions between science and policy. Environ. Res. Lett. 2020, 15, 093004. [Google Scholar] [CrossRef]
- Megdal, S.B.; Dillon, P.; Seasholes, K. Water banks: Using managed aquifer recharge to meet water policy objectives. Water 2014, 6, 1500–1514. [Google Scholar] [CrossRef]
- Engel, K.H.; Loiseleur, E.; Drilhon, E. Arizona’s Groundwater Management Act at Forty: Tackling Unfinished Business. Arizona J. Environ. Law Policy 2020, 10, 187. [Google Scholar]
- Zheng, Y.; Flanagan, S.V. The case for universal screening of private well water quality in the US and testing requirements to achieve it: Evidence from arsenic. Environ. Health Perspect. 2017, 125, 085002. [Google Scholar] [CrossRef]
- Schaider, L.A.; Rudel, R.A.; Ackerman, J.M.; Dunagan, S.C.; Brody, J.G. Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Sci. Total Environ. 2014, 468–469, 384–393. [Google Scholar] [CrossRef]
- Nigra, A.E.; Sanchez, T.R.; Nachman, K.E.; Harvey, D.E.; Chillrud, S.N.; Graziano, J.H.; Navas-Acien, A. The effect of the Environmental Protection Agency maximum contaminant level on arsenic exposure in the USA from 2003 to 2014: An analysis of the National Health and Nutrition Examination Survey (NHANES). Lancet Public Health 2017, 2, e513–e521. [Google Scholar] [CrossRef]
- Ravalli, F.; Yu, Y.; Bostick, B.C.; Chillrud, S.N.; Schilling, K.; Basu, A.; Navas-Acien, A.; Nigra, A.E. Sociodemographic inequalities in uranium and other metals in community water systems across the USA, 2006–2011: A cross-sectional study. Lancet Planet. Health 2022, 6, e320–e330. [Google Scholar] [CrossRef]
- Pennino, M.J.; Compton, J.E.; Leibowitz, S.G. Trends in Drinking Water Nitrate Violations Across the United States. Environ. Sci. Technol. 2017, 51, 13450–13460. [Google Scholar] [CrossRef] [PubMed]
- Nemčić-Jurec, J.; Ruk, D.; Oreščanin, V.; Kovač, I.; Ujević Bošnjak, M.; Kinsela, A.S. Groundwater contamination in public water supply wells: Risk assessment, evaluation of trends and impact of rainfall on groundwater quality. Appl. Water Sci. 2022, 12, 172. [Google Scholar] [CrossRef]
- Konisky, D.M.; Reenock, C.; Conley, S. Environmental injustice in Clean Water Act enforcement: Racial and income disparities in inspection time. Environ. Res. Lett. 2021, 16, 084020. [Google Scholar] [CrossRef]
- Fischer, C.; Aubron, C.; Trouvé, A.; Sekhar, M.; Ruiz, L. Groundwater irrigation reduces overall poverty but increases socioeconomic vulnerability in a semiarid region of southern India. Sci. Rep. 2022, 12, 8850. [Google Scholar] [CrossRef]
- Johnson, T.D.; Belitz, K.; Lombard, M.A. Estimating domestic well locations and populations served in the contiguous U.S. for years 2000 and 2010. Sci. Total Environ. 2019, 687, 1261–1273. [Google Scholar] [CrossRef]
- McGreal, B.; Eden, S. Arizona Groundwater Management: Past, Present and Future. 2021. Available online: https://wrrc.arizona.edu/publications/arroyo/arroyo-2021-arizona-groundwater-management-past-present-and-future (accessed on 12 March 2024).
- GWAICC. Issue Brief: Exempt Wells. 2020. Available online: https://www.azwater.gov//sites/default/files/2022-08/ISSUE%20BRIEF%20-%20Exempt%20Wells%20-%20Final.pdf (accessed on 30 June 2024).
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Teshome, F.T.; Li, Y.C. Emerging Contaminants in Soil and Water. Front. Environ. Sci. 2022, 10, 873499. [Google Scholar] [CrossRef]
- Orellana-Macías, J.M.; Perles Roselló, M.J. Assessment of Risk and Social Impact on Groundwater Pollution by Nitrates. Implementation in the Gallocanta Groundwater Body (NE Spain). Water 2022, 14, 202. [Google Scholar] [CrossRef]
- Schneider, F.; Buser, T.; Graefe, O. Scales of justice in water governance: Hydropower controversies in Switzerland. Water Policy 2014, 16, 137–154. [Google Scholar] [CrossRef]
- Neal, M.J.; Lukasiewicz, A.; Syme, G.J. Why justice matters in water governance: Some ideas for a ‘water justice framework’. Water Policy 2014, 16, 1–18. [Google Scholar] [CrossRef]
- Mueller, J.T.; Gasteyer, S. The widespread and unjust drinking water and clean water crisis in the United States. Nat. Commun. 2021, 12, 3544. [Google Scholar] [CrossRef] [PubMed]
- McDonald, Y.J.; Grineski, S.E. Disparities in access to residential plumbing: A binational comparison of environmental injustice in El Paso and Ciudad Juárez. Popul. Environ. 2012, 34, 194–216. [Google Scholar] [CrossRef]
- Jaffee, D.; Case, R.A. Draining us dry: Scarcity discourses in contention over bottled water extraction. Local Environ. 2018, 23, 485–501. [Google Scholar] [CrossRef]
- Cory, D.C.; Rahman, T. Environmental justice and enforcement of the safe drinking water act: The Arizona arsenic experience. Ecol. Econ. 2009, 68, 1825–1837. [Google Scholar] [CrossRef]
- Balazs, C.L. Just Water? Social Disparities and Drinking Water Quality in California’s San Joaquin Valley. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2011. [Google Scholar]
- Zwarteveen, M.Z.; Boelens, R. Defining, researching and struggling for water justice: Some conceptual building blocks for research and action. Water Int. 2014, 39, 143–158. [Google Scholar] [CrossRef]
- Ferris, K.; Porter, S. The Elusive Concept of an Assured Water Supply: The Role of the CAGRD and Replenishment; Kyl Center for Water Policy at Morrison Institute, Arizona State University: Tempe, AZ, USA, 2019. [Google Scholar]
- GWAICC. Issue Brief: AMA Management Structure. 2021. Available online: www.azwater.gov//sites/default/files/2022-08/Issue%20-%20Management%20Structure-01052021_Final.pdf (accessed on 20 March 2021).
- Al Atawneh, D.; Cartwright, N.; Bertone, E. Climate change and its impact on the projected values of groundwater recharge: A review. J. Hydrol. 2021, 601, 126602. [Google Scholar] [CrossRef]
- Wilder, M.; Liverman, D.; Bellante, L.; Osborne, T. Southwest climate gap: Poverty and environmental justice in the US Southwest. Local Environ. 2016, 21, 1332–1353. [Google Scholar] [CrossRef]
- Silber-Coats, N.; Eden, S. Arizona Water Banking, Recharge, and Recovery. 2017. Available online: https://wrrc.arizona.edu/publications/arroyo/arroyo-2017-arizona-water-banking-recharge-and-recovery (accessed on 2 March 2022).
- GWPC. Rural Groundwater Committee Principles, Objectives, and Proposals. 2023. Available online: https://www.azwater.gov/sites/default/files/2023-07/20230712_Rural_GW_Committee_Proposals_All.pdf (accessed on 2 March 2022).
- ADWR. Statewide Groundwater Level Changes in Arizona Water Years 1997 to 2017, 2007 to 2017 and 2016 to 2017; ADWR: Phoenix, AZ, USA, 2020. [Google Scholar]
- ADWR. Statewide Groundwater Level Changes in Arizona Water Years 2017 to 2018, 2008 to 2018, and 1998 to 2018; ADWR: Phoenix, AZ, USA, 2021. [Google Scholar]
- ADWR. Statewide Groundwater Level Changes in Arizona Water Years 2019 to 2020, 2010 to 2020, and 1990 to 2020; ADWR: Phoenix, AZ, USA, 2023. [Google Scholar]
- EPA, Six-Year Review 2 Contaminant Occurrence Data (1998–2005). Available online: https://www.epa.gov/dwsixyearreview/six-year-review-2-contaminant-occurrence-data-1998-2005 (accessed on 1 January 2024).
- EPA, Six-Year Review 3 Compliance Monitoring Data (2006–2011). Available online: https://www.epa.gov/dwsixyearreview/six-year-review-3-compliance-monitoring-data-2006-2011 (accessed on 1 January 2024).
- EPA. Six-Year Review 4 Compliance Monitoring Data for Arizona (2012–2019). Data Obtained via FOIA Request EPA-2023-002267. Available online: https://www.epa.gov/dwsixyearreview/six-year-review-4-compliance-monitoring-data-2012-2019 (accessed on 18 May 2023).
- ADWR. Annual Water Supply and Demand Dashboard. Available online: https://www.azwater.gov/ama/ama-data (accessed on 1 August 2024).
- ADWR. GIS Data and Maps Datasets. Available online: https://www.azwater.gov/gis-data-and-maps (accessed on 15 January 2024).
- U.S. Census Bureau. 2020 Decennial Census of Population and Housing. Available online: https://www.census.gov/programs-surveys/decennial-census/decade/2020.html (accessed on 15 January 2024).
- ADEQ. Water Quality Databases. Available online: https://waterdata.azdeq.gov/AZWQDB/Pages/Public/ (accessed on 15 February 2024).
- Smerdon, B.D. A synopsis of climate change effects on groundwater recharge. J. Hydrol. 2017, 555, 125–128. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth Sci. Rev. 2018, 185, 901–927. [Google Scholar]
- Fakhreddine, S.; Prommer, H.; Scanlon, B.R.; Ying, S.C.; Nicot, J.-P. Mobilization of arsenic and other naturally occurring contaminants during managed aquifer recharge: A critical review. Environ. Sci. Technol. 2021, 55, 2208–2223. [Google Scholar]
- Becker, B.; Reichel, F.; Bachmann, D.; Schinke, R. High groundwater levels: Processes, consequences, and management. WIREs Water 2022, 9, e1605. [Google Scholar] [CrossRef]
- Banerjee, A.; Creedon, L.; Jones, N.; Gill, L.; Gharbia, S. Dynamic Groundwater Contamination Vulnerability Assessment Techniques: A Systematic Review. Hydrology 2023, 10, 182. [Google Scholar] [CrossRef]
- Statman-Weil, Z.; Nanus, L.; Wilkinson, N. Disparities in community water system compliance with the Safe Drinking Water Act. Appl. Geogr. 2020, 121, 102264. [Google Scholar] [CrossRef]
- Hoover, J.H.; Coker, E.; Barney, Y.; Shuey, C.; Lewis, J. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation—Arizona, New Mexico, and Utah, USA. Sci. Total Environ. 2018, 633, 1667–1678. [Google Scholar] [CrossRef]
- USEPA. Providing Safe Drinking Water in America: 2013 National Public Water Systems Compliance Report; US Environmental Protection Agency Office of Enforcement and Compliance Assurance: Washington, DC, USA, 2015. [Google Scholar]
- Baker, P.; Friel, S.; Kay, A.; Baum, F.; Strazdins, L.; Mackean, T. What Enables and Constrains the Inclusion of the Social Determinants of Health Inequities in Government Policy Agendas? A Narrative Review. Int. J. Health Policy Manag. 2017, 7, 101–111. [Google Scholar] [CrossRef]
- Hu, X.C.; Tokranov, A.K.; Liddie, J.; Zhang, X.; Grandjean, P.; Hart, J.E.; Laden, F.; Sun, Q.; Yeung, L.W.Y.; Sunderland, E.M. Tap Water Contributions to Plasma Concentrations of Poly- and Perfluoroalkyl Substances (PFAS) in a Nationwide Prospective Cohort of U.S. Women. Environ. Health Perspect. 2019, 127, 067006. [Google Scholar] [CrossRef]
- USEPA. EPA Annual Environmental Justice Progress Report FY 2020; Environmental Protection Agency: Washington, DC, USA, 2020; p. 52, EPA Publication Number: 230R20002. [Google Scholar]
- Wallace, K.J.; York, J.M. A systems change framework for evaluating academic equity and inclusion in an Ecology and Evolution Graduate Program. Ecol. Evol. 2020, 10, 10922–10929. [Google Scholar] [CrossRef]
- Wallace, M.; Sharfstein, J.M.; Kaminsky, J.; Lessler, J. Comparison of US county-level public health performance rankings with county cluster and national rankings: Assessment based on prevalence rates of smoking and obesity and motor vehicle crash death rates. JAMA Netw. Open 2019, 2, e186816. [Google Scholar]
Category | Description | Data Sources |
---|---|---|
Availability | Changes in groundwater levels in subbasins are used as indicators of water access variability over time. | Arizona Department of Water Resources (ADWR) [71,72,73] |
Access | Water supply type, service area boundaries, locations of public and private wells, and regulatory compliance data. | ADWR, Environmental Protection Agency (EPA) including a Freedom of Information Act request [74,75,76,77,78], Navajo Nation data via direct request |
Population demographic and socioeconomic data to evaluate the communities that rely on different water supply systems. | U.S. Census Bureau [79] | |
Policy Attributes: aquifer types, policy designations, and SDWA jurisdictions. | ADWR, U.S. Geological Survey (USGS), EPA | |
Quality | Nitrate (NO3) and arsenic (As) concentrations in groundwater; derived detection and exceedance variables. | Arizona Department of Environmental Quality (ADEQ), EPA, USGS [74,75,76,80] |
Auxiliary Data | Infrastructure-related data, including building footprints, residential parcels, and pipeline networks. | County governments, online platforms, and direct records requests. |
Model: 20-Year GWL | Model: 10-Year GWL | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | est. | Std Error | Statistic | p Value | Log Odds | est. | Std Error | Statistic | p Value | Log Odds |
Nitrate (binary) | ||||||||||
Detect | −0.075 | 0.006 | −11.67 | <0.001 | 0.93 | −0.114 | 0.007 | −15.458 | <0.001 | 0.89 |
MCL Exceeded | −0.089 | 0.009 | −9.919 | <0.001 | 0.91 | −0.102 | 0.010 | −9.817 | <0.001 | 0.90 |
Water Policy | ||||||||||
GMA Designation (NDA) | 0.300 | 0.007 | 43.109 | <0.001 | 1.35 | 0.178 | 0.008 | 22.100 | <0.001 | 1.20 |
SDWA Primacy (Tribal) | −0.173 | 0.017 | −10.289 | <0.001 | 0.84 | −0.112 | 0.02 | −5.725 | <0.001 | 0.89 |
Aquifer Type (Karst) | 0.121 | 0.006 | 20.829 | <0.001 | 1.13 | −0.003 | 0.007 | −0.507 | 0.612 | 1.00 |
Supply Type (DWA) | 0.033 | 0.006 | 5.758 | <0.001 | 1.03 | 0.014 | 0.007 | 2.180 | 0.029 | 1.01 |
Arsenic (binary) | ||||||||||
Detect | −0.086 | 0.006 | −13.954 | <0.001 | 0.92 | −0.059 | 0.007 | −8.832 | <0.001 | 0.94 |
MCL Exceeded | −0.028 | 0.006 | −4.931 | <0.001 | 0.97 | −0.023 | 0.006 | −3.766 | <0.001 | 0.98 |
Water Policy | ||||||||||
GMA Designation (NDA) | 0.431 | 0.008 | 51.122 | <0.001 | 1.54 | 0.418 | 0.009 | 45.877 | <0.001 | 1.52 |
SDWA Primacy (Tribal) | −0.484 | 0.008 | −57.086 | <0.001 | 0.62 | −0.367 | 0.009 | −40.059 | <0.001 | 0.69 |
Aquifer Type (Karst) | 0.163 | 0.007 | 22.692 | <0.001 | 1.18 | 0.148 | 0.008 | 19.075 | <0.001 | 1.16 |
Supply Type (DWA) | 0.014 | 0.007 | 1.895 | 0.058 | 1.01 | −0.024 | 0.008 | −2.996 | 0.003 | 0.98 |
Model: 20-Year GWL | Model: 10-Year GWL | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | est. | Std Error | Statistic | p Value | Log Odds | est. | Std Error | Statistic | p Value | Log Odds |
Water Quality | ||||||||||
Nitrate (NO3) | 0.228 | 0.012 | 18.792 | <0.001 | 1.26 | 0.105 | 0.007 | 15.499 | <0.001 | 1.11 |
Water Policy | ||||||||||
GMA Designation (NDA) | −5.989 | 0.286 | −20.96 | <0.001 | 0.00 | −1.770 | 0.160 | −11.035 | <0.001 | 0.17 |
SDWA Primacy (Tribal) | 6.621 | 0.684 | 9.684 | <0.001 | 751.01 | 6.012 | 0.384 | 15.664 | <0.001 | 408.10 |
Aquifer Type (Karst) | −7.171 | 0.236 | −30.407 | <0.001 | 0.00 | 0.243 | 0.132 | 1.839 | 0.066 | 1.28 |
Supply Type (DWA) | −3.151 | 0.229 | −13.774 | <0.001 | 0.04 | −0.885 | 0.128 | −6.889 | <0.001 | 0.41 |
Water Quality | ||||||||||
Arsenic (As) | 91.637 | 6.129 | 14.951 | <0.001 | 6.27E+39 | 38.494 | 3.942 | 9.764 | <0.001 | 5.22E+16 |
Water Policy | ||||||||||
GMA Designation (NDA) | −10.46 | 0.330 | −31.702 | <0.001 | 0.00 | −4.169 | 0.212 | −19.642 | <0.001 | 0.02 |
SDWA Primacy (Tribal) | 8.103 | 0.330 | 24.536 | <0.001 | 3305.44 | 0.139 | 0.212 | 0.653 | 0.514 | 1.15 |
Aquifer Type (Karst) | −1.465 | 0.281 | −5.215 | <0.001 | 0.23 | 2.390 | 0.181 | 13.223 | <0.001 | 10.91 |
Supply Type (DWA) | −5.435 | 0.286 | −18.985 | <0.001 | 0.00 | −4.951 | 0.184 | −26.889 | <0.001 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, S.A.; Zuniga-Teran, A.A.; Megdal, S.B.; Quanrud, D.M.; Christopherson, G. Assessing the Relationship Between Groundwater Availability, Access, and Contamination Risk in Arizona’s Drinking Water Sources. Water 2025, 17, 1097. https://doi.org/10.3390/w17071097
Williams SA, Zuniga-Teran AA, Megdal SB, Quanrud DM, Christopherson G. Assessing the Relationship Between Groundwater Availability, Access, and Contamination Risk in Arizona’s Drinking Water Sources. Water. 2025; 17(7):1097. https://doi.org/10.3390/w17071097
Chicago/Turabian StyleWilliams, Simone A., Adriana A. Zuniga-Teran, Sharon B. Megdal, David M. Quanrud, and Gary Christopherson. 2025. "Assessing the Relationship Between Groundwater Availability, Access, and Contamination Risk in Arizona’s Drinking Water Sources" Water 17, no. 7: 1097. https://doi.org/10.3390/w17071097
APA StyleWilliams, S. A., Zuniga-Teran, A. A., Megdal, S. B., Quanrud, D. M., & Christopherson, G. (2025). Assessing the Relationship Between Groundwater Availability, Access, and Contamination Risk in Arizona’s Drinking Water Sources. Water, 17(7), 1097. https://doi.org/10.3390/w17071097