Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = connector plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5594 KiB  
Article
Dynamic Properties of Steel-Wrapped RC Column–Beam Joints Connected by Embedded Horizontal Steel Plate: Experimental Study
by Jian Wu, Mingwei Ma, Changhao Wei, Jian Zhou, Yuxi Wang, Jianhui Wang and Weigao Ding
Buildings 2025, 15(15), 2657; https://doi.org/10.3390/buildings15152657 - 28 Jul 2025
Viewed by 200
Abstract
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes [...] Read more.
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes a new-type joint to promote the development of research on the reinforcement and renovation of RC frame structures in response to this situation. The RC beams and columns of the joints are connected by embedded horizontal steel plate (a single plate with dimension of 150 mm × 200 mm × 5 mm), and the beams and columns are individually wrapped in steel. Through conducting low cyclic loading tests, this paper analyzes the influence of carrying out wrapped steel treatment and the thickness of wrapped steel of the beam and connector on mechanical performance indicators such as hysteresis curve, skeleton curve, stiffness, ductility, and energy dissipation. The experimental results indicate that the reinforcement using steel plate can significantly improve the dynamic performance of the joint. The effect of changing the thickness of the connector on the dynamic performance of the specimen is not significant, while increasing the thickness of wrapped steel of beam can effectively improve the overall strength of joint. The research results of this paper will help promote the application of reinforcement and renovation technology for existing buildings, and improve the quality of human living. Full article
Show Figures

Figure 1

25 pages, 5545 KiB  
Article
Finite Element Analysis of the Mechanical Performance of an Innovative Beam-Column Joint Incorporating V-Shaped Steel as a Replaceable Energy-Dissipating Component
by Lin Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(14), 2513; https://doi.org/10.3390/buildings15142513 - 17 Jul 2025
Viewed by 205
Abstract
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent [...] Read more.
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent years. The study presented in this paper introduces an innovative beam-column connection that incorporates V-shaped steel as the replaceable energy-dissipating component. It delineates the structural configuration and design principles of this joint. Furthermore, the paper conducts a detailed analysis of the joint’s failure mode, stress distribution, and strain patterns using ABAQUS 2022 finite element software, thereby elucidating the failure mechanisms, load transfer pathways, and energy dissipation characteristics of the joint. In addition, the study investigates the impact of critical design parameters, including the strength, thickness, and weakening dimensions of the dog-bone energy-dissipating section, as well as the strength and thickness of the V-shaped plate, on the seismic behavior of the beam-column joint. The outcomes demonstrate that the incorporation of V-shaped steel with a configurable replaceable energy-dissipating component into the traditional dog-bone replaceable joint significantly improves the out-of-plane stability. Concurrently, the V-shaped steel undergoes a process of gradual flattening under load, which allows for a larger degree of deformation. In conclusion, the innovative joint design exhibits superior ductility and load-bearing capacity when contrasted with the conventional replaceable dog-bone energy-dissipating section joint. The joint’s equivalent viscous damping coefficient, ranging between 0.252 and 0.331, demonstrates its robust energy dissipation properties. The parametric analysis results indicate that the LY160 and Q235 steel grades are recommended for the dog-bone connector and V-shaped steel connector, respectively. The optimal thickness ranges are 6–10 mm for the dog-bone connector and 2–4 mm for the V-shaped steel connector, while the weakened dimension should preferably be selected within 15–20 mm. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 5876 KiB  
Article
Optimization of Knitted Strain Sensor Structures for a Real-Time Korean Sign Language Translation Glove System
by Youn-Hee Kim and You-Kyung Oh
Sensors 2025, 25(14), 4270; https://doi.org/10.3390/s25144270 - 9 Jul 2025
Viewed by 271
Abstract
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the [...] Read more.
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the presence or absence of elastic yarn are set as experimental variables, and five distinct sensors are manufactured. A comprehensive analysis of the electrical and mechanical performance, including sensitivity, responsiveness, reliability, and repeatability, reveals that the sensor with a plain-plated-knit structure, no elastic yarn included, and the conductive yarn positioned uniformly on the back exhibits the best performance, with a gauge factor (GF) of 88. The sensor exhibited a response time of less than 0.1 s at 50 cycles per minute (cpm), demonstrating that it detects and responds promptly to finger joint bending movements. Moreover, it exhibits stable repeatability and reliability across various angles and speeds, confirming its optimization for sign language recognition applications. Based on this design, an integrated textile-based system is developed by incorporating the sensor, interconnections, snap connectors, and a microcontroller unit (MCU) with built-in Bluetooth Low Energy (BLE) technology into the knitted glove. The complete system successfully recognized 12 Korean Sign Language (KSL) gestures in real time and output them as both text and audio through a dedicated application, achieving a high recognition accuracy of 98.67%. Thus, the present study quantitatively elucidates the structure–performance relationship of a knitted sensor and proposes a wearable system that accounts for real-world usage environments, thereby demonstrating the commercialization potential of the technology. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

20 pages, 8683 KiB  
Article
Experimental Study on the Force Mechanism of Internal Composite Connectors in Steel–Concrete Composite Sections of Bridge Towers
by Yunwei Du, Zhenqing Yu, Yuyang Chen, Niujing Ma and Ronghui Wang
Buildings 2025, 15(13), 2284; https://doi.org/10.3390/buildings15132284 - 29 Jun 2025
Viewed by 379
Abstract
Current research on the stress mechanisms of composite connectors within steel–concrete structures of bridge towers is sparse, and there is a lack of established experimental methods and finite element modeling techniques for studying these mechanisms. This study focuses on a specific type of [...] Read more.
Current research on the stress mechanisms of composite connectors within steel–concrete structures of bridge towers is sparse, and there is a lack of established experimental methods and finite element modeling techniques for studying these mechanisms. This study focuses on a specific type of composite shear connector within the steel–concrete section of the Shunde Bridge tower. By employing proposed experimental methods and finite element model analysis, this research examines the load–slip curves and stress distribution of these shear connectors. It aims to elucidate the stress mechanisms and mechanical relationships between the composite connectors and the individual perforated plate connectors and shear stud connectors that comprise them. The results demonstrate that the proposed experimental methods and finite element modeling approaches effectively analyze the stress mechanisms of composite connectors, revealing that the ultimate load-bearing capacity and elastic stiffness of the composite connectors are approximately the sum of those of the individual connectors configured in parallel; The mechanical performance of the composite connectors in the steel–concrete section of the bridge tower is approximately the additive sum of the mechanical performances of the individual connectors comprising them. By comparing the experimentally measured load–slip curves with those calculated from the finite element models, it validates the modeling approach of the finite element model, and the material parameters established through material characteristic tests and literature review are reasonable. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 9076 KiB  
Article
Blast Performance of Multi-Layer Composite Door Panel with Energy Absorption Connectors
by Shahab Ahmad, Shayan Zeb, Yonghui Wang and Muhammad Umair
Buildings 2025, 15(12), 2073; https://doi.org/10.3390/buildings15122073 - 16 Jun 2025
Viewed by 382
Abstract
Doors are considered vulnerable to failure in structures when subjected to extreme loads, such as blasts. Consequently, blast-resistant doors are designed to withstand blast pressure in important structures. This study developed a multi-layer Steel, Aluminum Foam, and Steel–Concrete–Steel composite door panel with Energy [...] Read more.
Doors are considered vulnerable to failure in structures when subjected to extreme loads, such as blasts. Consequently, blast-resistant doors are designed to withstand blast pressure in important structures. This study developed a multi-layer Steel, Aluminum Foam, and Steel–Concrete–Steel composite door panel with Energy Absorption Connectors (SAFSCS-EACs) under near and far field blast loading using finite element analysis in LS-DYNA. Three dynamic response modes were observed based on the crushing strength of energy absorption connectors (EACs) for the SAFSCS-EAC composite door under both near and far field blasts. In addition, the membrane stretching phenomena was observed in the face steel plate. The AF shows a local densification in near field blasts and a global densification in far field blasts. For the SCS panel, a punching-like failure and a global flexural failure were observed in near and far field blasts, respectively. AF has a high energy absorption capacity as a first energy absorption layer, while the EAC also effectively dissipates blast energy through the rotation of the plastic hinges of curved steel plates, thereby reducing the damage to the SCS panel and increasing the door’s structural integrity. Moreover, to check the influence of the curved steel plate thickness of EACs and the core concrete thickness, a parametric study was carried out. The results showed that the blast resistance performance of the SAFSCS-EAC composite door could increase by appropriately designing the EAC curved steel plates’ thickness and ensuring that the compression displacement of the EAC under blast is close to its densification displacement. Additionally, increasing concrete thickness can reduce the degree of damage to the steel–concrete–steel composite panel during the blast, but it leads to a reduction in the energy dissipation of the EAC. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 6162 KiB  
Article
Thermal Behavior of Plated Electrical Connectors Under High-Power and High-Frequency Excitation
by Yuqi Zhou, Jinchun Gao, Tianmeng Zhang and Jie Lei
Electronics 2025, 14(12), 2353; https://doi.org/10.3390/electronics14122353 - 8 Jun 2025
Viewed by 512
Abstract
The temperature variations of interconnected coaxial connectors in RF circuits are strongly influenced by the contact surface characteristics and the ferromagnetic properties of the electroplated materials. In this study, specially structured N-DIN connectors with either magnetic or non-magnetic plating were designed. A dedicated [...] Read more.
The temperature variations of interconnected coaxial connectors in RF circuits are strongly influenced by the contact surface characteristics and the ferromagnetic properties of the electroplated materials. In this study, specially structured N-DIN connectors with either magnetic or non-magnetic plating were designed. A dedicated high-frequency, high-power RF experimental platform was set up to monitor and measure the temperature and power of the connectors. Finite element analysis (FEA) was employed to simulate the current density and temperature distribution across the samples. Furthermore, an equivalent circuit model of the central conductor was established by integrating electrical contact theory with the magnetic hysteresis effect. Based on the voltage–temperature (V–T) relation and the derived magnetic field–magnetoresistance (H–M) relation, a predictive model for the temperature rise of the central conductor was formulated. Experimental results demonstrated good agreement with simulation predictions, validating the proposed model and highlighting the critical role of plating material properties in high-power RF connectors’ thermal effect. Full article
Show Figures

Figure 1

22 pages, 4758 KiB  
Article
Analysis of Interface Sliding in a Composite I-Steel–Concrete Beam Reinforced by a Composite Material Plate: The Effect of Concrete–Steel Connection Modes
by Tahar Hassaine Daouadji, Boussad Abbès, Tayeb Bensatallah and Fazilay Abbès
J. Compos. Sci. 2025, 9(6), 273; https://doi.org/10.3390/jcs9060273 - 29 May 2025
Cited by 1 | Viewed by 860
Abstract
This study investigates interface sliding behavior in composite I-steel–concrete beams reinforced with a composite material plate by analyzing various connection configurations combining shear stud connectors and adhesive bonding. The degree of composite action, governed by the shear stiffness at the steel–concrete interface, plays [...] Read more.
This study investigates interface sliding behavior in composite I-steel–concrete beams reinforced with a composite material plate by analyzing various connection configurations combining shear stud connectors and adhesive bonding. The degree of composite action, governed by the shear stiffness at the steel–concrete interface, plays a critical role in structural performance. An analytical model was developed based on the elasticity theory and the strain compatibility approach, assuming constant shear and normal stress across the interface. Five connection modes were considered, ranging from fully mechanical (100% shear studs) to fully adhesive (100% bonding), as well as mixed configurations. The model was validated against finite element simulations, demonstrating strong agreement with relative differences between 0.3% and 10.7% across all cases. A parametric study explored the influence of key factors such as interface layer stiffness and composite plate reinforcement material on the overall interface behavior. The results showed that adhesive bonding significantly reduces slippage at the steel–concrete interface, enhancing bond integrity, while purely mechanical connections tend to increase interface slippage. The findings provide valuable guidance for designing hybrid connection systems in composite structures to optimize performance, durability, and construction efficiency. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

21 pages, 5964 KiB  
Article
Research on Loosening Identification of High-Strength Bolts Based on Relaxor Piezoelectric Sensor
by Ruisheng Feng, Chao Wu, Youjia Zhang, Zijian Pan and Haiming Liu
Buildings 2025, 15(11), 1867; https://doi.org/10.3390/buildings15111867 - 28 May 2025
Viewed by 295
Abstract
Bridges play a key and controlling role in transportation systems. Steel bridges are favored for their high strength, good seismic performance, and convenient construction. As important node connectors of steel bridges, high-strength bolts are extremely susceptible to damage such as corrosion and loosening. [...] Read more.
Bridges play a key and controlling role in transportation systems. Steel bridges are favored for their high strength, good seismic performance, and convenient construction. As important node connectors of steel bridges, high-strength bolts are extremely susceptible to damage such as corrosion and loosening. Therefore, accurate identification of bolt loosening is crucial. First, a new type of adhesive piezoelectric sensor is designed and prepared using PMN-PT piezoelectric single-crystal materials. The PMN-PT sensor and polyvinylidene fluoride (PVDF) sensor are subjected to steel plate fixed frequency load and swept frequency load tests to test the performance of the two sensors. Then, a steel plate component connected by high-strength bolts is designed. By applying exciter square wave load to the structure, the vibration response characteristics of the structure are analyzed to identify the loosening of the bolts. In addition, a piezoelectric smart washer sensor is designed to make up for the shortcomings of the adhesive piezoelectric sensor, and the effectiveness of the piezoelectric smart washer sensor is verified. Finally, a bolt loosening index is proposed to quantitatively evaluate the looseness of the bolt. The results show that the sensitivity of the PMN-PT sensor is 21 times that of the PVDF sensor. Compared with the peak stress change, the natural frequency change is used to identify the bolt loosening more effectively. Piezoelectric smart washer sensor and bolt loosening indicator can be used for bolt loosening identification. Full article
(This article belongs to the Special Issue Research in Structural Control and Monitoring)
Show Figures

Figure 1

27 pages, 12280 KiB  
Article
Shear Performance of Assembled Bamboo–Concrete Composite Structures Featuring Perforated Steel Plate Connectors
by Lingling Chen, Zhiyuan Wang and Huihui Liu
Buildings 2025, 15(8), 1376; https://doi.org/10.3390/buildings15081376 - 21 Apr 2025
Viewed by 562
Abstract
To reduce the cast in place work of concrete and realize the industrial production of a bamboo–concrete composite (BCC), innovative connection systems composed of an assembled bamboo–lightweight concrete composite (ABLCC) structure featuring perforated steel plate connectors are presented for use in engineering structures. [...] Read more.
To reduce the cast in place work of concrete and realize the industrial production of a bamboo–concrete composite (BCC), innovative connection systems composed of an assembled bamboo–lightweight concrete composite (ABLCC) structure featuring perforated steel plate connectors are presented for use in engineering structures. This study examined the shear performance of connection systems composed of an assembled BCC structure featuring perforated steel plate connectors based on the design and fabrication of three groups of shear connectors with nine different parameters using bamboo scrimber, lightweight concrete, perforated steel plates, and grout. Push-out tests were conducted on these shear connectors. A linear variable differential transformer (LVDT) and digital image correlation (DIC) were utilized for measurements. The test parameters comprised fabrication techniques (assembled and cast-in-place/CIP) and connector size (steel plate thickness). This study investigated mechanical performance indicators, including the failure mode, load–slip relationship, shear stiffness, and shear capacity of the shear connectors. The experimental results showed that the shear connector failure modes involved concrete spalling near the connectors and deformation of the perforated steel plates. The load–slip curves generally included three stages: high slope linear increase, low slope nonlinear increase, and rapid decrease. The shear capacity and stiffness of the assembled shear connectors were 0.84 times and 2.46 times those of the CIP connectors, respectively. The stiffness of the 4 mm steel plate connectors increased by 42% compared to the 2 mm steel plate connectors. Analysis showed that the shear capacity of the BBC primarily consisted of four aspects: the end bearing force of the steel plate, contact friction, and forces due to the influence of tenon columns and the reinforcing impact of through-rebars. This study proposes a simple and suitable formula for obtaining the shear capacity of perforated steel plate connectors in the BCC structure, with the analytical values being in good agreement with the test results. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 11547 KiB  
Article
Dynamic Characteristics Analysis of Three-Layer Steel–Concrete Composite Beams
by Longbiao Yan, Long Cao, Yikuan He, Xu Han, Mingsheng Cao, Bingchuan Yan, Yachen You and Benyuan Li
Buildings 2025, 15(8), 1347; https://doi.org/10.3390/buildings15081347 - 17 Apr 2025
Viewed by 456
Abstract
The dynamic behavior of three-layer composite beams, consisting of concrete slabs and steel beams, is influenced by the structural configuration of each layer as well as the shear connectors. The interlayer shear stiffness in three-layer composite beams governs their global dynamic behavior, while [...] Read more.
The dynamic behavior of three-layer composite beams, consisting of concrete slabs and steel beams, is influenced by the structural configuration of each layer as well as the shear connectors. The interlayer shear stiffness in three-layer composite beams governs their global dynamic behavior, while interlayer slippage-induced localized vibration effects represent a key limiting factor in practical applications. Based on the dynamic test results of steel–concrete double-layer composite beams, the feasibility of a finite element solid model for composite beams, which accounts for interlayer shear connectors and beam body characteristics, has been validated. Utilizing identical modeling parameters, an analytical model for the inherent vibration characteristics of three-layer steel–concrete composite beams has been developed. This study encompasses two types of composite beams: concrete–steel–concrete (CSC) and concrete–concrete–steel (CCS). Numerical simulations and theoretical analysis systematically investigated the effects of interface shear connector arrangements and structural geometric parameters on dynamic performance. Research indicates that the natural frequency of steel–concrete three-layer composite beams exhibits a distinct two-stage increasing trend with the enhancement in interlayer shear stiffness. For CSC-type simply supported composite beams, the fundamental vertical vibration frequency increases by 37.82% when achieving full shear connection at both interfaces compared to the unconnected state, while two-equal-span continuous beams show a 38.06% improvement. However, significant differences remain between the fully shear-connected state and theoretical rigid-bonding condition, with frequency discrepancies of 24.69% for simply supported beams and 24.07% for continuous beams. Notably, CCS-type simply supported beams display a 12.07% frequency increase with full concrete-to-concrete connection, exceeding even the theoretical rigid-bonding frequency value. Longitudinal connector arrangement non-uniformity significantly impacts dynamic characteristics, while the transverse arrangement has minimal influence. Among structural parameters, steel flange plate thickness has the most significant effect, followed by concrete slab width and thickness, with steel web thickness having the least impact. Based on the observation that the first-order vertical vibration frequency of three-layer composite beams exhibits a two-stage decreasing trend with an increase in the span-to-depth ratio, it is recommended that the span-to-depth ratio of three-layer steel–concrete composite beams should not be less than 10. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

22 pages, 7805 KiB  
Article
Seismic Performance of a Novel Precast Shear Wall with Mixed Wet and Dry Steel Plate–Bolt Connections: A Finite Element Study
by Qiang Du, Zhaoxi Ma, Yiyun Zhu, Geng Chen and Yue Zhao
Mathematics 2025, 13(7), 1168; https://doi.org/10.3390/math13071168 - 2 Apr 2025
Viewed by 479
Abstract
This paper proposes a hybrid steel plate–bolt dry and wet jointing method, where the dry jointing part is a steel plate–bolt connector joint and the wet jointing part is a cast-in-place concrete. The novel precast concrete shear wall (PCW) combines the advantages of [...] Read more.
This paper proposes a hybrid steel plate–bolt dry and wet jointing method, where the dry jointing part is a steel plate–bolt connector joint and the wet jointing part is a cast-in-place concrete. The novel precast concrete shear wall (PCW) combines the advantages of both dry and wet connections. A steel plate–bolt dry–wet hybrid connection shear wall model was developed using the finite element method, and a low circumferential reciprocating load was applied to the PCW. By analyzing the force and deformation characteristics of the wall, the results showed that the failure mode of novel PCWs was bending-shear failure. Compared to the concrete wall (CW), the yield load, peak load, and ductile displacement coefficient were 6.55%, 7.56%, and 21.49% higher, respectively, demonstrating excellent seismic performance. By extending the wall parameters, it was found that the increased strength of the novel PCW concrete slightly improved the load-bearing capacity, and the ductility coefficient was greatly reduced. As the axial compression ratio increased from 0.3 to 0.4, the wall ductility decreased by 22.85%. Increasing the reinforcement rate of edge-concealed columns resulted in a severe reduction in ultimate displacement and ductility. By extending the connector parameters, it was found that there was an increased number of steel joints, a severe reduction in ductility, enlarged distribution spacing, weld hole plugging and bolt yielding, reduced anchorage performance, and weakening of the steel plate section, which reduced the load-bearing capacity and initial stiffness of the wall, with little effect on ductility. Full article
Show Figures

Figure 1

17 pages, 4716 KiB  
Article
Research on the Simplified Calculation Model and Parameter Analysis of Large-Size PBL-Stiffened Steel–Concrete Joints
by Haolin Liu, Baisong Du and Heying Zhou
Buildings 2024, 14(12), 3926; https://doi.org/10.3390/buildings14123926 - 9 Dec 2024
Viewed by 779
Abstract
To investigate the design principles and simplified calculation model of large-size PBL-stiffened steel–concrete joints, this study uses a Y-shaped rigid frame-tied arch composite bridge as an engineering background. Based on deformation coordination theory, a combination of theoretical analysis and numerical simulation was employed [...] Read more.
To investigate the design principles and simplified calculation model of large-size PBL-stiffened steel–concrete joints, this study uses a Y-shaped rigid frame-tied arch composite bridge as an engineering background. Based on deformation coordination theory, a combination of theoretical analysis and numerical simulation was employed to derive a simplified calculation model that accounts for boundary conditions such as the stiffness of steel beam end restraints and the local bearing effect of the bearing plate. Parametric analysis of the steel–concrete joint was conducted. The results indicate that the derived simplified calculation model exhibits good accuracy and is suitable for calculating force transfer in various components of the steel–concrete joint under different boundary conditions. Using the simplified model, the effects of parameters such as steel–concrete joint length, connector stiffness, and structural axial stiffness on the axial force transfer in primary force-bearing components (connectors and bearing plates) were studied. The findings reveal that an excessively long steel–concrete joint does not effectively reduce maximum shear force; variations in connector stiffness primarily affect connectors farther from the bearing plate without changing the shear force distribution. Increasing the axial stiffness of the steel structure within a certain range can improve the maximum shear force in connectors, whereas increasing the axial stiffness of the concrete structure has the opposite effect. Full article
(This article belongs to the Special Issue UHPC Materials: Structural and Mechanical Analysis in Buildings)
Show Figures

Figure 1

19 pages, 19669 KiB  
Article
Finite Element Modeling of Beam-to-Column Steel Timber Composite Joints with Different Parameters
by Yifan Li, Yumo Wang, Yawen Zhong, Weisong Wei, He Su and Tianyu Gao
Buildings 2024, 14(9), 2858; https://doi.org/10.3390/buildings14092858 - 10 Sep 2024
Cited by 1 | Viewed by 1956
Abstract
This study presents a comprehensive three-dimensional finite element modeling and parametric analysis of composite beam-to-column joints in steel–timber composite structures. The investigation encompassed a variety of shear connector configurations, end plate designs, and bolt dimensions, aiming to elucidate their respective influences on the [...] Read more.
This study presents a comprehensive three-dimensional finite element modeling and parametric analysis of composite beam-to-column joints in steel–timber composite structures. The investigation encompassed a variety of shear connector configurations, end plate designs, and bolt dimensions, aiming to elucidate their respective influences on the structural performance and behavior of these joints. Through meticulous numerical simulation, this research sought to enhance the understanding of the interactions and load transfer mechanisms within composite connections, thereby contributing to the optimization of design practices in the field of structural engineering. The load–displacement relationship for timber–steel composite joints subjected to monotonic loading was investigated using ABAQUS 6.14 software. This study systematically analyzed the effects of various parameters, including different configurations of shear connectors, end plate thicknesses, and bolt dimensions, on the overall performance of the joints. Through this comprehensive numerical analysis, the research aimed to provide deeper insights into the mechanical behavior and structural integrity of these composite connections under the applied loading conditions. A non-linear finite element model of timber was developed and verified with the results of the experiment in this study. The findings are discussed in detail, highlighting the intricate relationships between the selected parameters and their respective effects on the performance and overall stability of the composite connections. This thorough evaluation aimed to enhance the understanding of how these variables interact within the context of composite joint design and behavior. Finally, design recommendations for composite structures, such as the dimensions of the bolt, end plate thickness, and different sizes of shear connectors are provided. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 17917 KiB  
Review
Research Progress on Shear Characteristics and Rapid Post-Disaster Construction of Narrow-Width Steel Box–UHPC Composite Beams
by Yunteng Chen, Jiawei Xu, Peilong Yuan, Qiang Wang, Guanhua Cui and Xulin Su
Buildings 2024, 14(7), 1930; https://doi.org/10.3390/buildings14071930 - 25 Jun 2024
Cited by 1 | Viewed by 1289
Abstract
The narrow-width steel box girder is an important type of steel–concrete composite bridge structure, which is usually composed of reinforced concrete wing plates, narrow steel boxes partially injected with concrete, and shear connectors that promote shear force transfer. The utilization of narrow-width steel [...] Read more.
The narrow-width steel box girder is an important type of steel–concrete composite bridge structure, which is usually composed of reinforced concrete wing plates, narrow steel boxes partially injected with concrete, and shear connectors that promote shear force transfer. The utilization of narrow-width steel box girders, augmented by partially filled concrete, embodies the synthesis of steel and concrete elements, fostering structural efficiency. Moreover, its attributes, including reduced structural weight, diminished vertical profile, enhanced load-bearing capacity, and augmented stiffness, have prompted its gradual integration into bridge engineering applications. In this study, the calculated values of shear strength under three current design codes were reviewed, and the shear failure phenomena and its determinants of narrow-width steel box–ultra-high-performance concrete (UHPC) composite beams under negative bending moment conditions were investigated, which were mainly determined by shear span ratio, concrete wing plate, UHPC steel fiber content, UHPC plate thickness, and transverse partition inside the box. Concurrently, this paper evaluates two innovative structural designs, including a double-narrow steel box girder and a three-narrow steel box girder. In addition, strategies to reduce crack formation under the negative bending moment of long-span continuous narrow and wide box girder abutments are discussed, and we show that this measure can effectively control the formation of cracks to support the negative bending moment zone. At the same time, the scope of the application of a narrow-width steel box girder composite bridge is reviewed, and the conclusion is that a narrow-width steel box girder is mainly used in small-radius flat-curved bridges or widened-ramp bridges with a span of 30 m or more in interworking areas and in the main line with a 60–100 m span in mountainous or urban areas. Finally, the research direction of the shear resistance of the UHPC–narrow steel box girder under negative bending moments is proposed. Full article
(This article belongs to the Special Issue Advances in Steel–Concrete Composite Structures)
Show Figures

Figure 1

15 pages, 4032 KiB  
Article
Toward Cost-Effective Timber Shell Structures through the Integration of Computational Design, Digital Fabrication, and Mechanical Integral ‘Half-Lap’ Joints
by Emerson Porras, Doris Esenarro, Lidia Chang, Walter Morales, Carlos Vargas and Joseph Sucasaca
Buildings 2024, 14(6), 1735; https://doi.org/10.3390/buildings14061735 - 9 Jun 2024
Cited by 1 | Viewed by 3282
Abstract
In a global context, where the construction industry is a major source of CO2 emissions and resource use, is dependent on concrete and its risks, and lags behind in digitalization, a clear need arises to direct architecture towards more practical, efficient, and [...] Read more.
In a global context, where the construction industry is a major source of CO2 emissions and resource use, is dependent on concrete and its risks, and lags behind in digitalization, a clear need arises to direct architecture towards more practical, efficient, and sustainable practices. This research introduces an alternative technique for building timber space structures, aiming to expand its applications in areas with limited access to advanced technologies such as CNCs with more than five axes and industrial robotic arms. This involves reconfiguring economic and ecological constraints to maximize the structural and architectural advantages of these systems. The method develops a parametric tool that integrates computational design and manufacturing based on two-axis laser cutting for shells with segmented hexagonal plywood plates. It uses a modified ‘half-lap joint’ mechanical joint, also made of plywood and without additional fasteners, ensuring a precise and robust connection. The results demonstrate the compatibility of the geometry with two-axis CNC machines, which simplifies manufacturing and reduces the cuts required, thus increasing economic efficiency. The prototype, with a span of 1.5 m and composed of 63 plywood panels and 163 connectors, each 6 mm thick, supported a point load of 0.8 kN with a maximum displacement of 5 mm, weighing 15.1 kg. Assembly and disassembly, carried out by two students, took 5 h and 1.45 h, respectively, highlighting the practicality and accessibility of the method. In conclusion, the technique for building timber shells based on two-axis CNC is feasible and effective, proven by practical experimentation and finite element analysis. Full article
Show Figures

Figure 1

Back to TopTop