Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = conformal and non-conformal contacts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2816 KiB  
Article
Effects of Denaturants on Early-Stage Prion Conversion: Insights from Molecular Dynamics Simulations
by Lyudmyla Dorosh, Min Wu and Maria Stepanova
Processes 2025, 13(7), 2151; https://doi.org/10.3390/pr13072151 - 7 Jul 2025
Viewed by 318
Abstract
Prion diseases such as chronic wasting disease involve the conformational conversion of the cellular prion protein (PrPC) into its misfolded, β-rich isoform (PrPSc). While chemical denaturants such as guanidine hydrochloride (GdnHCl) and urea are commonly used to study this [...] Read more.
Prion diseases such as chronic wasting disease involve the conformational conversion of the cellular prion protein (PrPC) into its misfolded, β-rich isoform (PrPSc). While chemical denaturants such as guanidine hydrochloride (GdnHCl) and urea are commonly used to study this process in vitro, their distinct molecular effects on native and misfolded PrP conformers remain incompletely understood. In this study, we employed 500 ns all-atom molecular dynamics simulations and essential collective dynamics analysis to investigate the differential effects of GdnHCl and urea on a composite PrPC/PrPSc system, where white-tailed deer PrPC interfaces with a corresponding PrPSc conformer. GdnHCl was found to preserve interfacial alignment and enhance β-sheet retention in PrPSc, while urea promoted partial β-strand dissolution and interfacial destabilization. Both denaturants formed transient contacts with PrP, but urea displaced water hydrogen bonds more extensively. Remarkably, we also observed long-range dynamical coupling across the PrPC/PrPSc interface and between transiently bound solutes and distal protein regions. These findings highlight distinct, denaturant-specific mechanisms of protein destabilization and suggest that localized interactions may propagate non-locally via mechanical or steric pathways. Our results provide molecular-scale insights relevant to prion conversion mechanisms and inform experimental strategies using GdnHCl and urea to modulate misfolding processes in vitro. Full article
(This article belongs to the Special Issue Advances in Computer Simulation of Condensed Matter Systems)
Show Figures

Figure 1

20 pages, 859 KiB  
Article
Theoretical Description of Changes in Conformation and Symmetry of Supramolecular Systems During the Reception of a Molecular Signal
by Yuriy Gorovoy, Natalia Rodionova, German Stepanov, Anastasia Petrova, Nadezda Penkova and Nikita Penkov
Int. J. Mol. Sci. 2025, 26(13), 6411; https://doi.org/10.3390/ijms26136411 - 3 Jul 2025
Viewed by 250
Abstract
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular [...] Read more.
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular signal” and causes changes in conformation and symmetry of the “receiver”. The aim of the current work is to theoretically describe such changes primarily using a solution of the chiral protein interferon-gamma (IFNγ) as an example. We provide theoretical evidence that supramolecular systems of highly diluted (HD) aqueous solutions formed by self-assembly after mechanical activation generate a stronger molecular signal compared to non-activated solutions, due to their higher energy-saturated state. Additionally, molecular signals cause supramolecular systems with complex (including chiral) structures to undergo easier changes in conformation and symmetry compared to simpler systems, enhancing their biological activity. Using statistical physics, we obtained the parameter Ic, characterizing the magnitude of conformational and symmetry changes in supramolecular (including chiral) systems caused by molecular signals. In quantum information science, there is an analogue of the parameter Ic, which characterizes the entanglement depth of quantum systems. This study contributes to the understanding of the physico-chemical basis of distant molecular interactions and opens up new possibilities for controlling the properties of complex biological and chemical systems. Full article
(This article belongs to the Special Issue Supramolecular Chiral Self-Assembly and Applications)
Show Figures

Figure 1

21 pages, 669 KiB  
Article
On the Non-Dimensional Modelling of Friction Hysteresis of Conformal Rough Contacts
by Kristof Driesen, Sylvie Castagne, Bert Lauwers and Dieter Fauconnier
Lubricants 2025, 13(6), 248; https://doi.org/10.3390/lubricants13060248 - 30 May 2025
Viewed by 540
Abstract
Friction hysteresis, ingaphenomenon observed when a sliding contact is subjected to an oscillatory motion has significant implications in fields such as tribology and robotics. Understanding and quantifying friction hysteresis is essential for improving the performance and efficiency of many sliding contacts. In this [...] Read more.
Friction hysteresis, ingaphenomenon observed when a sliding contact is subjected to an oscillatory motion has significant implications in fields such as tribology and robotics. Understanding and quantifying friction hysteresis is essential for improving the performance and efficiency of many sliding contacts. In this paper, we introduce six non-dimensional groups to characterize and study friction hysteresis behaviour for rough conformal sliding contacts. The proposed non-dimensional groups are specifically designed to capture the essential features of friction hysteresis loops encountered based upon previous work of present authors. The non-dimensional groups are derived from a mixed friction model composed of the transient Reynolds equation, a statistical mixed friction contact model, and the load balance. The non-dimensional groups capture physical parameters that influence friction behaviour, including normal load, sliding speed, viscosity, density, and surface roughness. By expressing these parameters in non-dimensional form, the proposed groups provide a concise and generalizable framework for analysing friction hysteresis across different systems and scales. To demonstrate the effectiveness of the non-dimensional groups, we establish a comprehensive relationship between the proposed groups and typical friction hysteresis loops encountered. Through numerical simulations, we find relationships that govern the transition between different hysteresis loop shapes and sizes. This knowledge can inform the design and optimization of systems where friction hysteresis plays a crucial role. Full article
(This article belongs to the Special Issue Advanced Computational Studies in Frictional Contact)
Show Figures

Figure 1

33 pages, 9324 KiB  
Review
Hydrogels for Translucent Wearable Electronics: Innovations in Materials, Integration, and Applications
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Gels 2025, 11(5), 372; https://doi.org/10.3390/gels11050372 - 20 May 2025
Viewed by 1051
Abstract
Recent advancements in wearable electronics have significantly enhanced human–device interaction, enabling applications such as continuous health monitoring, advanced diagnostics, and augmented reality. While progress in material science has improved the flexibility, softness, and elasticity of these devices for better skin conformity, their optical [...] Read more.
Recent advancements in wearable electronics have significantly enhanced human–device interaction, enabling applications such as continuous health monitoring, advanced diagnostics, and augmented reality. While progress in material science has improved the flexibility, softness, and elasticity of these devices for better skin conformity, their optical properties, particularly transparency, remain relatively unexplored. Transparent wearable electronics offer distinct advantages: they allow for non-invasive health monitoring by enabling a clear view of biological systems and improve aesthetics by minimizing the visual presence of electronics on the skin, thereby increasing user acceptance. Hydrogels have emerged as a key material for transparent wearable electronics due to their high water content, excellent biocompatibility, and tunable mechanical and optical properties. Their inherent softness and stretchability allow intimate, stable contact with dynamic biological surfaces. Furthermore, their ability to support ion-based conductivity is advantageous for bioelectronic interfaces and physiological sensors. Current research is focused on advancing hydrogel design to improve transparency, mechanical resilience, conductivity, and adhesion. The core components of transparent wearable systems include physiological sensors, energy storage devices, actuators, and real-time displays. These must collectively balance efficiency, functionality, and long-term durability. Practical applications span continuous health tracking and medical imaging to next-generation interactive displays. Despite progress, challenges such as material durability, scalable manufacturing, and prolonged usability remain. Addressing these limitations will be crucial for the future development of transparent, functional, and user-friendly wearable electronics. Full article
Show Figures

Figure 1

18 pages, 74287 KiB  
Article
Graining and Texturing of Metal Surfaces by Picosecond Laser Treatment
by Carmelo Corsaro, Fortunato Neri, Paolo Maria Ossi, Domenico Bonanno, Priscilla Pelleriti and Enza Fazio
Materials 2025, 18(7), 1398; https://doi.org/10.3390/ma18071398 - 21 Mar 2025
Viewed by 716
Abstract
Different approaches have been proposed to control the tribological behavior of materials under different conformal and non-conformal contact conditions with influenced surface texturing. The ever-increasing demand to improve material friction, erosion wear, and adhesion bond strength of coatings is a major concern for [...] Read more.
Different approaches have been proposed to control the tribological behavior of materials under different conformal and non-conformal contact conditions with influenced surface texturing. The ever-increasing demand to improve material friction, erosion wear, and adhesion bond strength of coatings is a major concern for the contact interface of surfaces. Laser texturing is considered a promising approach to tuning materials’ tribological properties. The latter are strongly influenced by the texture density and shape imprinted on the engineered materials and vary in dry or lubricating conditions. In this work, the physicochemical properties of picosecond laser-textured surfaces of metallic materials have been systematically analyzed. Specifically, the wettability character of laser-textured materials was correlated with their morphological/compositional features. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

20 pages, 3501 KiB  
Article
Development of a Comprehensive Approach to Quality Control of Dermorphin Derivative—Representative of Synthetic Opioid Peptides with Non-Narcotic Type of Analgesia
by Vasilisa A. Sukhanova, Elena V. Uspenskaya, Safdari Ainaz, Hoang Thi Ngoc Quynh and Aleksey A. Timofeev
Sci. Pharm. 2025, 93(1), 3; https://doi.org/10.3390/scipharm93010003 - 31 Dec 2024
Viewed by 1948
Abstract
Peptides occupy a significant share of the pharmaceutical market and are among the top-200 selling drugs in the group of non-insulin drugs with analgesic, antibacterial and cardiovascular effects. The aim of this work is to develop a comprehensive analytical approach for quality control [...] Read more.
Peptides occupy a significant share of the pharmaceutical market and are among the top-200 selling drugs in the group of non-insulin drugs with analgesic, antibacterial and cardiovascular effects. The aim of this work is to develop a comprehensive analytical approach for quality control of novel synthetic peptides with non-narcotic types of analgesia and to provide docking simulations of dermorphin complex formation at the μ-opioid receptor (MOR) binding site. The materials and methods used include the pharmaceutical substance dermorphin tetrapeptide (DMTP) (tyrosyl-D-arginyl-phenylalanyl-glycinamide); Fourier transform infrared spectroscopy (FT-IR); static and dynamic laser light scattering (DLS, LALLS); scanning optical microscopy (SEM); X-ray fluorescence elements analysis; polarimetry for optical activity determining; and Spirotox method for sample biotesting. FT-IR-Spectra indicated specific amino acid chemical groups in the tetrapeptide sequence at 3300–2700 cm−1, 1670 cm−1. UV-absorption spectra of aqueous solutions of dermorphin tetrapeptide showed an absorption maximum at 275 nm, which is in good agreement with the presented spectrum of the bovine serum albumin (BSA) standard; the Pearson’s r of calibration line “A-C%” in 0.0125% to 0.0500% concentration range is 0.999; and the calculated specific extinction value E1cm 1% = 18.38 ± 0.23. Of the 11 elements detected by X-rays, the elements copper (Cu) and cobalt (Co) have the highest X-ray intensity. Dispersion characteristics of dermorphin solutions were studied in the submicron and micron range. Conglomerates and druzes were detected by SEM, ranging in size from 2 µm to 100 µm. The specific optical activity index was calculated αD20 = +36.18 ± 2.04 [°·mL·g−1·dm−1], according to Biot’s Law. Additionally, the orientation and conformation of the dermorphin molecule in the active binding site of the 8E0G receptor were predicted using molecular modeling, revealing that the contact area affects the key amino acid residue arginine (ARG 182). This comprehensive approach to analytical methods for qualitative and quantitative analysis of dermorphin tetrapeptide can be applied in pharmacies to enhance the understanding of its biological activity and aid in the development of regulatory documentation for a new, non-narcotic analgesic based on the dermorphin tetrapeptide. Full article
Show Figures

Figure 1

18 pages, 16366 KiB  
Article
Investigation of Effect of Surface Modification by Electropolishing on Tribological Behaviour of Worm Gear Pairs
by Robert Mašović, Suzana Jakovljević, Ivan Čular, Daniel Miler and Dragan Žeželj
Lubricants 2024, 12(12), 408; https://doi.org/10.3390/lubricants12120408 - 24 Nov 2024
Viewed by 1169
Abstract
Electropolishing using a high-current density results in a pitting phenomenon, producing a surface texture distinguished by many pits. Apart from the change in surface topography, electropolishing forms an oxide surface layer characterized by beneficial tribological properties. This paper introduces surface texturing in worm [...] Read more.
Electropolishing using a high-current density results in a pitting phenomenon, producing a surface texture distinguished by many pits. Apart from the change in surface topography, electropolishing forms an oxide surface layer characterized by beneficial tribological properties. This paper introduces surface texturing in worm gear pairs by electropolishing a 16MnCr5 steel worm surface. Electropolishing produces surface pits 1 μm to 5 μm deep and 20 to 100 μm in diameter. The material characterization of 16MnCr5 steel is compared against the electropolished 16MnCr5 steel based on microstructure, hardness, surface topography and chemical composition. Experimental tests with worm pairs employing electropolished worms are conducted, and the results are compared to conventional worm pairs with ground steel worms. Electropolished worms show up to 5.2% higher efficiency ratings than ground ones and contribute to better running-in of worm gear pairs. Moreover, electropolished worms can reliably support full contact patterns and prevent scuffing due to improved lubrication conditions resulting from the produced surface texture and oxide surface layer. Based on the obtained results, electropolishing presents a promising method for surface texturing and modification in machine elements characterized by highly loaded non-conformal contacts and complex geometry. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology)
Show Figures

Figure 1

15 pages, 4411 KiB  
Article
Spectroscopic and Quantum Chemical Evidence of Amine–CO2 and Alcohol–CO2 Interactions: Confirming an Intriguing Affinity of CO2 to Monoethanolamine (MEA)
by Sahar Hafizi Yazdabadi, Dmytro Mihrin, Karen Louise Feilberg and René Wugt Larsen
Molecules 2024, 29(23), 5521; https://doi.org/10.3390/molecules29235521 - 22 Nov 2024
Viewed by 1269
Abstract
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy [...] Read more.
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy group. These findings have triggered the present systematic vibrational spectroscopic exploration of weakly bound amine··CO2 and alcohol··CO2 van der Waals cluster molecules embedded in inert “quantum” matrices of neon at 4.2 K complemented by high-level quantum chemical conformational analyses. The non-covalent interactions formed between the amino and hydroxy groups and the electron-deficient carbon atom of CO2 are demonstrated to lift the degeneracy of the doubly degenerate intramolecular CO2-bending fundamental significantly with characteristic observed spectral splittings for the amine··CO2 (≈35–45 cm−1) and alcohol··CO2 (≈20–25 cm−1) interactions, respectively, despite the almost identically predicted total association energies (≈12–14 kJ·mol−1) for these van der Waals contacts, as revealed by benchmark Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory. These high-level theoretical predictions reveal significantly higher “geometry preparation energies” for the amine··CO2 systems leading to a more severe distortion of the CO2 linearity upon complexation in agreement with the infrared spectroscopic findings. The systematic combined spectroscopic and quantum chemical evidences for cross-association between CO2 and amines/alcohols in the present work unambiguously confirm an intriguing binding preference of CO2 to the hydroxy group of the important carbon capture agent MEA, with an accurate vibrational zero-point energy corrected association energy (D0) of 13.5 kJ·mol−1 at the benchmark DLPNO-CCSD(T)/aug-cc-pV5Z level of theory. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

17 pages, 1983 KiB  
Article
Kinetics of Polyampholyte Dimerization: Influence of Charge Sequences
by Seowon Kim, Nam-Kyung Lee, Youngkyun Jung and Albert Johner
Polymers 2024, 16(20), 2928; https://doi.org/10.3390/polym16202928 - 18 Oct 2024
Cited by 2 | Viewed by 1027
Abstract
Polyampholytes (PAs) exhibit complex behaviors in various environments influenced by their charge distribution. This study focuses on the kinetics of dimerization of PAs, aiming to elucidate the underlying mechanisms and clarify relevant characteristics of the charge sequence. We focus on PAs with non-zero [...] Read more.
Polyampholytes (PAs) exhibit complex behaviors in various environments influenced by their charge distribution. This study focuses on the kinetics of dimerization of PAs, aiming to elucidate the underlying mechanisms and clarify relevant characteristics of the charge sequence. We focus on PAs with non-zero net charges, employing molecular dynamics simulations and theoretical analyses to examine how charge sequences influence the rates of dimer formation and dissociation. Our findings reveal that the charge sequence of tails and the blockiness of the minority charge group markedly influence the kinetics of dimerization: large blockiness and tails with a high number of majority-type charges slow down the dissociation of dimers. Additionally, the presence of an extended (central) block of the majority charge promotes structural diversity. Within dimer states, blocks alternate between intra- and inter-chain contacts. The duration times in the dimer states are significantly longer than the typical dwell times of block inter-contacts, with a notable extension when multiple blocks are engaged. Intrinsically disordered proteins (IDPs) play crucial roles in cellular functions, primarily due to their ability to undergo rapid conformational changes and form transient complexes. These properties largely depend on the sequence of charged residues. We provide insights into the fundamental principles governing the structural and dynamical properties of polyampholytic IDP, emphasizing the importance of sequence-specific effects on both aggregation and dissociation. Full article
(This article belongs to the Special Issue Polymer Electrolyte: Recent Progress and Applications)
Show Figures

Figure 1

16 pages, 7496 KiB  
Review
Encapsulating Transition Metal Nanoparticles inside Carbon (TM@C) Chainmail Catalysts for Hydrogen Evolution Reactions: A Review
by Jiamin Zhao, Meimei Kou, Qing Yuan, Ying Yuan and Jinsheng Zhao
Molecules 2024, 29(19), 4677; https://doi.org/10.3390/molecules29194677 - 2 Oct 2024
Cited by 1 | Viewed by 1436
Abstract
Green hydrogen energy from electrocatalytic hydrogen evolution reactions (HERs) has gained much attention for its advantages of low carbon, high efficiency, interconnected energy medium, safety, and controllability. Non-precious metals have emerged as a research hotspot for replacing precious metal catalysts due to low [...] Read more.
Green hydrogen energy from electrocatalytic hydrogen evolution reactions (HERs) has gained much attention for its advantages of low carbon, high efficiency, interconnected energy medium, safety, and controllability. Non-precious metals have emerged as a research hotspot for replacing precious metal catalysts due to low cost and abundant reserves. However, maintaining the stability of non-precious metals under harsh conditions (e.g., strongly acidic, alkaline environments) remains a significant challenge. By leveraging the curling properties of two-dimensional materials, a new class of catalysts, encapsulating transition metal nanoparticles inside carbon (TM@C) chainmail, has been successfully developed. This catalyst can effectively isolate the active metal from direct contact with harsh reaction media, thereby delaying catalyst deactivation. Furthermore, the electronic structure of the carbon layer can be regulated through the transfer of electrons, which stimulates its catalytic activity. This addresses the issue of the insufficient stability of traditional non-precious metal catalysts. This review commences with a synopsis of the synthetic advancement of the engineering of TM@C chainmail catalysts. Thereafter, a critical discussion ensues regarding the electrocatalytic performance of TM@C chainmail catalysts during hydrogen production. Ultimately, a comprehensive review of the conformational relationship between the structure of TM@C chainmail catalysts and HER activity is provided, offering substantial support for the large-scale application of hydrogen energy. Full article
(This article belongs to the Special Issue Advanced Materials for Energy Conversion and Water Sustainability)
Show Figures

Figure 1

13 pages, 3542 KiB  
Article
Study on the Anti-Interference Performance of Substrate-Free PEDOT:PSS ECG Electrodes
by Chunlin Li, Ke Xu and Yuanfen Chen
Appl. Sci. 2024, 14(14), 6367; https://doi.org/10.3390/app14146367 - 22 Jul 2024
Cited by 2 | Viewed by 1494
Abstract
Substrate-free electrodes are promising dry electrodes for long-term physiological electrical signal monitoring due to their ultra-thinness, conformal contact, and stable skin–electrode impedance. However, the response of substrate-free electrodes to various disturbances during electrocardiogram (ECG) monitoring and the corresponding optimization needs to be investigated. [...] Read more.
Substrate-free electrodes are promising dry electrodes for long-term physiological electrical signal monitoring due to their ultra-thinness, conformal contact, and stable skin–electrode impedance. However, the response of substrate-free electrodes to various disturbances during electrocardiogram (ECG) monitoring and the corresponding optimization needs to be investigated. This paper investigates the specific effects of various influencing factors on skin–electrode impedance and ECG during electrocardiogram (ECG) detection. The research utilizes substrate-free poly(3,4-ethylenedioxythiophene)/poly(styrene-sulfonate) (PEDOT:PSS) electrodes. The investigation employs several methods, including skin–electrode impedance comparison, ECG waveform analysis, spectrum analysis, and signal-to-noise ratio (SNR) evaluation. To avoid the impact of physiological state differences in subjects at different times, relevant data were only compared with the same group of experiments conducted in the same period. The results demonstrate that the substrate-free conformal contact PEDOT:PSS electrode has more stable skin–electrode impedance and could obtain a more stable ECG than partial contact electrodes (the SNR of the partial contact and conformal contact electrodes are 1.2768 ± 4.0299 dB and 7.2637 ± 1.4897 dB, respectively). Furthermore, the ECG signal quality of the substrate-free conformal contact PEDOT:PSS electrode was independent of the electrode area and shape (the SNRs of the large, medium, and small electrodes are 4.0447 ± 0.4616 dB, 3.9115 ± 0.5885 dB, and 4.1556 ± 0.5557 dB, respectively; the SNRs of the circular, square, and triangular electrodes are 9.2649 ± 0.6326 dB, 9.2471 ± 0.6806 dB, and 9.1514 ± 0.6875 dB, respectively), showing high signal acquisition capability that is the same as microneedle electrodes and better than fabric electrodes. The results of clothing friction effects show that skin–electrode impedance stability was important for ECG stability, while the impedance value was not (the SNRs of friction and non-friction electrodes are 2.4128 ± 7.0784 dB and 9.2164 ± 0.6696 dB, respectively). Moreover, the skin–electrode impedance maintains stability even at a high breathing frequency, but the ECG signal fluctuates at a high breathing frequency. This experiment demonstrates that even when the skin–electrode impedance remains stable, the ECG signal can still be susceptible to interference from other factors. This study suggests that substrate-free PEDOT:PSS that could form conformal contact with the skin has higher skin–electrode impedance stability and could measure a high ECG signal even with a small electrode area, demonstrating its potential as dry ECG electrodes, but the interference from other physiological electrical signals may require better circuit design. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

32 pages, 3644 KiB  
Review
Analytical Model to Deduce the Conformational and Dynamical Behavior in Dendrimers: A Review
by Shelly Bhardwaj and Amit Kumar
Polymers 2024, 16(13), 1918; https://doi.org/10.3390/polym16131918 - 5 Jul 2024
Cited by 3 | Viewed by 1140
Abstract
This review utilizes an optimized Rouse–Zimm discrete hydrodynamic model and the preaveraged Oseen tensor, which accurately consider hydrodynamic interactions to study model dendrimers. We report the analytical theories that have been previously developed for the creation of generalized analytical models for dendrimers. These [...] Read more.
This review utilizes an optimized Rouse–Zimm discrete hydrodynamic model and the preaveraged Oseen tensor, which accurately consider hydrodynamic interactions to study model dendrimers. We report the analytical theories that have been previously developed for the creation of generalized analytical models for dendrimers. These generalized theories were used to assess the conformational and dynamical behavior of the dendrimers. By including stiffness in the bonds, the neglect of excluded volume interactions may be somewhat offset. This is true at least in the case of short spacers. While the topological limitations on the directions and orientations of the individual bond vectors in dendrimers implement semiflexibility, the intensity of these contacts was determined by the potential geometric orientations of the bonds, and later on the excluded volume interactions in dendrimers, which were described in terms of the effective co-volume between nearest non-bonded monomers and modeled using the delta function pseudopotential. With the aid of the models developed, the authors condensed various conformational and dynamic properties of dendrimers that depend on their degree of semiflexibility and the strength of the excluded volume. These analyses came to the conclusion that the flexible dendrimer in one limit and the earlier described freely rotating model of dendrimers in the other constitute a highly generalized way of capturing a wide range of conformations in the developed mathematical model in dendrimers. Full article
(This article belongs to the Special Issue Research on Polymer Simulation, Modeling and Computation: 2nd Edition)
Show Figures

Graphical abstract

15 pages, 5677 KiB  
Article
Assessing the Potential of Bio-Based Friction Modifiers for Food-Grade Lubrication
by Rosa Maria Nothnagel, Guido Boidi, Rainer Franz and Marcella Frauscher
Lubricants 2024, 12(7), 247; https://doi.org/10.3390/lubricants12070247 - 4 Jul 2024
Cited by 1 | Viewed by 1333
Abstract
The objective of this research is to identify a bio-based friction modifier (FM) with tribological performance comparable to conventional FMs. Promising alternatives to conventional FMs, such as the FMs derived from natural sources, including rapeseed and salmon oil, were selected. Increasing concerns about [...] Read more.
The objective of this research is to identify a bio-based friction modifier (FM) with tribological performance comparable to conventional FMs. Promising alternatives to conventional FMs, such as the FMs derived from natural sources, including rapeseed and salmon oil, were selected. Increasing concerns about crude oil prices, environmental impact, and the depletion of fossil resources have further fueled the search for renewable, biodegradable, and environmentally friendly raw materials for lubricants Tribological tests were conducted using a rheometer under non-conformal contact. The normal force, temperature, and sliding speed were varied to simulate conditions such as those found in a food extruder. To simulate cold extrusion applications, water and bio-based FM mixtures were used. The best-performing bio-based FMs were then mixed with a polyalphaolefin to simulate warm extrusion conditions. The results were compared to those obtained from mixtures of a polyalphaolefin and selected conventional FMs. The main finding of this study demonstrated that rapeseed and salmon oils, with a peak coefficient of friction (COF) of 0.16, are the best-performing bio-based FMs for reducing friction. When mixed with distilled water for cold extrusion (case 1) and with polyalphaolefin for warm extrusion (case 2), they performed similarly to the conventional FM, tallow amine, also with a maximum COF of 0.16, and significantly better than polyalphaolefin alone (maximum COF of 0.25). Consequently, rapeseed and salmon oils are suitable bio-based FM candidates to replace conventional FMs in food-grade lubrication. Full article
(This article belongs to the Special Issue Tribological Properties of Biolubricants)
Show Figures

Figure 1

15 pages, 7138 KiB  
Article
Arg18 Substitutions Reveal the Capacity of the HIV-1 Capsid Protein for Non-Fullerene Assembly
by Randall T. Schirra, Nayara F. B. dos Santos, Barbie K. Ganser-Pornillos and Owen Pornillos
Viruses 2024, 16(7), 1038; https://doi.org/10.3390/v16071038 - 27 Jun 2024
Cited by 3 | Viewed by 1911
Abstract
In the fullerene cone HIV-1 capsid, the central channels of the hexameric and pentameric capsomers each contain a ring of arginine (Arg18) residues that perform essential roles in capsid assembly and function. In both the hexamer and pentamer, the Arg18 rings coordinate inositol [...] Read more.
In the fullerene cone HIV-1 capsid, the central channels of the hexameric and pentameric capsomers each contain a ring of arginine (Arg18) residues that perform essential roles in capsid assembly and function. In both the hexamer and pentamer, the Arg18 rings coordinate inositol hexakisphosphate, an assembly and stability factor for the capsid. Previously, it was shown that amino-acid substitutions of Arg18 can promote pentamer incorporation into capsid-like particles (CLPs) that spontaneously assemble in vitro under high-salt conditions. Here, we show that these Arg18 mutant CLPs contain a non-canonical pentamer conformation and distinct lattice characteristics that do not follow the fullerene geometry of retroviral capsids. The Arg18 mutant pentamers resemble the hexamer in intra-oligomeric contacts and form a unique tetramer-of-pentamers that allows for incorporation of an octahedral vertex with a cross-shaped opening in the hexagonal capsid lattice. Our findings highlight an unexpected degree of structural plasticity in HIV-1 capsid assembly. Full article
Show Figures

Figure 1

29 pages, 7621 KiB  
Article
Optimizing the Utilization of Steel Slag in Cement-Stabilized Base Layers: Insights from Freeze–Thaw and Fatigue Testing
by Peng-Cheng Song, Guo-Xin Chen and Ying-Jie Chen
Materials 2024, 17(11), 2576; https://doi.org/10.3390/ma17112576 - 27 May 2024
Cited by 1 | Viewed by 1460
Abstract
This paper presents a study on the mechanical properties of cement-stabilized steel-slag-based materials under freeze–thaw cycles for a highway project in Xinjiang. Using 3D scanning technology the specimen model conforming to the real steel slag shape was established. The objectives of the study [...] Read more.
This paper presents a study on the mechanical properties of cement-stabilized steel-slag-based materials under freeze–thaw cycles for a highway project in Xinjiang. Using 3D scanning technology the specimen model conforming to the real steel slag shape was established. The objectives of the study are as follows: to explore the sensitivity between the macro- and micro-parameters of the specimen and to establish a non-linear regression equation; and to study the changes in mechanical properties of materials under freeze–thaw cycles, fatigue loading, and coupled freeze–thaw cycle–fatigue loading. The results show that there are three stages of compression damage of the specimen, namely, linear elasticity, peak plasticity, and post-peak decline. Maximum contact forces between cracks and particles occur mainly in the shear zone region within the specimen. The compression damage of the specimen is a mixed tensile–shear damage dominated by shear damage. When freeze–thaw cycles or fatigue loads are applied alone, the flexural strength and fatigue life of the specimens show a linear relationship of decline. The decrease in flexural modulus at low stress is divided into the following: a period of rapid decline, a relatively smooth period, and a period of fracture, with a tendency to change towards linear decay with increasing stress. In the case of freeze–thaw–fatigue coupling, the flexural modulus of the specimen decreases drastically by about 50% in the first 2 years, and then enters a period of steady decrease in flexural modulus in the 3rd–5th years. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop