Advanced Computational Studies in Frictional Contact

A special issue of Lubricants (ISSN 2075-4442).

Deadline for manuscript submissions: 15 April 2025 | Viewed by 2446

Special Issue Editors

School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Interests: surface/interface and tribology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Interests: surface/interface and tribology

Special Issue Information

Dear Colleagues,

Frictional contact remains a crucial area of study in various scientific and engineering disciplines, influencing fields such as tribology, materials science, and mechanical engineering. As the demand for more efficient, durable, and reliable systems continues to grow, the complexity of problems associated with frictional interactions has also increased. Advanced computational techniques offer innovative solutions to these challenges, providing deeper insights and more precise predictions.

This Special Issue aims to bring together pioneering research in the domain of frictional contact, focusing on the latest computational methods and their applications. We invite contributions that explore novel algorithms, modeling techniques, and integrative approaches that address the multifaceted nature of frictional contact problems.

Dr. Jie Zhang
Dr. Xiaoxi Qiao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Lubricants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular dynamics simulation
  • density functional theory
  • finite element method
  • multiscale simulation
  • machine learning
  • friction
  • wear
  • lubrication

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5971 KiB  
Article
Interactive Friction Modelling and Digitally Enhanced Evaluation of Lubricant Performance During Aluminium Hot Stamping
by Xiao Yang, Heli Liu, Vincent Wu, Denis J. Politis and Liliang Wang
Lubricants 2024, 12(12), 417; https://doi.org/10.3390/lubricants12120417 - 27 Nov 2024
Viewed by 468
Abstract
Conventional lubricant testing methods focus on lab-scale constant contact conditions, which cannot represent the scenarios in actual hot-stamping processes. In recent studies, the concept of the ‘digital characteristics (DC)’ of metal forming has been proposed by unveiling the intrinsic nature of the specific [...] Read more.
Conventional lubricant testing methods focus on lab-scale constant contact conditions, which cannot represent the scenarios in actual hot-stamping processes. In recent studies, the concept of the ‘digital characteristics (DC)’ of metal forming has been proposed by unveiling the intrinsic nature of the specific forming, which presents a timely solution to address this challenge. In this work, the transient behaviours of three dedicated lubricants during the hot stamping of AA6111 material were investigated considering the effects of various contact conditions using an advanced friction testing system, and the interactive friction modelling was established accordingly. The lubricant limit diagram (LLD) of each lubricant was then generated to quantitatively evaluate the lubricant performance following the complex tool–workpiece interactions based on the tribological DCs, and a detailed investigation on the lubricant failure regions was conducted based on the interactive friction modelling. Finally, the industrial application index (IAI) was proposed and defined as a comprehensive evaluation of lubricant applications in the industry, and the most suitable lubricant was identified among the three candidates for mass production. Full article
(This article belongs to the Special Issue Advanced Computational Studies in Frictional Contact)
Show Figures

Figure 1

15 pages, 3831 KiB  
Article
Numerical Simulation of the Temperature in a Train Brake Disc Using the Barycentric Rational Interpolation Collocation Method
by Bing Wu, Yuanying Zhuo, Linquan Yao, Quan Shen, Guangwen Xiao and Zhaoyang Wang
Lubricants 2024, 12(10), 335; https://doi.org/10.3390/lubricants12100335 - 30 Sep 2024
Viewed by 646
Abstract
The thermal analysis of brake discs is crucial for studying issues such as wear and cracking. This paper establishes a symmetric two-dimensional brake disc model using the barycentric rational interpolation collocation method (BRICM). The model accounts for the effects of thermal radiation and [...] Read more.
The thermal analysis of brake discs is crucial for studying issues such as wear and cracking. This paper establishes a symmetric two-dimensional brake disc model using the barycentric rational interpolation collocation method (BRICM). The model accounts for the effects of thermal radiation and is linearized using Newton’s linear iteration method. In the spatial dimension, the two-dimensional heat conduction equation is discretized using BRICM, while in the temporal dimension, it is discretized using the finite difference method (FDM). The resulting temperature distribution of the brake disc during two consecutive braking events is consistent with experimental data. Additionally, factors affecting the accurate calculation of the temperature are examined. Compared to other models, the proposed model achieves accurate temperature distributions with fewer nodes. Furthermore, the numerical results highlight the significance of thermal radiation within the model. The results obtained using BRICM can be used to predict the two-dimensional temperature distribution of train brake discs. Full article
(This article belongs to the Special Issue Advanced Computational Studies in Frictional Contact)
Show Figures

Figure 1

14 pages, 5527 KiB  
Article
Impact of Interatomic Potentials on Atomic-Scale Wear of Graphene: A Molecular Dynamics Study
by Xueqi Ye, Jie Zhang and Ping Chen
Lubricants 2024, 12(7), 245; https://doi.org/10.3390/lubricants12070245 - 4 Jul 2024
Viewed by 994
Abstract
Selecting an appropriate empirical interatomic potential is essential for accurately describing interatomic interactions and simulating the friction and wear of graphene. Four empirical potentials—Tersoff, REBO, AIREBO, and LCBOP—were employed in molecular dynamics simulations to study the wear process of graphene at the atomic [...] Read more.
Selecting an appropriate empirical interatomic potential is essential for accurately describing interatomic interactions and simulating the friction and wear of graphene. Four empirical potentials—Tersoff, REBO, AIREBO, and LCBOP—were employed in molecular dynamics simulations to study the wear process of graphene at the atomic scale. The frictional process of graphene was found to be divisible into three distinct phases: elastic deformation, plastic deformation, and wear. Using a progressively increasing load method, the critical load for each phase of graphene under four different empirical potentials was identified. Furthermore, the formation of Stone–Wales (SW) defects, bond distribution, bond breaking and healing, and wrinkle formation were analyzed in detail. Finally, a comparison was made with previous experimental results regarding friction coefficient and wear morphology. Full article
(This article belongs to the Special Issue Advanced Computational Studies in Frictional Contact)
Show Figures

Figure 1

Back to TopTop