Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Keywords = compound dry separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 627 KiB  
Article
Fatty Acid and Aroma Profiles of Microencapsulated Olive Oils from Southeastern Anatolia: Effects of Cultivar Variations, Storage Time, and Wall Material Formulation
by Songül Kesen and Eda Elgin Kiliç
Foods 2025, 14(14), 2439; https://doi.org/10.3390/foods14142439 - 10 Jul 2025
Viewed by 340
Abstract
The microencapsulation of olive oil plays an important role in food science and technology by controlling oxidative deterioration, improving emulsification, and preserving bioactive properties, ultimately benefiting product formulations in both the culinary and medical fields. This study is important in that it reveals [...] Read more.
The microencapsulation of olive oil plays an important role in food science and technology by controlling oxidative deterioration, improving emulsification, and preserving bioactive properties, ultimately benefiting product formulations in both the culinary and medical fields. This study is important in that it reveals the effect of the microencapsulation process on aroma compounds and provides a data set for investigating the potential use of powdered products. In this study, the microencapsulation of emulsions prepared with carbohydrate–protein-based coating materials of oils obtained from two different olive varieties (Nizip and Kilis Yaglik) grown in the Southeastern Anatolia Region of Turkey was carried out via the freeze-drying method. In the study, emulsions were formed using protein isolate (WPI) and maltodextrin (MD) at different ratios (1:1, 1:4, 1:10) as wall materials, and microcapsule powder products were obtained via the freeze-drying method. While the physical properties of the emulsions and microcapsules were examined, the oxidative stability, fatty acid profile, and aroma compounds were examined in oils and microcapsules. The changes in oxidative stability and aroma compounds were also monitored during storage (0, 45, and 90 days at room temperature). According to the data obtained, it was observed that the emulsion stability increased with increasing maltodextrin content. Similarly, the microencapsulation efficiency was also found to change in direct proportion to the maltodextrin ratio. Encapsulated samples showed better oxidative stability than oils. Oleic acid was the predominant fatty acid in both oils and microencapsulated products, followed by palmitic and linoleic acids. According to the aroma compounds, the microcapsules obtained from both types of oils were clearly separated from the oils. Full article
(This article belongs to the Special Issue Oils and Fats: Structure and Stability)
Show Figures

Figure 1

20 pages, 800 KiB  
Article
The Influence of Plant Growth Regulators (PGRs) on Physical and Chemical Characteristics of Hops (Humulus lupulus L.)
by Mengzi Zhang, Nicholas A. Wendrick, Sean M. Campbell, Jacob E. Gazaleh, Heqiang Huo, Katherine A. Thompson-Witrick and Brian J. Pearson
Int. J. Plant Biol. 2025, 16(3), 79; https://doi.org/10.3390/ijpb16030079 - 8 Jul 2025
Viewed by 356
Abstract
Hops (Humulus lupulus L.) are a critical component in beer brewing. The growing demand for craft beer has increased interest in hop cultivation in non-traditional regions where unfavorable climatic conditions hinder optimal yield and quality. To address these challenges, this study investigates [...] Read more.
Hops (Humulus lupulus L.) are a critical component in beer brewing. The growing demand for craft beer has increased interest in hop cultivation in non-traditional regions where unfavorable climatic conditions hinder optimal yield and quality. To address these challenges, this study investigates the effects of plant growth regulators (PGRs) on hop cone yield and chemical compositions. In two separate studies, year-1 Cascade hops were subjected to various PGR treatments in the field. PGR treatments generally had minimal effect on the dry cone yield in study I. In study II, a combination of Ethephon at 45 mg/L and ProGibb at 3 mg/L significantly increased the cone yield by 125% compared to the control. While all treatments had a “good quality” hop storage index, a combination of Ethephon and ProGibb produced alpha acid percentages within the commercial standard range. Ethephon at 30 mg/L combined with ProGibb at 2 mg/L enhanced bitterness and aroma, delivering the highest concentration of volatile organic compounds at 569.7 mg/L, thereby enhancing aroma compounds associated with fruity esters, monoterpenes, and sesquiterpenes. This study demonstrates that specific PGR treatments can improve the chemical composition of hops grown in non-traditional regions, with implications for optimizing aroma and bitterness in beer. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

24 pages, 2231 KiB  
Article
Characterization of Aroma-Active Compounds in Five Dry-Cured Hams Based on Electronic Nose and GC-MS-Olfactometry Combined with Odor Description, Intensity, and Hedonic Assessment
by Dongbing Yu and Yu Gu
Foods 2025, 14(13), 2305; https://doi.org/10.3390/foods14132305 - 29 Jun 2025
Viewed by 403
Abstract
The evaluation of aroma-active profiles in dry-cured hams is crucial for determining quality, flavor, consumer acceptance, and economic value. This study characterized the volatile compounds in five varieties of dry-cured hams using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and an electronic nose (E-Nose). In total, [...] Read more.
The evaluation of aroma-active profiles in dry-cured hams is crucial for determining quality, flavor, consumer acceptance, and economic value. This study characterized the volatile compounds in five varieties of dry-cured hams using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and an electronic nose (E-Nose). In total, 78 volatile compounds were identified across five varieties of dry-cured hams. A total of 29 compounds were recognized as aroma-active compounds. Odor description, intensity, and hedonic assessment were employed to evaluate these compounds. Black Hoof Cured Ham and Special-grade Xuan-Zi Ham contained higher levels of favorable compounds such as nonanal, 5-butyldihydro-2(3H)-furanone, and 2,6-dimethylpyrazine, contributing to sweet and popcorn-like notes. In contrast, Fei-Zhong-Wang Ham and Liang-Tou-Wu Ham exhibited higher proportions of off-odor compounds with lower hedonic scores. A principal component analysis clearly separated the five hams based on their aroma-active profiles, and a correlation analysis between E-Nose sensor responses and GC-MS-O data demonstrated a strong discriminatory ability for specific samples. These findings offer valuable insights into the chemical and sensory differentiation of dry-cured hams and provide a scientific basis for quality control, product development, and future improvements in E-Nose sensor design and intelligent aroma assessment. Full article
(This article belongs to the Special Issue How Does Consumers’ Perception Influence Their Food Choices?)
Show Figures

Figure 1

20 pages, 4330 KiB  
Article
Extraction of Terpenoids from Pine Needle Biomass Using Dimethyl Ether
by Gary S. Groenewold, Christopher Orme, Caleb Stetson, Rebecca M. Brown, Lynn M. Wendt and Aaron D. Wilson
Separations 2025, 12(7), 169; https://doi.org/10.3390/separations12070169 - 26 Jun 2025
Viewed by 499
Abstract
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine [...] Read more.
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine biomass is an energy-intensive operation, typically requiring a significant input of thermal energy. An alternative separation approach with potential energy savings is extraction with a condensable gas, namely, dimethyl ether. Biomass materials are exposed to liquid dimethyl ether under pressure, which mobilizes the organics. The extract is then separated from the insoluble pine matter, and dimethyl ether is volatilized away from the separated organic species. A variety of terpene derivatives were extracted from pine needle biomass using this approach, including monoterpenes, sesquiterpenes, and related oxygenates, which were identified using two-dimensional gas chromatography/mass spectrometry. Additionally, the dimethyl ether-treated needles resemble needles subjected to low-temperature drying, whereas needles treated with a high-temperature drying method appear to have shrunken structures. The results suggest that dimethyl ether extraction has significant potential for separating valuable organics from complex matrices without the application of thermal energy during treatment. Full article
Show Figures

Figure 1

22 pages, 1017 KiB  
Article
Development of a Validated LC-MS Method for the Determination of Cannabinoids and Evaluation of Supercritical CO2 vs. Ultrasound-Assisted Extraction in Cannabis sativa L. (Kompolti cv.)
by Vasileios A. Ioannidis, Varvara Sygouni, Sotirios Giannopoulos, Konstantinos Sotirianos, Theophilos Ioannides, Christakis A. Paraskeva and Fotini N. Lamari
Antioxidants 2025, 14(7), 777; https://doi.org/10.3390/antiox14070777 - 24 Jun 2025
Viewed by 1444
Abstract
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate [...] Read more.
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate HPLC-MS method for the determination of nine common cannabinoids and compare two widely used extraction techniques: ultrasound-assisted extraction (UAE) with methanol and supercritical CO2 extraction (SFE). Inflorescences of the Kompolti cultivar were used as the plant material. On a polar C18 column, more than thirty compounds were well separated within 25 min; thirteen cannabinoids were identified and eight of them were quantified, with cannabidiol and its acidic precursor being the most abundant. Additionally, three spectrophotometric assays were employed for extract characterization: the total phenolic content, total flavonoid content, and DPPH radical scavenging capacity. The SFE extract, obtained using ethanol as a co-solvent under low pressure (<100 bar) and temperature (<45 °C), was more enriched than the UAE extract (181.62 ± 2.90 vs. 140.64 ± 13.24 mg quercetin equivalents/g of dry extract) and cannabinoids (446.29 ± 22.66 vs. 379.85 ± 17.16 mg/g of dry extract), especially cannabinoid acids. However, UAE achieved greater recovery from the plant material (cannabinoids: 83.42 ± 5.15 vs. 68.84 ± 3.49 mg/g of plant material) and showed superior antioxidant capacity (DPPH IC50: 2.50 ± 0.18 vs. 3.37 ± 0.07 mg/mL). Notwithstanding the observed partial decarboxylation, the high repeatability (RSD < 15%, n = 11) of the entire analytical workflow involving UAE extraction and LC-MS analysis renders it suitable for routine analyses. This study contributes to the ongoing efforts toward the quality control and valorization of C. sativa. Full article
Show Figures

Figure 1

23 pages, 1098 KiB  
Article
Separation of Bioactive Compounds from Pfaffia glomerata: Drying, Green Extraction, and Physicochemical Properties
by Marcela Moreira Terhaag, Ana Catarina Mosquera dos Santos, Daniel Gonzaga de Lima, Otavio Akira Sakai, Giselle Giovanna do Couto de Oliveira, Cristiane Mengue Feniman Moritz, Bogdan Demczuk Junior, Jorcilene dos Santos Silva, Suelen Pereira Ruiz, Maria Graciela Iecher Faria, Beatriz Cervejeira Bolanho Barros and Erica Marusa Pergo Coelho
Separations 2025, 12(6), 164; https://doi.org/10.3390/separations12060164 - 17 Jun 2025
Viewed by 383
Abstract
Leaves (LV), stems (STs), and inflorescences (IFs) of Pfaffia glomerata are usually discarded despite containing various bioactive compounds, especially β-ecdysone saponin. The objective was to optimize by desirability (DI) the ultrasound-assisted extraction (UAE) of bioactive compounds (total phenolics (TPCs), antioxidant activity (AA), and [...] Read more.
Leaves (LV), stems (STs), and inflorescences (IFs) of Pfaffia glomerata are usually discarded despite containing various bioactive compounds, especially β-ecdysone saponin. The objective was to optimize by desirability (DI) the ultrasound-assisted extraction (UAE) of bioactive compounds (total phenolics (TPCs), antioxidant activity (AA), and total saponins) from the aerial parts (LV, ST, and IF) of P. glomerata. Ideal drying conditions were determined and the drying kinetics were evaluated. LV, STs, and IFs were dried and extracted (0.06 g/mL 80% EtOH) in a USS (6 cm × 12 mm, pulse 3/6 s) by Central Composite Design (CCD), varying sonication power (140–560 W) and time (11–139 min), with TPC, AA by DPPH, and total saponin content as responses. The DI indicated that the higher TPC, AA, and saponin levels were obtained at 136.5 min and 137.87 W (STs), and 138.6 min and 562.32 W (LV and IFs). IF extracts contained higher saponin, TPCs, and AA. Higher β-ecdysone levels (3.90 mg g−1) were present in the leaves. Several phenolics were detected in area parts of P. glomerata, the most abundant being p-coumaric acid (LV) and nicotinic acid (STs and IFs). These compounds provide potential health benefits. Phytol was found in all extracts. Extracts by UAE from leaves have antibacterial potential, with demonstrated inhibitory effects against S. aureus, E. coli, L. monocytogenes, S. Typhi, and P. aeruginosa, and presented bactericidal effects against E. coli, L. monocytogenes, and S. Typhi. Aerial parts of P. glomerata can be used to obtain extracts by UAE rich in bioactive compounds, providing complete utilization of the plant and sustainability to cultivation. This work represents the first report on the application of ecofriendly UAE techniques to extract bioactive compounds from the aerial parts of Brazilian ginseng. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

19 pages, 1751 KiB  
Article
Purification of Flavonoids from an Aqueous Cocoa (Theobroma cocoa L.) Extract Using Macroporous Adsorption Resins
by Nicole Beeler, Tilo Hühn, Sascha Rohn and Renato Colombi
Molecules 2025, 30(11), 2336; https://doi.org/10.3390/molecules30112336 - 27 May 2025
Viewed by 459
Abstract
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) [...] Read more.
Cocoa is a rich source of health-promoting polyphenols such as flavanols. These compounds can be separated from other matrix constituents using various adsorbents or resins. Seven different macroporous resins (Amberlite® XAD-2, XAD-4, XAD-7, XAD-7HP, XAD-16, SepabeadsTM SP207, and Diaion® HP2-MG) were evaluated for their adsorption and desorption properties for the enrichment of flavonoids from an aqueous cocoa (Theobroma cacao L.) extract. The influence of adsorption and desorption temperatures and the concentration of the desorption solvent (a hydroalcoholic solution) were investigated by static adsorption and desorption methods. The results of the resin comparison showed that the adsorbent XAD-7HP had the best adsorption characteristics, with an adsorption capacity of 39.8 mg ECE/g. XAD-7HP was found to be the most suitable adsorbent, and 70% ethanol was the best desorbing solvent, based on static experiments. In addition, the optimal conditions for the adsorption of flavonoids were obtained at a temperature of 30 °C, where equilibrium was reached after 80 min. The static adsorption process was well-described by a pseudo-second-order kinetics model, while the adsorption isotherm data were fitted well by the Freundlich isotherm model. Further dynamic adsorption and desorption characteristics were evaluated on a packed glass column, and it was shown that XAD-7HP could enrich the flavanol content by 5.03-fold, with a dry matter content of 456.05 mg/mL (as estimated by the degree of DP1–DP7 procyanidin polymers using ultra-pressure liquid chromatography). Full article
Show Figures

Graphical abstract

14 pages, 2848 KiB  
Article
Development of Fluorine Fixation Processes for the Horizontal Recycling of Lithium
by Kazuki Fujiwara, Kaisei Ito, Shunsuke Kuzuhara, Osamu Terakado, Natsuki Hosoya, Hideo Hayashi and Ryo Kasuya
Materials 2025, 18(9), 2050; https://doi.org/10.3390/ma18092050 - 30 Apr 2025
Viewed by 315
Abstract
In order to effectively recover Li from cathode active materials of lithium-ion batteries, model samples of LiCoO2 mixed with polyvinylidene fluoride (PVDF) were calcined at temperatures of 350–700 °C under an Ar or air atmosphere. Complete Li recovery was achieved by calcining [...] Read more.
In order to effectively recover Li from cathode active materials of lithium-ion batteries, model samples of LiCoO2 mixed with polyvinylidene fluoride (PVDF) were calcined at temperatures of 350–700 °C under an Ar or air atmosphere. Complete Li recovery was achieved by calcining the model sample at 400 °C under an Ar atmosphere, followed by water leaching. Additionally, to immobilize PVDF-derived F, an impurity in Li purification, we explored the use of calcium compounds (Ca(OH)2 and CaCO3) and a layered double hydroxide in both dry and wet processing methods. In the wet process, F was fixed by adding Ca(OH)2 to an aqueous LiF solution containing 1000 ppm of F. We confirmed that 98.6% of F was successfully removed from the solution after repeated fixation procedures. Furthermore, the unreacted Ca in the solution was separated and removed as CaCO3 by concentrating the solution. Full article
(This article belongs to the Special Issue Low Dimensional Materials for Batteries and Supercapacitors)
Show Figures

Graphical abstract

18 pages, 3894 KiB  
Article
Carbon in Woody Debris and Charcoal Layer in Cold Temperate Coniferous Forest 13 Years After a Severe Wildfire
by Yuanchun Peng, Lina Shi, Xingyu Hou and Yun Zhang
Forests 2025, 16(4), 685; https://doi.org/10.3390/f16040685 - 15 Apr 2025
Viewed by 316
Abstract
Pyrogenic carbon (PyC) is generated from the incomplete combustion of biomass and fossil fuels. Pyrogenic carbon is highly stable and is often referred to as a missing carbon sink. It plays a crucial role in global carbon cycling and climate change research. We [...] Read more.
Pyrogenic carbon (PyC) is generated from the incomplete combustion of biomass and fossil fuels. Pyrogenic carbon is highly stable and is often referred to as a missing carbon sink. It plays a crucial role in global carbon cycling and climate change research. We analyzed the storage of PyC and uncharred biological organic carbon (BOC) within woody debris (WD) and the charcoal layer, as well as the properties of PyC, across four forest types in the cold temperate coniferous forest of the Greater Khingan Mountains. Pyrogenic carbon in WD appears as charred, blackened material, while PyC in the charcoal layer was extracted through chemical oxidation using HF/HCl treatment. Our methodology included particle size separation through dry sieving, followed by the analysis of four size fractions (>2 mm, 2–1 mm, 1–0.5 mm and <0.5 mm) for elemental composition, and the chemical composition was analyzed using DRIFT. With respect to WD, PyC storage ranged from 0.040 to 0.179 Mg·ha−1, whereas BOC storage ranged from 3.1 to 16.8 Mg·ha−1. In the charcoal layer, PyC storage ranged from 7.9 to 44.3 Mg·ha−1, and BOC storage ranged from 3.8 to 11.6 Mg·ha−1. Pyrogenic carbon storage in the charcoal layer dominated (>99%) on the above-ground in each forest type. The DRIFT analysis confirmed that the coarse fraction (>2 mm) contain more polymeric aromatic structures, and most likely indicated the presence of benzene carboxylic compounds (1710 cm−1), which may originate from the charred plant material. Our research aims to enhance the understanding of the retention effects of recalcitrant carbon in WD and charcoal layer of cold temperate coniferous forest, thereby providing new insights into the impact of fire disturbances on carbon cycling within forest ecosystems. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

34 pages, 38166 KiB  
Review
Gas Generation in Lithium-Ion Batteries: Mechanisms, Failure Pathways, and Thermal Safety Implications
by Tianyu Gong, Xuzhi Duan, Yan Shan and Lang Huang
Batteries 2025, 11(4), 152; https://doi.org/10.3390/batteries11040152 - 13 Apr 2025
Cited by 2 | Viewed by 3251
Abstract
Gas evolution in lithium-ion batteries represents a pivotal yet underaddressed concern, significantly compromising long-term cyclability and safety through complex interfacial dynamics and material degradation across both normal operation and extreme thermal scenarios. While extensive research has focused on isolated gas generation mechanisms in [...] Read more.
Gas evolution in lithium-ion batteries represents a pivotal yet underaddressed concern, significantly compromising long-term cyclability and safety through complex interfacial dynamics and material degradation across both normal operation and extreme thermal scenarios. While extensive research has focused on isolated gas generation mechanisms in specific components, critical knowledge gaps persist in understanding cross-component interactions and the cascading failure pathways it induced. This review systematically decouples gas generation mechanisms at cathodes (e.g., lattice oxygen-driven CO2/CO in high-nickel layered oxides), anodes (e.g., stress-triggered solvent reduction in silicon composites), electrolytes (solvent decomposition), and auxiliary materials (binder/separator degradation), while uniquely establishing their synergistic impacts on battery stability. Distinct from prior modular analyses, we emphasize that: (1) emerging systems exhibit fundamentally different gas evolution thermodynamics compared to conventional materials, exemplified by sulfide solid electrolytes releasing H2S/SO2 via unique anionic redox pathways; (2) gas crosstalk between components creates compounding risks—retained gases induce electrolyte dry-out and ion transport barriers during cycling, while combustible gas–O2 mixtures accelerate thermal runaway through chain reactions. This review proposes three key strategies to suppress gas generation: (1) oxygen lattice stabilization via dopant engineering, (2) solvent decomposition mitigation through tailored interphases engineering, and (3) gas-selective adaptive separator development. Furthermore, it establishes a multiscale design framework spanning atomic defect control to pack-level thermal management, providing actionable guidelines for battery engineering. By correlating early gas detection metrics with degradation patterns, the work enables predictive safety systems and standardized protocols, directly guiding the development of reliable high-energy batteries for electric vehicles and grid storage. Full article
(This article belongs to the Special Issue High-Safety Lithium-Ion Batteries: Basics, Progress and Challenges)
Show Figures

Figure 1

16 pages, 1812 KiB  
Article
Composition and Technological Properties of Modified Lingonberry (Vaccinium vitis-idaea L.) Pomace
by Simona Šimkutė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(7), 3661; https://doi.org/10.3390/app15073661 - 26 Mar 2025
Cited by 1 | Viewed by 483
Abstract
Lingonberry pomace (LP) is a by-product rich in valuable bioactive compounds and can be used in the food industry after various treatments and property characterization. This study aimed to evaluate the impact of commercially available enzymes (Viscozyme® L, Pectinex® Ultra Tropical, [...] Read more.
Lingonberry pomace (LP) is a by-product rich in valuable bioactive compounds and can be used in the food industry after various treatments and property characterization. This study aimed to evaluate the impact of commercially available enzymes (Viscozyme® L, Pectinex® Ultra Tropical, and Celluclast® 1.5 L) and supercritical carbon dioxide (SFE-CO2) extraction technology on the chemical composition and technological properties of treated LP products. The Megazyme kit was used to determine the soluble dietary fiber (SDS) and insoluble dietary fiber (IDF) contents, while the changes in mono-, disaccharide, and oligosaccharides were analyzed by applying high-pressure liquid chromatography with a refractive index detector. The analyzed properties were as follows: the water swelling capacity (WSC), water retention capacity (WRC), water solubility index (WSI), oil retention capacity (ORC), bulk density (BD), and emulsion stability of modified LP. The tested LP contained 8.49 g/100 g of SDF and 65.36 g/100 g of IDF (in dry matter). The partial separation of lipophilic substances during SFE-CO2 extraction did not significantly affect the enzymatic hydrolysis efficiency. The amount of oligosaccharides in the LP increased using enzymes with pectinolytic activity (Viscozyme® L and Pectinex® Ultra Tropical), while cellulolytic enzymes (Celluclast® 1.5 L) increased the amount of SDF and improved the IDF/SDF ratio. Enzymatic hydrolysis increased the SI, WRC, and ORC of LP powder. Emulsions with LP hydrolyzed with Pectinex® Ultra Tropical demonstrated the highest stability during storage. This study demonstrates that the modification of LP powders provides diverse technological properties, which could expand the application of such products for further food production. Full article
Show Figures

Figure 1

13 pages, 1268 KiB  
Article
Evaluation of a Natural Olive Extract as a Flavor Component in Dry and Wet Dog Foods
by Ryan Guldenpfennig, Clare Hsu, Krysten Fries-Craft, Adriana Garber, Xinhe Huang, Mark Wieneke and Kristen Rutledge
Pets 2025, 2(1), 14; https://doi.org/10.3390/pets2010014 - 12 Mar 2025
Viewed by 971
Abstract
Plant extracts, such as olive extract (OE), have been used in human and pet foods for their biological benefits; however, no available data have demonstrated OE’s effect on palatability in dogs. The current study aimed to evaluate acceptance of dry and canned dog [...] Read more.
Plant extracts, such as olive extract (OE), have been used in human and pet foods for their biological benefits; however, no available data have demonstrated OE’s effect on palatability in dogs. The current study aimed to evaluate acceptance of dry and canned dog foods with differing inclusions of OE as a flavor component. Flavor compounds in OE were analyzed by gas chromatography–mass spectrometry and high-pressure liquid chromatography, detecting 137 volatile compounds, including acetic acid and hydroxytyrosol. Dog kibbles were coated with liquid commercial palatants containing OE that resulted in application rates of 0 (control), 120, 200, and 500 ppm of OE in the diets. OE was also added at 0 (control), 120, 200, and 500 ppm into a wet food formulation with a commercial palatant before retort processing. Two separate panels of adult beagles were used for monadic testing to determine acceptance rates for kibble (5/treatment; 20 total) and canned foods (4/treatment; 16 total) in a 4 × 4 Latin square design. None of the tested inclusions impacted food acceptance in this preliminary study (p > 0.05). As a flavor ingredient, OE can be added into dry or wet dog food up to 500 ppm without deterring effects on palatability. Full article
(This article belongs to the Topic Research on Companion Animal Nutrition)
Show Figures

Figure 1

14 pages, 1193 KiB  
Article
Determination of Polycyclic Aromatic Hydrocarbons (PAHs) Transfer from Dried Medicinal Plants in Infusions for Therapeutic Purposes
by Mihaela Mirela Bratu, Semaghiul Birghila, Corina Birghila, Diana Andreea Danilov, Valentina Coatu, Elena Ristea and Nicoleta Alexandra Damir
Appl. Sci. 2025, 15(1), 447; https://doi.org/10.3390/app15010447 - 6 Jan 2025
Viewed by 902
Abstract
The purpose of this paper is to determine the level of polycyclic aromatic hydrocarbons (PAHs) from medicinal plants and infusions prepared using them, as well as assess the transfer of these contaminants from plants to infusions. The separation of compounds was achieved using [...] Read more.
The purpose of this paper is to determine the level of polycyclic aromatic hydrocarbons (PAHs) from medicinal plants and infusions prepared using them, as well as assess the transfer of these contaminants from plants to infusions. The separation of compounds was achieved using microwave extraction for dried plants and liquid–liquid extraction in the case of infusions. The extracts were cleaned using solid-phase extraction, and the compounds were analysed using gas chromatography coupled with mass spectrometry (GC-MS). Exposure to PAHs through tea infusion consumption was evaluated by calculating the estimated daily intake (EDI, ng/kg.bw/day) and Margin of Exposure (MOE). The average total content of PAHs varied from 277.22 ± 12.78 to 2466.46 ± 203.45 µg/kg in dry plants, and the compounds benzo[b]fluoranthene (BbF) and benzo[a]pyrene (BaP) were present in all samples. In the herbal tea infusions, the average total PAH content varied between 612.55 ± 46.12 ng/L and 2292.2 ± 140.24 ng/L. The observation was statistically checked using a two-sample paired test. The analysis revealed that PAHs could be split into those for which the content in the medicinal plants is significantly larger than in the infusions and those for which the difference is not significant. The average transfer rates of ∑16PAHs from plants to infusions varied from 7.25 to 32.86%. The MOE values confirmed that consumer exposure to PAHs via tea infusions is very low and safe for health. Full article
(This article belongs to the Special Issue Advances in Biological Activities of Natural Products)
Show Figures

Figure 1

23 pages, 15584 KiB  
Article
Comparison of GFRP (Glass Fiber-Reinforced Polymer) and CFRP (Carbon Fiber-Reinforced Polymer) Composite Adhesive-Bonded Single-Lap Joints Used in Marine Environments
by Gurcan Atakok and Dudu Mertgenc Yoldas
Sustainability 2024, 16(24), 11105; https://doi.org/10.3390/su162411105 - 18 Dec 2024
Cited by 4 | Viewed by 2437
Abstract
Macroscopic structures consisting of two or more materials are called composites. The decreasing reserves of the world’s oil reserve and the environmental pollution of existing energy and production resources made the use of recycling methods inevitable. There are mechanical, thermal, and chemical recycling [...] Read more.
Macroscopic structures consisting of two or more materials are called composites. The decreasing reserves of the world’s oil reserve and the environmental pollution of existing energy and production resources made the use of recycling methods inevitable. There are mechanical, thermal, and chemical recycling methods for the recycling of thermosets among composite materials. The recycling of thermoset composite materials economically saves resources and energy in the production of reinforcement and matrix materials. Due to the superior properties such as hardness, strength, lightness, corrosion resistance, design width, and the flexibility of epoxy/vinylester/polyester fibre formation composite materials combined with thermoset resin at the macro level, environmentally friendly sustainable development is happening with the increasing use of composite materials in many fields such as the maritime sector, space technology, wind energy, the manufacturing of medical devices, robot technology, the chemical industry, electrical electronic technology, the construction and building sector, the automotive sector, the defence industry, the aviation sector, the food and agriculture sector, and sports equipment manufacturing. Bonded joint studies in composite materials have generally been investigated at the level of a single composite material and single joint. The uncertainty of the long-term effects of different composite materials and environmental factors in single-lap bonded joints is an important obstacle in applications. The aim of this study is to investigate the effects of single-lap bonded GFRP (glass fibre-reinforced polymer) and CFRP (carbon fibre-reinforced polymer) specimens on the material at the end of seawater exposure. In this study, 0/90 orientation twill weave seven-ply GFRP and eight-ply CFRP composite materials were used in dry conditions (without seawater soaking) and the hand lay-up method. Seawater was taken from the Aegean Sea, İzmir province (Selçuk/Pamucak), in September at 23.5 °C. This seawater was kept in different containers in seawater for 1 month (30 days), 2 months (60 days), and 3 months (90 days) separately for GFRP and CFRP composite samples. They were cut according to ASTM D5868-01 for single-lap joint connections. Moisture retention percentages and axial impact tests were performed. Three-point bending tests were then performed according to ASTM D790. Damage to the material was examined with a ZEISS GEMINESEM 560 scanning electron microscope (SEM). The SEM was used to observe the interface properties and microstructure of the fracture surfaces of the composite samples by scanning images with a focused electron beam. Damage analysis imaging was performed on CFRP and GFRP specimens after sputtering with a gold compound. Moisture retention rates (%), axial impact tests, and three-point bending test specimens were kept in seawater with a seawater salinity of 3.3–3.7% and a seawater temperature of 23.5 °C for 1, 2, and 3 months. Moisture retention rates (%) are 0.66%, 3.43%, and 4.16% for GFRP single-lap bonded joints in a dry environment and joints kept for 1, 2, and 3 months, respectively. In CFRP single-lap bonded joints, it is 0.57%, 0.86%, and 0.87%, respectively. As a result of axial impact tests, under a 30 J impact energy level, the fracture toughness of GFRP single-lap bonded joints kept in a dry environment and seawater for 1, 2, and 3 months are 4.6%, 9.1%, 14.7%, and 11.23%, respectively. At the 30 J impact energy level, the fracture toughness values of CFRP single-lap bonded joints in a dry environment and in seawater for 1, 2, and 3 months were 4.2%, 5.3%, 6.4%, and 6.1%, respectively. As a result of three-point bending tests, GFRP single-lap joints showed a 5.94%, 8.90%, and 12.98% decrease in Young’s modulus compared to dry joints kept in seawater for 1, 2, and 3 months, respectively. CFRP single-lap joints showed that Young’s modulus decreased by 1.28%, 3.39%, and 3.74% compared to dry joints kept in seawater for 1, 2, and 3 months, respectively. Comparing the GFRP and CFRP specimens formed by a single-lap bonded connection, the moisture retention percentages of GFRP specimens and the amount of energy absorbed in axial impact tests increased with the soaking time in seawater, while Young’s modulus was less in three-point bending tests, indicating that CFRP specimens have better mechanical properties. Full article
Show Figures

Figure 1

14 pages, 1103 KiB  
Article
Lactuca racemosa Willd., Source of Antioxidants with Diverse Chemical Structures
by Klaudia Michalska, Danuta Jantas, Janusz Malarz, Klaudia Jakubowska, Wojciech Paul and Anna Stojakowska
Molecules 2024, 29(24), 5975; https://doi.org/10.3390/molecules29245975 - 18 Dec 2024
Cited by 1 | Viewed by 1122
Abstract
Ethanolic extracts from the roots and aerial parts of the hitherto chemically uninvestigated lettuce species Lactuca racemosa Willd. (Cichorieae, Asteraceae) were chromatographically separated to obtain eight sesquiterpenoids, two apocarotenoids (loliolide and (6S,9S) roseoside), and three phenolic glucosides (apigenin 7- [...] Read more.
Ethanolic extracts from the roots and aerial parts of the hitherto chemically uninvestigated lettuce species Lactuca racemosa Willd. (Cichorieae, Asteraceae) were chromatographically separated to obtain eight sesquiterpenoids, two apocarotenoids (loliolide and (6S,9S) roseoside), and three phenolic glucosides (apigenin 7-O-glucoside, eugenyl-4-O-β-glucopyranoside, and 5-methoxyeugenyl-4-O-β-glucopyranoside). Four of the isolated sesquiterpene lactones (8-α-angeloyloxyleucodin, matricarin, 15-deoxylactucin, and deacetylmatricarin 8-β-glucopyranoside) have not previously been found either in Lactuca spp. or in Cicerbita spp. In addition, HPLC-PAD chromatographic methods were used to estimate the deacetylmatricarin derivatives, luteolin 7-O-glucoside, and caffeic acid derivatives contents in the analyzed plant material. The aerial parts contained c. 3.0% dry weight of chicoric acid and equal amounts (0.4%) of caftaric acid and luteolin 7-O-glucoside. The roots contained fewer phenolic metabolites but were rich in deacetylmatricarin glucoside (c. 1.3%). The aglycone of the most abundant sesquiterpene lactone was evaluated with respect to its neuroprotective effect in H2O2- and 6-OHDA-treated human neuroblastoma SH-SY5Y cells. This compound, at concentrations of 10 and 50 μM, provided partial protection of undifferentiated cells, and at a concentration of 50 μM, it provided partial protection of retinoic acid-differentiated cells from H2O2-induced damage. In a model of 6-OHDA-evoked cytotoxicity, the sesquiterpenoid was less effective. Our findings may support the inclusion of this plant into the human diet. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop