Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (308)

Search Parameters:
Keywords = composite microbial agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2411 KiB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

35 pages, 2798 KiB  
Review
Mechanistic Insight into the Antioxidant and Antimicrobial Activities of Palm Oil-Derived Biomaterials: Implications for Dental and Therapeutic Applications
by Syafira Masri, Nurulhuda Mohd, Noor Hayaty Abu Kasim and Masfueh Razali
Int. J. Mol. Sci. 2025, 26(14), 6975; https://doi.org/10.3390/ijms26146975 - 20 Jul 2025
Viewed by 143
Abstract
Palm oil is a highly versatile natural resource that has gathered significant attention due to its bioactive properties, particularly its antimicrobial and antioxidant effects. Rich in tocotrienols, tocopherols, and carotenoids, palm oil exhibits potent antioxidant activity, while its fatty acid content and other [...] Read more.
Palm oil is a highly versatile natural resource that has gathered significant attention due to its bioactive properties, particularly its antimicrobial and antioxidant effects. Rich in tocotrienols, tocopherols, and carotenoids, palm oil exhibits potent antioxidant activity, while its fatty acid content and other bioactive molecules contribute to its antimicrobial efficacy against various pathogens. The underlying mechanisms of action driving these bioactivities involve intricate molecular interactions, biochemical pathways, and redox processes, which influence microbial cell function and oxidative stress reduction. This review provides a critical analysis of the current mechanistic understanding of palm oil’s biofunctional properties, emphasizing its potential incorporation into engineered biomaterials. Particular focus is given to the chemical composition, reaction pathways, and synergistic potential of palm oil derivatives in material-based formulations. Furthermore, the potential applications of palm oil as a standalone or synergistic agent in novel therapeutic and industrial formulations are explored. By elucidating the mechanistic basis of its bioactivity within material contexts, this review highlights palm oil’s promising role in the development of advanced functional materials for pharmaceutical and dental technologies. Full article
(This article belongs to the Special Issue Bone and Cartilage Injury and Repair: Molecular Aspects)
Show Figures

Figure 1

19 pages, 3162 KiB  
Article
Diversity and Functional Differences in Soil Bacterial Communities in Wind–Water Erosion Crisscross Region Driven by Microbial Agents
by Tao Kong, Tong Liu, Zhihui Gan, Xin Jin and Lin Xiao
Agronomy 2025, 15(7), 1734; https://doi.org/10.3390/agronomy15071734 - 18 Jul 2025
Viewed by 290
Abstract
Soil erosion-prone areas require effective microbial treatments to improve soil bacterial communities and functional traits. Understanding the driving effects of different microbial interventions on soil ecology is essential for restoration efforts. Single and combined microbial treatments were applied to soil. Bacterial community structure [...] Read more.
Soil erosion-prone areas require effective microbial treatments to improve soil bacterial communities and functional traits. Understanding the driving effects of different microbial interventions on soil ecology is essential for restoration efforts. Single and combined microbial treatments were applied to soil. Bacterial community structure was analyzed via 16S IRNA high-throughput sequencing, and functional groups were predicted using FAPROTAX. Soil microbial carbon, nitrogen, metabolic entropy, and enzymatic activity were assessed. Microbial Carbon and Metabolic Activity: The Arbuscular mycorrhizal fungi (AMF) and Bacillus mucilaginosus (BM) (AMF.BM) treatment exhibited the highest microbial carbon content and the lowest metabolic entropy. The microbial carbon-to-nitrogen ratio ranged from 1.27 to 3.69 across all treatments. Bacterial Community Composition: The dominant bacterial phyla included Firmicutes, Proteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria. Diversity and Richness: The AMF and Trichoderma harzianum (TH) (AMF.TH) treatment significantly reduced diversity, richness, and phylogenetic diversity indices, while the AMF.BM treatment showed a significantly higher richness index (p < 0.05). Relative Abundance of Firmicutes: Compared to the control, the AMF, TH.BM, and TH treatments decreased the relative abundance of Firmicutes, whereas the AMF.TH treatment increased their relative abundance. Environmental Correlations: Redundancy and correlation analyses revealed significant correlations between soil organic matter, magnesium content, and sucrase activity and several major bacterial genera. Functional Prediction: The AMF.BM treatment enhanced the relative abundance and evenness of bacterial ecological functions, primarily driving nitrification, aerobic ammonia oxidation, and ureolysis. Microbial treatments differentially influence soil bacterial communities and functions. The AMF.BM combination shows the greatest potential for ecological restoration in erosion-prone soils. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 2449 KiB  
Review
Microbiome-Based Products: Therapeutic Potential for Inflammatory Skin Diseases
by Anamarija Rušanac, Zara Škibola, Mario Matijašić, Hana Čipčić Paljetak and Mihaela Perić
Int. J. Mol. Sci. 2025, 26(14), 6745; https://doi.org/10.3390/ijms26146745 - 14 Jul 2025
Viewed by 376
Abstract
Maintaining a balanced skin microbiota is essential for skin health, whereas disruptions in skin microbiota composition, known as dysbiosis, can contribute to the onset and progression of various skin disorders. Microbiota dysbiosis has been associated with several inflammatory skin conditions, including atopic dermatitis, [...] Read more.
Maintaining a balanced skin microbiota is essential for skin health, whereas disruptions in skin microbiota composition, known as dysbiosis, can contribute to the onset and progression of various skin disorders. Microbiota dysbiosis has been associated with several inflammatory skin conditions, including atopic dermatitis, seborrheic dermatitis, acne, psoriasis, and rosacea. Recent advances in high-throughput sequencing and metagenomic analyses have provided a deeper understanding of the skin microbial communities in both health and disease. These discoveries are now being translated into novel therapeutic approaches aimed at restoring microbial balance and promoting skin health through microbiome-based interventions. Unlike conventional therapies that often disrupt the microbiota and lead to side effects or resistance, microbiome-based products offer a more targeted strategy for preventing and managing inflammatory skin diseases. These products, which include probiotics, prebiotics, postbiotics, and live biotherapeutic agents, are designed to modulate the skin ecosystem by enhancing beneficial microbial populations, suppressing pathogenic strains, and enhancing immune tolerance. As a result, they represent a promising class of products with the potential to prevent, manage, and even reverse inflammatory skin conditions. However, realizing the full therapeutic potential of microbiome-based strategies in dermatology will require continued research, robust clinical validation, and clear regulatory frameworks. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 1826 KiB  
Article
Antioxidant Activity of Radix Cyathula officinalis Kuan Polysaccharides and Their Modulatory Effects on the Gut Microbiota of Caenorhabditis elegans
by Rui Li, Xinyue Chen, Lijuan Wu, Lei Xie, Mengqiu Chen, Yujie Qiu, Fan Liu, Ji Chen and Mengliang Tian
Curr. Issues Mol. Biol. 2025, 47(7), 538; https://doi.org/10.3390/cimb47070538 - 11 Jul 2025
Viewed by 259
Abstract
Polysaccharides isolated from Radix Cyathula officinalis Kuan (RCP) are key bioactive components with immunomodulatory, antioxidant, and anti-inflammatory effects. Their efficacy varies according to their geographic origin and processing methods. However, the systemic anti-aging mechanisms and antioxidant efficacy of RCP have not yet been [...] Read more.
Polysaccharides isolated from Radix Cyathula officinalis Kuan (RCP) are key bioactive components with immunomodulatory, antioxidant, and anti-inflammatory effects. Their efficacy varies according to their geographic origin and processing methods. However, the systemic anti-aging mechanisms and antioxidant efficacy of RCP have not yet been comprehensively characterized. This study investigated the antioxidant and anti-aging effects of RCP in vitro and in vivo using a Caenorhabditis elegans heat stress model, comparing rRCP (RCP from raw samples) and wRCP (RCP from wine-processed samples) from key production areas. Among these, the RCP collected from the Zhonggang region exhibited the strongest antioxidant activity. Both rRCP and wRCP enhanced worms’ oxidative stress resistance, reduced their ROS levels, increased their antioxidant enzyme activities, prolonged their lifespan, and improved their reproductive capacity under thermal stress. Notably, the wRCP exhibited more pronounced benefits. Additionally, 16S rRNA sequencing revealed that RCP altered the gut microbiota’s composition by increasing its microbial diversity, enriching beneficial bacteria like Bacillus, and decreasing potential pathogens such as Escherichia and Citricoccus. The treatment also led to an increased abundance of Firmicutes and a slight reduction in Bacteroidetes. Collectively, these findings suggest that RCP, particularly wRCP, holds promise as a therapeutic agent for combating oxidative stress and promoting longevity, in part by modulating the gut microbiome. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

21 pages, 750 KiB  
Review
Targeting Ocular Biofilms with Plant-Derived Antimicrobials in the Era of Antibiotic Resistance
by Monika Dzięgielewska, Michał Tomczyk, Adrian Wiater, Aleksandra Woytoń and Adam Junka
Molecules 2025, 30(13), 2863; https://doi.org/10.3390/molecules30132863 - 5 Jul 2025
Viewed by 560
Abstract
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, [...] Read more.
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, particularly in patients using contact lenses or intraocular implants—devices that serve as surfaces for biofilm formation. The global rise in antimicrobial resistance has intensified the search for alternative treatment modalities. In this regard, plant-derived antimicrobials have emerged as promising candidates demonstrating broad-spectrum antimicrobial and antibiofilm activity through different mechanisms from those of conventional antibiotics. These mechanisms include inhibiting quorum sensing, disrupting established biofilm matrices, and interfering with microbial adhesion and communication. However, the clinical translation of phytochemicals faces significant barriers, including variability in chemical composition due to environmental and genetic factors, difficulties in standardization and reproducibility, poor water solubility and ocular bioavailability, and a lack of robust clinical trials evaluating their efficacy and safety in ophthalmic settings. Furthermore, regulatory uncertainties and the absence of unified guidelines for approving plant-derived formulations further hinder their integration into evidence-based ophthalmic practice. This review synthesizes the current knowledge on the pathogenesis and treatment of biofilm-associated ocular infections, critically evaluating plant-based antimicrobials as emerging therapeutic agents. Notably, resveratrol, curcumin, abietic acid, and selected essential oils demonstrated notable antibiofilm activity against S. aureus, P. aeruginosa, and C. albicans. These findings support the potential of phytochemicals as adjunctive or alternative agents in managing biofilm-associated ocular infections. By highlighting both their therapeutic promise and translational limitations, this review contributes to the ongoing discourse on sustainable, innovative approaches to managing antibiotic-resistant ocular infections. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Figure 1

22 pages, 945 KiB  
Review
Mapping the Gut Microbiota Composition in the Context of Raltegravir, Dolutegravir, and Bictegravir—A Scoping Review
by Zsófia Gáspár and Botond Lakatos
Int. J. Mol. Sci. 2025, 26(13), 6366; https://doi.org/10.3390/ijms26136366 - 2 Jul 2025
Viewed by 296
Abstract
(1) Background: Second-generation integrase strand transfer inhibitors (INSTIs) are now the preferred first-line therapies for human immunodeficiency virus (HIV). However, concerns regarding their side effects, such as weight gain and metabolic disturbances, have emerged. This scoping review aims to assess the effects of [...] Read more.
(1) Background: Second-generation integrase strand transfer inhibitors (INSTIs) are now the preferred first-line therapies for human immunodeficiency virus (HIV). However, concerns regarding their side effects, such as weight gain and metabolic disturbances, have emerged. This scoping review aims to assess the effects of INSTIs on the gut microbiota, with a focus on differences between agents and their clinical implications. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: The majority of available evidence focused on dolutegravir, which demonstrated beneficial effects on microbiota diversity and composition. However, factors such as younger age, lower CD4+ counts, and extreme BMI were associated with proinflammatory changes. Limited data on bictegravir also suggested favorable alterations in the gut microbiota. Raltegravir, a first-generation INSTI, was associated with improvements in alpha diversity and microbial composition, although these changes were not consistently beneficial. Moreover, associated changes in inflammatory and microbial translocation markers suggested unfavorable alterations. (4) Conclusions: Based on the evidence mapped, second-generation INSTIs may generally induce favorable changes in the gut microbiota. However, further research is needed to explore the clinical implications of these microbiota alterations, particularly in specific patient groups. Full article
(This article belongs to the Special Issue Interplay Between the Human Microbiome and Diseases)
Show Figures

Graphical abstract

46 pages, 3719 KiB  
Article
Gut Microbiome Modulation and Health Benefits of a Novel Fucoidan Extract from Saccharina latissima: A Double-Blind, Placebo-Controlled Trial
by Gissel Garcia, Josanne Soto, Carmen Valenzuela, Mirka Bernal, Jesús Barreto, María de la C. Luzardo, Raminta Kazlauskaite, Neil Waslidge, Charles Bavington and Raúl de Jesús Cano
Microorganisms 2025, 13(7), 1545; https://doi.org/10.3390/microorganisms13071545 - 30 Jun 2025
Viewed by 539
Abstract
This randomized, double-blind, placebo-controlled, three-arm clinical trial evaluated the effects of a proprietary bioactive fucoidan-rich extract derived from Saccharina latissima (SLE-F) on gut microbial composition and function in healthy adults. The objective of the study was to assess the potential of SLE-F to [...] Read more.
This randomized, double-blind, placebo-controlled, three-arm clinical trial evaluated the effects of a proprietary bioactive fucoidan-rich extract derived from Saccharina latissima (SLE-F) on gut microbial composition and function in healthy adults. The objective of the study was to assess the potential of SLE-F to beneficially modulate the gut microbiome, with this paper specifically reporting on microbial diversity, taxonomic shifts, and functional pathway outcomes. Ninety-one participants received either a low dose (125 mg), high dose (500 mg), or placebo twice daily for four weeks. The primary endpoint was the microbiome composition assessed via 16S rRNA sequencing (V3–V4 region), with secondary outcomes including surveys, adverse event monitoring, and clinical evaluations. High-dose supplementation resulted in dose-dependent improvements in the microbial diversity; increased abundance of beneficial taxa, including Bifidobacterium, Faecalibacterium, and Lachnospiraceae; and reductions in inflammation-associated taxa, such as Enterobacteriaceae and Pseudomonadota. A functional pathway analysis showed enhancement in short-chain fatty acid biosynthesis and carbohydrate metabolism. The low-dose group showed modest benefits, primarily increasing Bifidobacterium, with limited functional changes. In vitro colonic simulations further demonstrated a dose-dependent increase in short-chain fatty acids and postbiotic metabolite production following SLE-F exposure. SLE-F was well tolerated, with only mild, nonspecific adverse events reported. These findings support the potential of SLE-F as a safe and effective microbiome-modulating agent, warranting further study of the long-term use and synergy with dietary interventions. Full article
Show Figures

Figure 1

50 pages, 3457 KiB  
Review
Gastric Cancer and Microbiota: Exploring the Microbiome’s Role in Carcinogenesis and Treatment Strategies
by Daniela-Cornelia Lazăr, Sorin-Dan Chiriac, George-Andrei Drăghici, Elena-Alina Moacă, Alexandra Corina Faur, Mihaela-Flavia Avram, Vladiana-Romina Turi, Mihaela-Roxana Nicolin, Adrian Goldiș, Matin Asad Salehi and Radu Jipa
Life 2025, 15(7), 999; https://doi.org/10.3390/life15070999 - 23 Jun 2025
Cited by 1 | Viewed by 470
Abstract
Gastric cancer (GC) remains a major global health burden, with high morbidity and mortality rates, particularly in regions with prevalent Helicobacter pylori (H. pylori) infection. While H. pylori has long been recognized as a primary carcinogenic agent, recent research has underscored [...] Read more.
Gastric cancer (GC) remains a major global health burden, with high morbidity and mortality rates, particularly in regions with prevalent Helicobacter pylori (H. pylori) infection. While H. pylori has long been recognized as a primary carcinogenic agent, recent research has underscored the broader contribution of the gastric microbiota to gastric carcinogenesis. Alterations in the microbial community, or dysbiosis, contribute to chronic inflammation, immune modulation, and epithelial transformation through a range of mechanisms, including disruption of mucosal integrity, activation of oncogenic signaling pathways (e.g., PI3K/Akt, NF-κB, STAT3), and epigenetic alterations. Furthermore, microbial metabolites, such as short-chain fatty acids, secondary bile acids, and lactate, play dual roles in either promoting or suppressing tumorigenesis. Oral and gut-derived microbes, translocated to the gastric niche, have been implicated in reshaping the gastric microenvironment and exacerbating disease progression. The composition of the microbiota also influences responses to cancer immunotherapy, suggesting that microbial profiles can serve as both prognostic biomarkers and therapeutic targets. Emerging strategies, such as probiotics, dietary interventions, and fecal microbiota transplantation (FMT), offer new avenues for restoring microbial balance and enhancing therapy response. This review synthesizes current knowledge on the complex interplay between microbiota and gastric cancer development and emphasizes the potential of microbiome modulation in both preventive and therapeutic frameworks. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

14 pages, 1444 KiB  
Article
The Effects of Lactococcus garvieae and Pediococcus pentosaceus on the Characteristics and Microbial Community of Urtica cannabina Silage
by Yongcheng Chen, Shuangming Li, Yingchao Sun, Yuxin Chai, Shuan Jia, Chunhui Ma and Fanfan Zhang
Microorganisms 2025, 13(7), 1453; https://doi.org/10.3390/microorganisms13071453 - 23 Jun 2025
Viewed by 293
Abstract
The utilization of nettle (Urtica cannabina) as feed is restricted by its material properties (antibacterial activity and high buffering capacity). This study hypothesized that the use of lactic acid bacteria (LAB) attached to nettles can improve these problems. Lactococcus garvieae (LG), [...] Read more.
The utilization of nettle (Urtica cannabina) as feed is restricted by its material properties (antibacterial activity and high buffering capacity). This study hypothesized that the use of lactic acid bacteria (LAB) attached to nettles can improve these problems. Lactococcus garvieae (LG), Pediococcus pentosaceus (PP), and LG + PP (LP) isolated from nettles were inoculated into nettle silage to explore nutrient retention and the microbial community structure. The results showed that inoculation significantly delayed dry matter and crude protein loss, inhibited neutral detergent fiber and acid detergent fiber degradation, and reduced ammonia nitrogen (NH3-N) accumulation. There was a significant increase in Firmicutes abundance after inoculation, and the dominant genus, Aerococcus, was negatively correlated with NH3-N accumulation. In the later stages of the PP treatment, Atopistipes synergistically inhibited Clostridia with acetic acid. However, the high buffering capacity and antibacterial components of raw nettle led to increased pH values during the later fermentation stages, limiting sustained acid production by LAB. These results confirm that nettle-derived LAB can effectively improve the quality of silage by regulating the microbial community and the acidification process; however, they must be combined with pretreatment strategies or optimized composite microbial agents to overcome raw material limitations. This study provides a theoretical basis and technical support for the utilization of nettle as feed. Full article
(This article belongs to the Special Issue Molecular Studies of Microorganisms in Plant Growth and Utilization)
Show Figures

Figure 1

26 pages, 561 KiB  
Review
Probiotics as Antioxidant Strategy for Managing Diabetes Mellitus and Its Complications
by Max Denisson Maurício Viana, Sthefane Silva Santos, Anna Beatriz Oliveira Cruz, Maria Vitória Abreu Cardoso de Jesus, Pedro Santana Sales Lauria, Marvin Paulo Lins and Cristiane Flora Villarreal
Antioxidants 2025, 14(7), 767; https://doi.org/10.3390/antiox14070767 - 22 Jun 2025
Viewed by 541
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by impaired glycemic regulation and persistent hyperglycemia, which drives the onset of microvascular complications such as diabetic neuropathy and nephropathy. Chronic hyperglycemia activates oxidative stress pathways and alters gut microbiota composition, both of which [...] Read more.
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by impaired glycemic regulation and persistent hyperglycemia, which drives the onset of microvascular complications such as diabetic neuropathy and nephropathy. Chronic hyperglycemia activates oxidative stress pathways and alters gut microbiota composition, both of which contribute to disease progression. In this context, probiotics have emerged as promising therapeutic agents due to their ability to modulate oxidative stress, improve glycemic control, and influence gut microbial balance. This review summarizes preclinical and clinical evidence supporting the antioxidant potential of probiotics in DM management, with a focus on underlying mechanisms. Strains from the Lactobacillus and Bifidobacterium genera are the most extensively studied and have demonstrated hypoglycemic and antioxidant effects, including the enhancement of key antioxidant enzymes and reductions in lipid peroxidation and nitrosative stress markers. Probiotics have also shown beneficial effects in DM-associated complications, particularly diabetic neuropathy and nephropathy. While clinical data are still limited, recent findings underscore oxidative stress as a critical therapeutic target influenced by probiotic interventions. Overall, current evidence supports probiotics as a complementary strategy for managing DM and its complications, highlighting the need for further well-designed clinical trials exploring diverse strains, formulations, and dosing regimens. Full article
Show Figures

Figure 1

25 pages, 4879 KiB  
Article
Combined Phytochemical Sulforaphane and Dietary Fiber Inulin Contribute to the Prevention of ER-Negative Breast Cancer via PI3K/AKT/MTOR Pathway and Modulating Gut Microbial Composition
by Huixin Wu, Brittany L. Witt, William J. van der Pol, Casey D. Morrow, Lennard W. Duck and Trygve O. Tollefsbol
Nutrients 2025, 17(12), 2023; https://doi.org/10.3390/nu17122023 - 17 Jun 2025
Viewed by 620
Abstract
Background: Breast cancer (BC) is the second most common cancer among women in the United States. It has been estimated that one in eight women will be diagnosed with breast cancer in her lifetime. Various BC risk factors, such as age, physical inactivity, [...] Read more.
Background: Breast cancer (BC) is the second most common cancer among women in the United States. It has been estimated that one in eight women will be diagnosed with breast cancer in her lifetime. Various BC risk factors, such as age, physical inactivity, and smoking, play a substantial role in BC occurrence and development. Early life dietary intervention with plant-based bioactive compounds has been studied for its potential role in BC prevention. Sulforaphane (SFN), an isothiocyanate, is an antioxidant and anti-inflammatory agent extracted from broccoli sprouts (BSp) and other plants. Dietary supplementation of SFN suppresses tumor growth by inducing protective epigenetic changes and inhibiting cancer cell proliferation. Inulin, as a dietary fiber, has been studied for alleviating GI discomfort and weight loss by promoting the growth of beneficial bacteria in the gut. Objective: Early-life combinatorial treatment with both phytochemical SFN and potential prebiotic agent inulin at lower and safer dosages may confer more efficacious and beneficial effects in BC prevention. Methods: Transgenic mice representing estrogen receptor-negative BC were fed 26% (w/w) BSp and 2% (w/v) inulin supplemented in food and water, respectively. Results: The combinatorial treatment inhibited tumor growth, increased tumor onset latency, and synergistically reduced tumor weight. Gut microbial composition was analyzed between groups, where Ruminococcus, Muribaculaceae, and Faecalibaculum significantly increased, while Blautia, Turicibacter, and Clostridium sensu stricto 1 significantly decreased in the combinatorial group compared with the control group. Furthermore, combinatorial treatment induced a protective epigenetic effect by inhibiting histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). Intermediates in the AKT/PI3K/MTOR pathway were significantly suppressed by the combinatorial treatment, including PI3K p85, p-AKT, p-PI3K p55, MTOR, and NF-κB. Cell cycle arrest and programmed cell death were induced by the combinatorial treatment via elevating the expression of cleaved-caspase 3 and 7 and inhibiting the expressions of CDK2 and CDK4, respectively. Orally administering F. rodentium attenuated tumor growth and induced apoptosis in a syngeneic triple-negative breast cancer (TNBC) mouse model. Conclusions: Overall, the findings suggest that early-life dietary combinatorial treatment contributed to BC prevention and may be a potential epigenetic therapy that serves as an adjunct to other traditional neoadjuvant therapies. Full article
(This article belongs to the Special Issue Advances in Gene–Diet Interactions and Human Health)
Show Figures

Figure 1

26 pages, 2250 KiB  
Review
Sustainable Nanotechnology Strategies for Modulating the Human Gut Microbiota
by Gréta Törős, Gabriella Gulyás, Hassan El-Ramady, Walaa Alibrahem, Arjun Muthu, Prasad Gangakhedkar, Reina Atieh and József Prokisch
Int. J. Mol. Sci. 2025, 26(12), 5433; https://doi.org/10.3390/ijms26125433 - 6 Jun 2025
Viewed by 621
Abstract
Antibiotic resistance remains a pressing global health concern, necessitating the development of sustainable and innovative antimicrobial strategies. Plant-based nanomaterials, particularly those synthesized from agricultural byproducts, such as mango seeds, tomato skins, and orange peels, have emerged as promising candidates due to their potent [...] Read more.
Antibiotic resistance remains a pressing global health concern, necessitating the development of sustainable and innovative antimicrobial strategies. Plant-based nanomaterials, particularly those synthesized from agricultural byproducts, such as mango seeds, tomato skins, and orange peels, have emerged as promising candidates due to their potent antimicrobial activity and reduced likelihood of resistance development. These nanomaterials exert their effects through diverse mechanisms, including the generation of reactive oxygen species, the disruption of microbial membranes, and interference with critical cellular functions, such as DNA replication. Beyond their antimicrobial properties, recent studies have demonstrated their ability to modulate gut microbiota composition—promoting beneficial genera such as, Lactobacillus and Bifidobacterium, while inhibiting pathogenic species like Staphylococcus spp. This dual functionality positions them as attractive agents for prebiotic interventions and targeted dietary strategies. The convergence of plant-derived nanotechnology and personalized nutrition, guided by individual microbiota profiles, offers a novel paradigm for enhancing host health and preventing infection-related disorders. This review provides a comprehensive overview of the sustainable production of nanomaterials from agricultural and food industry waste, their antimicrobial and prebiotic applications, and their potential in regulating gut microbiota. Furthermore, we discuss emerging nanoenabled strategies to combat infectious diseases and highlight future directions for mechanistic studies, safety assessments, and clinical translation in pharmaceutical, nutraceutical, and functional food contexts. Full article
Show Figures

Figure 1

30 pages, 1845 KiB  
Review
Early Life Stress and Gut Microbiome Dysbiosis: A Narrative Review
by Alejandro Borrego-Ruiz and Juan J. Borrego
Stresses 2025, 5(2), 38; https://doi.org/10.3390/stresses5020038 - 5 Jun 2025
Viewed by 2047
Abstract
Background: Exposure to early life stress significantly increases the risk of psychopathology later in life. However, the impact of early life stress on the gut microbiome and its potential role in mental health outcomes remains insufficiently understood. This narrative review examines the current [...] Read more.
Background: Exposure to early life stress significantly increases the risk of psychopathology later in life. However, the impact of early life stress on the gut microbiome and its potential role in mental health outcomes remains insufficiently understood. This narrative review examines the current knowledge on how early life stress and its associated consequences may affect the gut microbiome, with a particular focus on conditions such as anxiety, depression, and post-traumatic stress disorder. Method: A comprehensive literature search was conducted in the PubMed and Web of Science databases between January and February 2025, covering studies published between 2015 and 2025. Results: Early life stress can profoundly impact cognitive function and neurodevelopment, with maternal early-life nutrition playing a significant role in modulating the effects of prenatal and postnatal stress. Early life stress influences the gut microbiome, disrupting its composition and function by altering the synthesis of microbial metabolites, neurotransmitters, and the activation of key metabolic pathways. However, the precise role of the gut microbiome in modulating stress responses during childhood and adolescence has not yet been fully elucidated. Conclusions: Several studies have demonstrated an association between early life stress and the gut microbiome. However, causality has not yet been established due to the numerous intrinsic and extrinsic factors influencing the microbiome-gut–brain axis. In the coming years, research on key microbial regulators, such as short-chain fatty acids, amino acids, and psychobiotics, may represent a promising approach for addressing central nervous system alterations linked to early life stress. Thus, further studies will be necessary to evaluate their potential as therapeutic agents. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

15 pages, 1288 KiB  
Article
Derivation of the Microbial Inactivation Rate Equation from an Algebraic Primary Survival Model Under Constant Conditions
by Si Zhu, Bing Li and Guibing Chen
Foods 2025, 14(11), 1980; https://doi.org/10.3390/foods14111980 - 3 Jun 2025
Viewed by 606
Abstract
A food pasteurization or sterilization process was treated as a system comprising a target microorganism, a food medium, and applied lethal agents (both thermal and nonthermal). So, the state of such a system was defined by the target microorganism’s concentration, the food medium [...] Read more.
A food pasteurization or sterilization process was treated as a system comprising a target microorganism, a food medium, and applied lethal agents (both thermal and nonthermal). So, the state of such a system was defined by the target microorganism’s concentration, the food medium parameters (food composition, pH, and water activity), and the magnitudes of temperature and nonthermal lethal agents. Further, a path was defined as a series of profiles that describe the changes in state factors over time when a food process system changes from its initial state to any momentary state. Using the Weibull model as an example, results showed that, if the microbial inactivation rate depends on path, then there exists an infinite number of rate equations that can result in the same algebraic primary model under constant conditions but, theoretically, only one of them is true. Considering the infinite possibilities, there is no way to find the most suitable or true rate equation. However, the inactivation rate equation can be uniquely derived from the algebraic primary model if the inactivation rate does not depend on path, which was demonstrated to be true by most microbial survival data reported in previous studies. Full article
Show Figures

Figure 1

Back to TopTop