Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,221)

Search Parameters:
Keywords = composite material design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3413 KiB  
Review
Design, Deposition, Performance Evaluation, and Modulation Analysis of Nanocoatings for Cutting Tools: A Review
by Qi Xi, Siqi Huang, Jiang Chang, Dong Wang, Xiangdong Liu, Nuan Wen, Xi Cao and Yuguang Lv
Inorganics 2025, 13(9), 281; https://doi.org/10.3390/inorganics13090281 (registering DOI) - 24 Aug 2025
Abstract
With the rapid development of advanced machining technologies such as high-speed cutting, dry cutting, and ultra-precision cutting, as well as the widespread application of various difficult-to-machine materials, the surface degradation problems such as wear, oxidation, and delamination faced by tools in the service [...] Read more.
With the rapid development of advanced machining technologies such as high-speed cutting, dry cutting, and ultra-precision cutting, as well as the widespread application of various difficult-to-machine materials, the surface degradation problems such as wear, oxidation, and delamination faced by tools in the service process have become increasingly prominent, seriously restricting the performance and service life of tools. Nanocoatings, with their distinct nano-effects, provide superior hardness, thermal stability, and tribological properties, making them an effective solution for cutting tools in increasingly demanding working environments. For example, the hardness of the CrAlN/TiSiN nano-multilayer coating can reach 41.59 GPa, which is much higher than that of a single CrAlN coating (34.5–35.8 GPa). This paper summarizes the most common nanocoating material design, coating deposition technologies, performance evaluation indicators, and characterization methods currently used in cutting tools. It also discusses how to improve nanocoating performance using modulation analysis of element content, coating composition, geometric structure, and coating thickness. Finally, this paper considers the future development of nanocoatings for cutting tools in light of recent research hotspots. Full article
(This article belongs to the Special Issue Novel Inorganic Coatings and Thin Films)
Show Figures

Figure 1

25 pages, 9654 KiB  
Article
Comprehensive Quality Assessment of Refractory Materials Used in Aluminum Production
by Miriam Andrejiova, Štefan Markulik, Miriama Pinosova and Marek Šolc
Materials 2025, 18(17), 3957; https://doi.org/10.3390/ma18173957 (registering DOI) - 24 Aug 2025
Abstract
Corrosion of refractory materials in NaCl–KCl melts is a major issue affecting the service life of linings in aluminum metallurgy, where these salts serve as the basis for covering and refining mixtures. The aim of this study was to comprehensively evaluate the corrosion [...] Read more.
Corrosion of refractory materials in NaCl–KCl melts is a major issue affecting the service life of linings in aluminum metallurgy, where these salts serve as the basis for covering and refining mixtures. The aim of this study was to comprehensively evaluate the corrosion resistance of alumina-silicate refractory materials (ASRM) with a high SiO2/Al2O3 ratio in contact with melts of varying NaCl–KCl ratios. Static crucible corrosion tests were conducted in accordance with the technical specification CEN/TS 15418:2006. Macro- and microscopic analysis, chemical analysis (AAS), and semi-quantitative EDX analysis enabled detailed monitoring of the depth of melt infiltration, microstructural changes, and element distribution within the material. The results demonstrated that as the NaCl content in the melt increased, there was a significant rise in both the depth of infiltration and the degree of material degradation. A linear regression model confirmed a very strong positive correlation between NaCl content and the extent of damage (R2 = 0.967). Chemical analysis revealed that the silicon content decreases in the infiltrated zone, while aluminum remains stable, indicating superior corrosion resistance of Al2O3 compared to SiO2. EDX analysis also confirmed increased concentrations of sodium and chlorine in the infiltrated areas, complementing the AAS results and providing more precise mapping of the distribution of corrosion products within the material structure. These findings provide a quantitative basis for optimizing the composition of refractory materials and designing protective strategies to extend their service life under the aggressive operating conditions of aluminum production. Full article
Show Figures

Figure 1

12 pages, 5061 KiB  
Article
A Programmable Soft Electrothermal Actuator Based on a Functionally Graded Structure for Multiple Deformations
by Fan Bu, Feng Zhu, Zhengyan Zhang and Hanbin Xiao
Polymers 2025, 17(17), 2288; https://doi.org/10.3390/polym17172288 (registering DOI) - 24 Aug 2025
Abstract
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, [...] Read more.
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, restricting their long-term stability and actuation versatility. In this study, we present a programmable soft electrothermal actuator based on a functionally graded structure composed of polydimethylsiloxane (PDMS)/multiwalled carbon nanotube (MWCNTs) composite material and an embedded EGaIn conductive circuit. Rheological and mechanical characterization confirms the enhancement of viscosity, modulus, and tensile strength with increasing MWCNTs content, confirming that the gradient structure improves mechanical performance. The device shows excellent actuation performance (bending angle up to 117°), fast response (8 s), and durability (100 cycles). The actuator achieves L-shaped, U-shaped, and V-shaped bending deformations through circuit pattern design, demonstrating precise programmability and reconfigurability. This work provides a new strategy for realizing programmable, multimodal deformation in soft systems and offers promising applications in adaptive robotics, smart devices, and human–machine interfaces. Full article
Show Figures

Figure 1

20 pages, 4530 KiB  
Article
Modelling and Validation of Progressive Damage in Hybrid CFRP–Elastomer Laminates Under Quasi-Static Indentation Loading
by Luca Raimondi, Leonardo Salvi, Francesco Semprucci and Maria Pia Falaschetti
Appl. Sci. 2025, 15(17), 9284; https://doi.org/10.3390/app15179284 (registering DOI) - 24 Aug 2025
Abstract
Composite materials are increasingly used in industrial applications, particularly in the aeronautic sector. However, their susceptibility to impact damage remains a critical concern, making damage tolerance a key focus for design and manufacturing. One approach to improving damage tolerance involves interleaving elastomeric films [...] Read more.
Composite materials are increasingly used in industrial applications, particularly in the aeronautic sector. However, their susceptibility to impact damage remains a critical concern, making damage tolerance a key focus for design and manufacturing. One approach to improving damage tolerance involves interleaving elastomeric films within polymeric composites, though this introduces experimental and numerical complexities. In particular, numerical simulations require reliable modelling techniques to predict the structural effects of hybridisation. This paper tested two different stacking sequences, differing in the number and placement of the elastomeric layers, under quasi-static indentation conditions. A numerical analysis was carried out using two distinct formulations of Hashin’s failure criteria and a continuum damage model, implemented through specifically developed User Material Subroutines. The experimental and numerical results were then compared, and the advantages and drawbacks of each modelling technique were discussed and compared. Full article
Show Figures

Figure 1

29 pages, 3349 KiB  
Review
Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential
by Mateusz Pęśko and Anna Masek
Polymers 2025, 17(17), 2286; https://doi.org/10.3390/polym17172286 (registering DOI) - 23 Aug 2025
Abstract
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive [...] Read more.
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive and structured overview of the recent progress (2020–2025) in the integration of plant-based biofillers into both thermoplastic and thermosetting polymer matrices, with a focus on surface modification techniques, physicochemical characterization, and emerging industrial applications. Unlike the prior literature, this work highlights the dual environmental and material benefits of using plant-derived fillers, particularly in the context of waste valorization and circular material design. By clearly identifying a current research gap—the limited scalability and processing efficiency of biofillers—this review proposes a strategy in which plant-derived materials function as key enablers for sustainable composite development. Special attention is given to extraction methods of lignocellulosic fillers from renewable agricultural waste streams and their subsequent functionalization to improve matrix compatibility. Additionally, it delineates the principal approaches for biofiller modification, demonstrating how their properties can be tailored to meet specific needs in biocomposite production. This critical synthesis of the state-of-the-art literature not only reinforces the role of biofillers in reducing dependence on non-renewable fillers but also outlines future directions in scaling up their use, improving durability, and expanding performance capabilities of sustainable composites. Overall, the presented analysis contributes novel insights into the material design, processing strategies, and potential of plant biofillers as central elements in next-generation green composites. Full article
Show Figures

Figure 1

25 pages, 1704 KiB  
Article
Evaluation of Family Firm Value and Its Spatial Evolution Towards Sustainable Development in China
by Junjie Le, Renyong Hou, Lu Xiang, Zehao Zhang and Jing Li
Sustainability 2025, 17(17), 7609; https://doi.org/10.3390/su17177609 (registering DOI) - 23 Aug 2025
Abstract
This study develops a four-dimensional value-assessment framework encompassing economic, innovation, social, and cultural dimensions to evaluate the multidimensional performance of family firms in China. Drawing on the entropy weighting method, we construct a composite value index for 251 A-share listed family firms from [...] Read more.
This study develops a four-dimensional value-assessment framework encompassing economic, innovation, social, and cultural dimensions to evaluate the multidimensional performance of family firms in China. Drawing on the entropy weighting method, we construct a composite value index for 251 A-share listed family firms from 2014 to 2023 and apply spatial statistical techniques—including Dagum Gini coefficients, Theil indices, and coefficients of variation—to examine temporal evolution and regional disparities. We further estimate explanatory panel models with firm and year fixed effects (Hausman test favoring FE) to identify the firm-level determinants of composite value. Leverage exhibits a significantly negative association with value, while firm size and innovation capacity are positively related; no significant moderating effect of technology-intensive industry is found. A robustness check using equal weights (0.25 for each dimension) yields an almost perfect correlation (0.9999) with the entropy-weighted index, confirming that the dominance of the innovation dimension in the weighting scheme does not materially affect the overall conclusions. The results highlight the importance of integrating multidimensional value perspectives into both academic research and policy design to promote balanced, inclusive, and sustainable development trajectories for family enterprises. Full article
15 pages, 9186 KiB  
Article
Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior
by Guofeng Zhao and Shifan Zhu
Lubricants 2025, 13(9), 377; https://doi.org/10.3390/lubricants13090377 (registering DOI) - 23 Aug 2025
Abstract
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear [...] Read more.
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear resistance of bearing materials. However, traditional PTFE materials struggle to meet the performance requirements for long-term stable operation in modern marine environments. To improve the wear resistance of PTFE, this study used alumina (Al2O3) particles with three different particle sizes (50 nm, 3 μm, and 80 μm) as fillers and prepared Al2O3/PTFE composites via the cold pressing and sintering process. Tribological performance tests were conducted using a ball-on-disk reciprocating friction and wear tester, with Cr12 steel balls as counterparts, under an artificial seawater lubrication environment, applying a normal load of 10 N for 40 min. The microstructure and wear scar morphology were characterized by scanning electron microscopy (SEM), and mechanical properties were measured using a Shore hardness tester. A systematic study was carried out on the microstructure, mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The results show that the particle size of Al2O3 particles significantly affects the mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The 50 nm Al2O3/PTFE formed a uniformly spread friction film and transfer film during the friction process, which has better friction and wear reduction performance and load bearing capacity. The 80 μm Al2O3 group exhibited poor friction properties despite higher hardness. The nanoscale Al2O3 filler was superior in improving the wear resistance, stabilizing the coefficient of friction, and prolonging the service life of the material, and demonstrated good seawater lubrication bearing suitability. This study provides theoretical support and an experimental basis for the design optimization and engineering application of PTFE-based composites in harsh marine environments. Full article
Show Figures

Figure 1

38 pages, 4290 KiB  
Review
Carbon/High-Entropy Alloy Nanocomposites: Synergistic Innovations and Breakthrough Challenges for Electrochemical Energy Storage
by Li Sun, Hangyu Li, Yu Dong, Wan Rong, Na Zhou, Rui Dang, Jianle Xu, Qigao Cao and Chunxu Pan
Batteries 2025, 11(9), 317; https://doi.org/10.3390/batteries11090317 (registering DOI) - 23 Aug 2025
Abstract
Against the backdrop of accelerating global energy transition, developing high-performance energy-storage systems is crucial for achieving carbon neutrality. Traditional electrode materials are limited by a single densification storage mechanism and low conductivity, struggling to meet demands for high energy/power density and a long [...] Read more.
Against the backdrop of accelerating global energy transition, developing high-performance energy-storage systems is crucial for achieving carbon neutrality. Traditional electrode materials are limited by a single densification storage mechanism and low conductivity, struggling to meet demands for high energy/power density and a long cycle life. Carbon/high-entropy alloy nanocomposites provide an innovative solution through multi-component synergistic effects and cross-scale structural design: the “cocktail effect” of high-entropy alloys confers excellent redox activity and structural stability, while the three-dimensional conductive network of the carbon skeleton enhances charge transfer efficiency. Together, they achieve synergistic enhancement via interfacial electron coupling, stress buffering, and dual storage mechanisms. This review systematically analyzes the charge storage/attenuation mechanisms and performance advantages of this composite material in diverse energy-storage devices (lithium-ion batteries, lithium-sulfur batteries, etc.), evaluates the characteristics and limitations of preparation techniques such as mechanical alloying and chemical vapor deposition, identifies five major challenges (including complex and costly synthesis, ambiguous interfacial interaction mechanisms, lagging theoretical research, performance-cost trade-offs, and slow industrialization processes), and prospectively proposes eight research directions (including multi-scale structural regulation and sustainable preparation technologies, etc.). Through interdisciplinary perspectives, this review aims to provide a theoretical foundation for deepening the understanding of carbon/high-entropy alloy composite energy-storage mechanisms and guiding industrial applications, thereby advancing breakthroughs in electrochemical energy-storage technology under the energy transition. Full article
28 pages, 14406 KiB  
Article
Development and Engineering Evaluation of Interlocking Hollow Blocks Made of Recycled Plastic for Mortar-Free Housing
by Shehryar Ahmed and Majid Ali
Buildings 2025, 15(17), 2996; https://doi.org/10.3390/buildings15172996 (registering DOI) - 23 Aug 2025
Abstract
The construction industry is the biggest consumer of raw materials, and there is growing pressure for this industry to reduce its environmental footprint through the adoption of sustainable solutions. Waste plastic in a recycled form can be used to produce valuable products that [...] Read more.
The construction industry is the biggest consumer of raw materials, and there is growing pressure for this industry to reduce its environmental footprint through the adoption of sustainable solutions. Waste plastic in a recycled form can be used to produce valuable products that can decrease dependence on natural resources. Despite the growing trend of exploring the potential of recycled plastics in construction through composite manufacturing and nonstructural products, to date no scientific data is available about converting waste plastic into recycled plastic to manufacture interlocking hollow blocks (IHBs) for construction. Thus, the current study intended to fill this gap by investigating the dynamic, mechanical, and physicochemical properties of engineered IHBs made out of recycled plastic. Engineered IHBs are able to self-center via controlled tolerance to lateral displacement, which makes their design novel. High-density polyethylene (HDPE) waste was considered due to its anticipated material properties and abundance in daily-use household products. Mechanical recycling coupled with extrusion-based pressurized filling was adopted to manufacture IHBs. Various configurations of IHBs and prism samples were tested for compression and shear strength, and forensic tests were conducted to study the physicochemical changes in the recycled plastic. In addition, to obtain better dynamic properties for energy dissipation, the compressive strength of the IHBs was 30.99 MPa, while the compressive strength of the prisms was 34.23 MPa. These values are far beyond the masonry strength requirements in applicable codes across the globe. In-plane shear strength was greater than out-of-plane shear strength, as anticipated. Microstructure analysis showed fibrous surfaces with good resistance and enclosed unburnt impurities. The extrusion process resulted in the elimination of contaminants and impurities, with limited variation in thermal stability. Overall, the outcomes are favorable for potential use in house construction due to sufficient masonry strength and negligible environmental concerns. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 1435 KiB  
Review
Overview of Thermal Management Solution for 3D Integrated Circuits Using Carbon-Nanotube-Based Silicon Through-Vias
by Heebo Ha, Hongju Kim, Sumin Lee, Sooyong Choi, Chunghyeon Choi, Wan Yusmawati Wan Yusoff, Ali Shan, Sooman Lim and Byungil Hwang
Micromachines 2025, 16(9), 968; https://doi.org/10.3390/mi16090968 - 22 Aug 2025
Abstract
Three-dimensional integrated circuit (3D IC) technology is an innovative approach in the semiconductor industry aimed at enhancing performance and reducing power consumption. However, thermal management issues arising from high-density stacking pose significant challenges. Carbon nanotubes (CNTs) have gained attention as a promising material [...] Read more.
Three-dimensional integrated circuit (3D IC) technology is an innovative approach in the semiconductor industry aimed at enhancing performance and reducing power consumption. However, thermal management issues arising from high-density stacking pose significant challenges. Carbon nanotubes (CNTs) have gained attention as a promising material for addressing the thermal management problems of through-silicon vias (TSVs) owing to their unique properties, such as high thermal conductivity, electrical conductivity, excellent mechanical strength, and low coefficient of thermal expansion (CTE). This paper reviews various applications and the latest research results on CNT-based TSVs. Furthermore, it proposes a novel TSV design using CNT–copper–tin composites to optimize the performance and assess the feasibility of CNT-based TSVs. Full article
(This article belongs to the Section D:Materials and Processing)
19 pages, 3765 KiB  
Article
Thermal Effects on Main Girders During Construction of Composite Cable-Stayed Bridges Based on Monitoring Data
by Hua Luo, Wan Wu, Qincong She, Bin Li, Chen Yang and Yahua Pan
Buildings 2025, 15(17), 2990; https://doi.org/10.3390/buildings15172990 - 22 Aug 2025
Abstract
Thermal effects critically influence the design and construction of steel-concrete composite cable-stayed bridges, where material thermal mismatch complicates structural responses. Current code-specified temperature gradient models inadequately address long-span bridges. This study employs in-situ monitoring of the Chibi Yangtze River Bridge to propose a [...] Read more.
Thermal effects critically influence the design and construction of steel-concrete composite cable-stayed bridges, where material thermal mismatch complicates structural responses. Current code-specified temperature gradient models inadequately address long-span bridges. This study employs in-situ monitoring of the Chibi Yangtze River Bridge to propose a refined vertical temperature gradient model, utilizing an exponential function for the concrete deck and a linear function for the steel web. Finite element analysis across six construction stages reveals: (1) Under negative temperature gradients, the concrete deck develops tensile stresses (2.439–2.591 MPa), approximately 30% lower than code-predicted values (3.613–3.715 MPa), highlighting risks of longitudinal cracking. (2) At the maximum double-cantilever stage, transverse stress distributions show pronounced shear lag effects, positive shear lag in deck sections connected to crossbeams and negative shear lag in non-connected sections. The proposed model reduces tensile stress conservatism in codes by 30–33%, enhancing prediction accuracy for composite girders. This work provides critical insights for thermal effect management in long-span bridge construction. Full article
Show Figures

Figure 1

20 pages, 4109 KiB  
Article
Rheological Optimization of 3D-Printed Cementitious Materials Using Response Surface Methodology
by Chenfei Wang, Junyin Lian, Yunhui Fang, Guangming Fan, Yixin Yang, Wenkai Huang and Shuqin Shi
Materials 2025, 18(17), 3933; https://doi.org/10.3390/ma18173933 - 22 Aug 2025
Viewed by 31
Abstract
This study employed response surface methodology (RSM) to optimize admixture proportions in 3D-printed cementitious materials, with the aim of enhancing printability. Based on preliminary tests, three additives, namely, an accelerator, hydroxypropyl methylcellulose (HPMC), and polycarboxylate superplasticizer (PCE), were incorporated to evaluate their effects [...] Read more.
This study employed response surface methodology (RSM) to optimize admixture proportions in 3D-printed cementitious materials, with the aim of enhancing printability. Based on preliminary tests, three additives, namely, an accelerator, hydroxypropyl methylcellulose (HPMC), and polycarboxylate superplasticizer (PCE), were incorporated to evaluate their effects on flowability and dynamic yield stress. A Box–Behnken central composite design was used to establish a mathematical model, followed by the RSM-driven optimization of mix proportions. The optimized formulation (0.32% accelerator, 0.24% HPMC, and 0.23% PCE) achieved a flowability of 147.5 mm and a dynamic yield stress of 711 Pa, which closely matched the predicted values and fulfilled the printability requirements, thus establishing RSM as an effective approach for designing printable cementitious composites. This approach established an RSM-based optimization framework for mix proportion design. These findings offer a mechanistic framework for rational 3DPC mixture design, combining theoretical insights and practical implementation in additive construction. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 3028 KiB  
Article
Unveiling Brass-Doped CoSb3-Based Thermoelectric Materials Using Solid-State Reaction
by Dan Zhao, Yonghua Ji, Bingke Qin, Jiaxin Fan, Xiaodong Lv and Run Huang
Materials 2025, 18(17), 3928; https://doi.org/10.3390/ma18173928 - 22 Aug 2025
Viewed by 59
Abstract
Skutterudite (CoSb3)-based thermoelectric materials are regarded as one of the most promising candidates for mid-temperature commercial thermoelectric applications, thanks to their excellent electrical performance and alloy-based attributes. By utilizing techniques such as doping, microstructure design, and high-temperature solid-state reactions, synthesis of [...] Read more.
Skutterudite (CoSb3)-based thermoelectric materials are regarded as one of the most promising candidates for mid-temperature commercial thermoelectric applications, thanks to their excellent electrical performance and alloy-based attributes. By utilizing techniques such as doping, microstructure design, and high-temperature solid-state reactions, synthesis of Brassx/Co4Sb11.5Te0.5 (x = 0.1, 0.3, 0.5, 0.7, representing wt%) in composite form can be rapidly achieved. XRD analysis indicates that the prepared Brassx/Co4Sb11.5Te0.5 samples primarily exhibit the CoSb3 crystal structure, with the formation of minor impurity phases such as Cu13Te7 and ZnTe. SEM and EDS analyses reveal that the sample is composed of nanoscale equiaxed grains, some of which are micrometer in size, with a large number of microporous structures distributed uniformly, forming abundant grain boundaries. By co-doping with brass and tellurium (Te), the carrier concentration can be effectively regulated, thereby enhancing the power factor of CoSb3-based thermoelectric materials. Meanwhile, the introduction of nanostructures, grain boundaries, and defects optimizes the microstructure of the samples, leading to a reduction in the lattice thermal conductivity of the CoSb3-based thermoelectric materials. At a testing temperature of 781 K, Brass0.1/Co4Sb11.5Te0.5 achieved a maximum power factor of 1.86 mW·m−1·K−2, a minimum lattice thermal conductivity of 1.02 W/(mK), and a maximum thermoelectric figure of merit ZT of 0.81. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

29 pages, 5199 KiB  
Review
Recent Progress on Synthesis and Electrochemical Performance of Iron Fluoride Conversion Cathodes for Li-Ion Batteries
by Jiabin Tian, Ziyi Yang, Yayun Zheng and Zhengfei Chen
Solids 2025, 6(3), 47; https://doi.org/10.3390/solids6030047 - 22 Aug 2025
Viewed by 41
Abstract
Despite notable advancements in lithium-ion battery (LIB) technology, growing industrialization, rising energy demands, and evolving consumer electronics continue to raise performance requirements. As the primary determinant of battery performance, cathode materials have become a central research focus. Among emerging candidates, iron-based fluorides show [...] Read more.
Despite notable advancements in lithium-ion battery (LIB) technology, growing industrialization, rising energy demands, and evolving consumer electronics continue to raise performance requirements. As the primary determinant of battery performance, cathode materials have become a central research focus. Among emerging candidates, iron-based fluorides show great promise due to their high theoretical specific capacities, elevated operating voltages, low cost (owing to abundant iron and fluorine), and structurally diverse crystalline forms such as pyrochlore and tungsten bronze types. These features make them strong contenders for next-generation high-energy, low-cost LIBs. This review highlights recent progress in iron-based fluoride cathode materials, with an emphasis on structural regulation and performance enhancement strategies. Using pyrochlore-type hydrated iron trifluoride (Fe2F5·H2O), synthesized via ionic liquids like BmimBF4, as a representative example, we discuss key methods for tuning physicochemical properties—such as electronic conductivity, ion diffusion, and structural stability—via doping, compositing, nanostructuring, and surface engineering. Advanced characterization tools (XRD, SEM/TEM, XPS, Raman, synchrotron radiation) and electrochemical analyses are used to reveal structure–property–performance relationships. Finally, we explore current challenges and future directions to guide the practical deployment of iron-based fluorides in LIBs. This review provides theoretical insights for designing high-performance, cost-effective cathode materials. Full article
Show Figures

Graphical abstract

14 pages, 4198 KiB  
Article
High-Efficiency Polysulfide Trapping with g-C3N4/CNT Hybrids for Superior Lithium-Sulfur Batteries
by Zhen Chen, Hao Meng, Jiayi Wang, Lin Yang, Xin Wang and Zhongwei Chen
Energies 2025, 18(17), 4462; https://doi.org/10.3390/en18174462 - 22 Aug 2025
Viewed by 158
Abstract
Commercialization of lithium-sulfur (Li-S) batteries is critically hampered by the severe lithium polysulfide shuttle effect. Hence, designing multifunctional materials that synergistically provide physical confinement of polysulfides, chemical entrapment, and catalytic promotion is a viable route for improving Li-S battery performance. Herein, graphitic carbon [...] Read more.
Commercialization of lithium-sulfur (Li-S) batteries is critically hampered by the severe lithium polysulfide shuttle effect. Hence, designing multifunctional materials that synergistically provide physical confinement of polysulfides, chemical entrapment, and catalytic promotion is a viable route for improving Li-S battery performance. Herein, graphitic carbon nitride (g-C3N4) with abundant nitrogen atoms was used as the chemical adsorption material to realize a “physical-chemical” dual confinement for polysulfides. Furthermore, the integration of CNTs with g-C3N4 is intended to substantially enhance the conductivity of the cathode material. Consequently, the synthesized g-C3N4/CNT composite, which functions as an effective polysulfide immobilizer, significantly improved the cycling stability and discharge capacity of Li-S batteries. This enhancement can be attributed to its potent adsorption and catalytic activities. Li-S cells utilizing g-C3N4/CNT cathodes exhibit exceptional discharge capacity and notable rate capability. Specifically, after 100 cycles at 0.2 C, the discharge capacity was 701 mAh g−1. Furthermore, even at a high rate of 2 C, a substantial capacity of 457 mAh g−1 was retained. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

Back to TopTop