Modelling and Validation of Progressive Damage in Hybrid CFRP–Elastomer Laminates Under Quasi-Static Indentation Loading
Abstract
1. Introduction
2. Materials and Methods
2.1. Constituent Material Characterisation and Manufacturing of HyPCMat Laminates
2.1.1. Polymeric Composite Material
2.1.2. Elastomeric Film
2.1.3. HyPCMat Manufacturing and Sample Preparation
2.2. Indentation Tests
2.3. Numerical Simulation
2.3.1. FEA Model
2.3.2. Material Models for Numerical Analysis
2.3.3. Cohesive Zone Model
2.3.4. Material Model for Elastomeric Film
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HyPCMat | Hybrid Polymer Composite Material |
CFRP | Carbon Fibre-Reinforced Polymer |
FML | Fibre Metal Laminate |
CAI | Compression After Impact |
D-FE2 | Direct Finite Element Square |
FE2 | Finite Element Square |
GFRP | Glass Fibre-Reinforced Polymer |
EL | Elastomer |
CZM | Cohesive Zone Modelling |
CV | Coefficient of Variation |
BK | Benzeggagh–Kenane |
UMAT | User-Defined Material |
References
- Falaschetti, M.P.; Rondina, F.; Zavatta, N.; Gragnani, L.; Gironi, M.; Troiani, E.; Donati, L. Material Characterization for Reliable Resin Transfer Molding Process Simulation. Appl. Sci. 2020, 10, 1814. [Google Scholar] [CrossRef]
- Falaschetti, M.P.; Birnie Hernández, J.; Semprucci, F.; Raimondi, L.; Serradimigni, D.; Troiani, E.; Donati, L. Analysis of the Crushing Behavior of Flat Composite Plates Produced by Sheet Molding Compound. In Proceedings of the Dynamic Response and Failure of Composite Materials, DRAF 2024, Ischia, Italy, 17–21 June 2024; Lecture Notes in Mechanical Engineering. Lopresto, V., Papa, I., Eds.; Springer: Cham, Switzerland, 2025; pp. 40–48. [Google Scholar]
- Wanhill, R.J.H. Carbon Fibre Polymer Matrix Structural Composites. In Aerospace Materials and Material Technologies; Springer: Singapore, 2017; pp. 309–341. ISBN 978-981-10-2134-3. [Google Scholar]
- Falaschetti, M.P.; Scafé, M.; Zavatta, N.; Troiani, E. Hygrothermal Ageing Influence on BVI-Damaged Carbon/Epoxy Coupons under Compression Load. Polymer 2021, 13, 2038. [Google Scholar] [CrossRef]
- Falaschetti, M.P.; Semprucci, F.; Birnie Hernández, J.; Troiani, E. Experimental and Numerical Assessment of Crashworthiness Properties of Composite Materials: A Review. Aerospace 2025, 12, 122. [Google Scholar] [CrossRef]
- Falaschetti, M.P.; Semprucci, F.; Raimondi, L.; Serradimigni, D. Experimental and Numerical Assessment of Sheet Molding Compound Composite Crushing Behavior. J. Mater. Eng. Perform. 2025, 34, 15281–15292. [Google Scholar] [CrossRef]
- Falaschetti, M.P.; Rondina, F.; Maccaferri, E.; Mazzocchetti, L.; Donati, L.; Zucchelli, A.; Giorgini, L. Improving the Crashworthiness of CFRP Structures by Rubbery Nanofibrous Interlayers. Compos. Struct. 2023, 311, 116845. [Google Scholar] [CrossRef]
- Maccaferri, E.; Mazzocchetti, L.; Benelli, T.; Brugo, T.M.; Zucchelli, A.; Giorgini, L. A Thermoplastic Elastomeric Nanofibrous Membrane as CFRP Modifier to Boost Both Delamination and Damping Performance. Macromol. Symp. 2022, 405, 2100233. [Google Scholar] [CrossRef]
- Vescovini, A.; Cruz, J.A.; Ma, D.; Colombo, C.; Salerno, A.; Bianchi, O.; Amico, S.C.; Manes, A. Experimental Investigation on Low-Velocity Impact Behavior of Glass, Kevlar, and Hybrid Composites with an Elastomeric Polyurethane Matrix. Compos. Part C Open Access 2024, 13, 100426. [Google Scholar] [CrossRef]
- Liu, H.; Falzon, B.G.; Tan, W. Experimental and Numerical Studies on the Impact Response of Damage-Tolerant Hybrid Unidirectional/Woven Carbon-Fibre Reinforced Composite Laminates. Compos. Part B Eng. 2018, 136, 101–118. [Google Scholar] [CrossRef]
- Liu, H.; Falzon, B.G.; Dear, J.P. An Experimental and Numerical Study on the Crush Behaviour of Hybrid Unidirectional/Woven Carbon-Fibre Reinforced Composite Laminates. Int. J. Mech. Sci. 2019, 164, 105160. [Google Scholar] [CrossRef]
- Raimondi, L.; Bernardi, F. Advanced Hybrid Laminates: Elastomer Integration for Optimized Mechanical Properties. Int. J. Adv. Manuf. Technol. 2025, 136, 3177–3195. [Google Scholar] [CrossRef]
- Dhaliwal, G.S.; Newaz, G.M. Experimental and Numerical Investigation of Flexural Behavior of Hat Sectioned Aluminum/Carbon Fiber Reinforced Mixed Material Composite Beam. Compos. Part B Eng. 2020, 182, 107642. [Google Scholar] [CrossRef]
- Massarwa, E.; Emami Tabrizi, I.; Yildiz, M. Mechanical Behavior and Failure of Glass/Carbon Fiber Hybrid Composites: Multiscale Computational Predictions Validated by Experiments. Compos. Struct. 2021, 260, 113499. [Google Scholar] [CrossRef]
- Acosta, J.D.; Idarraga, G.; Maimí, P.; Jalalvand, M.; Meza, J.M. Numerical Modelling of Multi-Directional Thin-Ply Carbon/Glass Hybrid Composites with Open Holes under Tension. Mech. Mater. 2024, 190, 104921. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, G.; Liu, E.; Li, X.; Shu, X.; Hao, X. Experimental Investigation on the Low-Velocity Impact Responses of Hybrid CFRP–Elastomer–Metal Laminates with Various Rubber Layer Positions and Impact Energies. Mech. Adv. Mater. Struct. 2025. [Google Scholar] [CrossRef]
- Taherzadeh-Fard, A.; Liaghat, G.; Ahmadi, H.; Razmkhah, O.; Chitsaz Charandabi, S.; Zarezadeh-mehrizi, M.A.; Khodadadi, A. Experimental and Numerical Investigation of the Impact Response of Elastomer Layered Fiber Metal Laminates (EFMLs). Compos. Struct. 2020, 245, 112264. [Google Scholar] [CrossRef]
- Düring, D.; Petersen, E.; Stefaniak, D.; Hühne, C. Damage Resistance and Low-Velocity Impact Behaviour of Hybrid Composite Laminates with Multiple Thin Steel and Elastomer Layers. Compos. Struct. 2020, 238, 111851. [Google Scholar] [CrossRef]
- Sarlin, E.; Apostol, M.; Lindroos, M.; Kuokkala, V.T.; Vuorinen, J.; Lepistö, T.; Vippola, M. Impact Properties of Novel Corrosion Resistant Hybrid Structures. Compos. Struct. 2014, 108, 886–893. [Google Scholar] [CrossRef]
- Mohotti, D.; Ngo, T.; Raman, S.N.; Ali, M.; Mendis, P. Plastic Deformation of Polyurea Coated Composite Aluminium Plates Subjected to Low Velocity Impact. Mater. Des. 2014, 56, 696–713. [Google Scholar] [CrossRef]
- Khodadadi, A.; Liaghat, G.; Shahgholian-Ghahfarokhi, D.; Chizari, M.; Wang, B. Numerical and Experimental Investigation of Impact on Bilayer Aluminum-Rubber Composite Plate. Thin-Walled Struct. 2020, 149, 106673. [Google Scholar] [CrossRef]
- Sadowski, T.; Golewski, P.; Craciun, E. Internal Structure Influence on the Impact Strength and Dynamic Fracture Toughness of Hybrid Polymer Matrix Composites with Integrated Elastomer Interlayers. Compos. Struct. 2021, 258, 113375. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.; Cheng, H.; Liu, C.; Zhu, Y.; Zhang, K. Experimental and Numerical Analysis of Low-Velocity Impact Damage of CFRP Laminates with Negative Poisson Ratio (NPR) Rubber Protective Layer. Thin-Walled Struct. 2023, 191, 111066. [Google Scholar] [CrossRef]
- Stelldinger, E.; Kühhorn, A.; Kober, M. Experimental Evaluation of the Low-Velocity Impact Damage Resistance of CFRP Tubes with Integrated Rubber Layer. Compos. Struct. 2016, 139, 30–35. [Google Scholar] [CrossRef]
- Krollmann, J.; Schreyer, T.; Veidt, M.; Drechsler, K. Impact and Post-Impact Properties of Hybrid-Matrix Laminates Based on Carbon Fiber-Reinforced Epoxy and Elastomer Subjected to Low-Velocity Impacts. Compos. Struct. 2019, 208, 535–545. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; Wang, C.; Gu, Y.; Cong, S.; Wang, J.; Wang, B. Impact Resistance and Damage Mechanisms of CFRP with Elastomeric Interlayers under Low-Velocity Impacts. Polym. Compos. 2025, 1–13. [Google Scholar] [CrossRef]
- Falaschetti, M.P.; Rondina, F.; Zavatta, N.; Troiani, E.; Donati, L. Effective Implementation of Numerical Models for the Crashworthiness of Composite Laminates. Eng. Fail. Anal. 2024, 160, 108196. [Google Scholar] [CrossRef]
- Liu, K.; Meng, L.; Zhao, A.; Wang, Z.; Chen, L.; Li, P. A Hybrid Direct FE2 Method for Modeling of Multiscale Materials and Structures with Strain Localization. Comput. Methods Appl. Mech. Eng. 2023, 412, 116080. [Google Scholar] [CrossRef]
- Liu, K.; Tian, L.; Gao, T.; Wang, Z.; Li, P. An Explicit D-FE2 Method for Transient Multiscale Analysis. Int. J. Mech. Sci. 2025, 285, 109808. [Google Scholar] [CrossRef]
- Tsai, S.W.; wu, E.M. A General Theory of Strength for Anisotropic Materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A Fatigue Failure Criterion for Fiber Reinforced Materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Pinho, S.T.; Iannucci, L.; Robinson, P. Physically-Based Failure Models and Criteria for Laminated Fibre-Reinforced Composites with Emphasis on Fibre Kinking: Part I: Development. Compos. Part A Appl. Sci. Manuf. 2006, 37, 63–73. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models. In Failure Criteria in Fibre-Reinforced-Polymer Composites; Elsevier Science: Amsterdam, The Netherlands, 2004; pp. 832–876. ISBN 9780080531571. [Google Scholar]
- Rondina, F.; Falaschetti, M.P.; Zavatta, N.; Donati, L. Numerical Simulation of the Compression Crushing Energy of Carbon Fiber-Epoxy Woven Composite Structures. Compos. Struct. 2023, 303, 116300. [Google Scholar] [CrossRef]
- El Idrissi, H.; Seddouki, A. A Comprehensive Study of the Flexural Behaviour and Damage Evolution of Composite Laminates Using a Progressive Failure Model. Int. J. Adv. Manuf. Technol. 2023, 127, 3869–3890. [Google Scholar] [CrossRef]
- Linde, P.; de Boer, H. Modelling of Inter-Rivet Buckling of Hybrid Composites. Compos. Struct. 2006, 73, 221–228. [Google Scholar] [CrossRef]
- Van Der Meer, F.P.; Sluys, L.J. Continuum Models for the Analysis of Progressive Failure in Composite Laminates. J. Compos. Mater. 2009, 43, 2131–2156. [Google Scholar] [CrossRef]
- Kakei, A.A.G.; Epaarachchi, J.A.; Islam, M.M.; Leng, J. Development of Fracture and Damage Modeling Concepts for Composite Materials. In Structural Health Monitoring Technologies and Next-Generation Smart Composite Structures; CRC Press: Boca Raton, FL, USA, 2016; pp. 341–368. ISBN 9781315373492. [Google Scholar]
- Meon, M.S.; Husain, H.; Saedon, J.B.; Shawal, S.; Mohamad Nor, N.H.; Rao, M.N.; Schröder, K.U. Capability Analysis of Puck Damage Model in Predicting the Damage Behavior of Unidirectional Composite Laminates under Different Scenarios. IOP Conf. Ser. Mater. Sci. Eng. 2020, 834, 012028. [Google Scholar] [CrossRef]
- Matthias Deuschle, H.; Kröplin, B.H. Finite Element Implementation of Puck’s Failure Theory for Fibre-Reinforced Composites under Three-Dimensional Stress. J. Compos. Mater. 2012, 46, 2485–2513. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Wang, Y.Q.; Gao, H.; Li, R.; Bao, Y. A Progressive Damage Model for Predicting Damage Evolution of Laminated Composites Subjected to Three-Point Bending. Compos. Sci. Technol. 2017, 151, 85–93. [Google Scholar] [CrossRef]
- Shen, B.; Liu, H.; Lv, S.; Li, Z.; Cheng, W. Progressive Failure Analysis of Laminated CFRP Composites under Three-Point Bending Load. Adv. Mater. Sci. Eng. 2022, 2022, 3047319. [Google Scholar] [CrossRef]
- Bogert, P.B.; Satyanarayana, A.; Chunchu, P.B. Comparison of Damage Path Predictions for Composite Laminates by Explicit and Standard Finite Element Analysis Tools. In Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, USA, 1–4 May 2006; Volume 3, pp. 1919–1941. [Google Scholar] [CrossRef]
- Brust, A.F.; Xu, L.; Kemp, D. The Impact of FEA Modeling Techniques for Level 3 Dent Engineering Critical Assessment: Shell Vs. Solid Elements. In Proceedings of the ASME 2024 Pressure Vessels & Piping Conference, Bellevue, WA, USA, 28 July–2 August 2024; Volume 2. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, S.W. A Solid Element Formulation for Large Deflection Analysis of Composite Shell Structures. Comput. Struct. 1988, 30, 269–274. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, G.; Wang, X. Displacement and Stress Analysis of Laminated Composite Plates Using an Eight-Node Quasi-Conforming Solid-Shell Element. Curved Layer. Struct. 2017, 4, 8–20. [Google Scholar] [CrossRef]
- Yi, T. The Progressive Failure Analysis of Uni-Directional Fibre Reinforced Composite Laminates. J. Mech. 2020, 36, 159–166. [Google Scholar] [CrossRef]
- Zhang, Y.; Van Paepegem, W.; De Corte, W. An Enhanced Progressive Damage Model for Laminated Fiber-Reinforced Composites Using the 3D Hashin Failure Criterion: A Multi-Level Analysis and Validation. Materials 2024, 17, 5176. [Google Scholar] [CrossRef]
- Tserpes, K.I.; Papanikos, P.; Kermanidis, T. A Three-Dimensional Progressive Damage Model for Bolted Joints in Composite Laminates Subjected to Tensile Loading. Fatigue Fract. Eng. Mater. Struct. 2001, 24, 663–675. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, B.; Wang, S. Finite Element Analysis on Impact Response and Damage Mechanism of Composite Laminates under Single and Repeated Low-Velocity Impact. Aerosp. Sci. Technol. 2022, 129, 107810. [Google Scholar] [CrossRef]
- Rahul, K.; Yudhanto, A.; Ravindranath, P.K.; Jack, D.A. Progressive Damage Modeling in Open Hole Composite Laminates with Ultrasound-Informed Drilling-Induced Delamination. Compos. Part A Appl. Sci. Manuf. 2024, 184, 108262. [Google Scholar] [CrossRef]
- HU, J.; ZHANG, K.; CHENG, H.; ZOU, P. Modeling on Mechanical Behavior and Damage Evolution of Single-Lap Bolted Composite Interference-Fit Joints under Thermal Effects. Chin. J. Aeronaut. 2021, 34, 230–244. [Google Scholar] [CrossRef]
- Benzeggagh, M.L.; Kenane, M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- van Hoogstraten, P.A.A.; Slaats, P.M.A.; Baaijens, F.P.T. A Eulerian Approach to the Finite Element Modelling of Neo-Hookean Rubber Material. In Integration of Theory and Applications in Applied Mechanics; Springer: Dordrecht, The Netherlands, 1990; pp. 277–294. [Google Scholar]
- Yeoh, O.H. Some Forms of the Strain Energy Function for Rubber. Rubber Chem. Technol. 1993, 66, 754–771. [Google Scholar] [CrossRef]
- Boyce, M.C.; Arruda, E.M. Constitutive Models of Rubber Elasticity: A Review. Rubber Chem. Technol. 2000, 73, 504–523. [Google Scholar] [CrossRef]
- Marlow, R.S. A General First-Invariant Hyperelastic Constitutive Model. In Constitutive Models for Rubber; Swets & Zeitlinger: Lisse, The Netherlands, 2003; pp. 157–160. [Google Scholar]
- Li, Z.; Ma, Z.; Wang, J.; Wang, B.; Yang, N. Low-Velocity Impact Behavior and Damage Mechanisms of Honeycomb Sandwich Structures with Elastomeric Interlayers in CFRP Skins. Thin-Walled Struct. 2024, 205, 112482. [Google Scholar] [CrossRef]
Failure Mode | 2D Hashin [50] | 3D Hashin [42] | |
---|---|---|---|
(1) | |||
(2) | |||
(3) | |||
(4) | |||
/ | (5) | ||
/ | (6) |
Material Property | Value | Units |
---|---|---|
Density | kg/m3 | |
Elastic Properties [12] | MPa | |
MPa | ||
MPa | ||
0.36 | - | |
0.36 | - | |
0.45 | - | |
MPa | ||
MPa | ||
MPa | ||
Strength [12] | MPa | |
MPa | ||
MPa | ||
MPa | ||
MPa | ||
MPa | ||
Fracture Energies [27] | N/mm | |
N/mm |
Material Property | Value | Units |
---|---|---|
34,500 | MPa/mm | |
3450 | MPa/mm | |
12.8 | MPa | |
24.2 | MPa | |
0.452 | N/mm | |
1.549 | N/mm | |
η | 1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimondi, L.; Salvi, L.; Semprucci, F.; Falaschetti, M.P. Modelling and Validation of Progressive Damage in Hybrid CFRP–Elastomer Laminates Under Quasi-Static Indentation Loading. Appl. Sci. 2025, 15, 9284. https://doi.org/10.3390/app15179284
Raimondi L, Salvi L, Semprucci F, Falaschetti MP. Modelling and Validation of Progressive Damage in Hybrid CFRP–Elastomer Laminates Under Quasi-Static Indentation Loading. Applied Sciences. 2025; 15(17):9284. https://doi.org/10.3390/app15179284
Chicago/Turabian StyleRaimondi, Luca, Leonardo Salvi, Francesco Semprucci, and Maria Pia Falaschetti. 2025. "Modelling and Validation of Progressive Damage in Hybrid CFRP–Elastomer Laminates Under Quasi-Static Indentation Loading" Applied Sciences 15, no. 17: 9284. https://doi.org/10.3390/app15179284
APA StyleRaimondi, L., Salvi, L., Semprucci, F., & Falaschetti, M. P. (2025). Modelling and Validation of Progressive Damage in Hybrid CFRP–Elastomer Laminates Under Quasi-Static Indentation Loading. Applied Sciences, 15(17), 9284. https://doi.org/10.3390/app15179284