Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (497)

Search Parameters:
Keywords = composite desirability function

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2917 KB  
Article
Multi-Objective Optimization and Reliability Assessment of Date Palm Fiber/Sheep Wool Hybrid Polyester Composites Using RSM and Weibull Analysis
by Mohammed Y. Abdellah, Ahmed H. Backar, Mohamed K. Hassan, Miltiadis Kourmpetis, Ahmed Mellouli and Ahmed F. Mohamed
Polymers 2025, 17(20), 2786; https://doi.org/10.3390/polym17202786 - 17 Oct 2025
Abstract
This study investigates date palm fiber (DPF) and sheep wool hybrid polyester composites with fiber loadings of 0%, 10%, 20%, and 30% by weight, fabricated by compression molding, to develop a sustainable and reliable material system. Experimental data from prior work were modeled [...] Read more.
This study investigates date palm fiber (DPF) and sheep wool hybrid polyester composites with fiber loadings of 0%, 10%, 20%, and 30% by weight, fabricated by compression molding, to develop a sustainable and reliable material system. Experimental data from prior work were modeled using Weibull analysis for reliability evaluation and response surface methodology (RSM) for multi-objective optimization. Weibull statistics fitted a two-parameter distribution to tensile strength and fracture toughness, extracting shape (η) and scale (β) parameters to quantify variability and failure probability. The analysis showed that 20% hybrid content achieved the highest scale values (β = 28.85 MPa for tensile strength and β = 15.03 MPam for fracture toughness) and comparatively low scatter (η = 10.39 and 9.2, respectively), indicating superior reliability. RSM quadratic models were developed for tensile strength, fracture toughness, thermal conductivity, acoustic attenuation, and water absorption, and were combined using desirability functions. The RSM optimization was found at 18.97% fiber content with a desirability index of 0.673, predicting 25.89 MPa tensile strength, 14.23 MPam fracture toughness, 0.08 W/m·K thermal conductivity, 20.49 dB acoustic attenuation, and 5.11% water absorption. Overlaying Weibull cumulative distribution functions with RSM desirability surfaces linked probabilistic reliability zones (90–95% survival) to the deterministic optimization peak. This integration establishes a unified framework for designing natural fiber composites by embedding reliability into multi-property optimization. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Figure 1

20 pages, 1521 KB  
Article
Moving Down the Urban Hierarchy: Exploring Patterns of Internal Migration Towards Small Towns in Latvia
by Janis Krumins and Maris Berzins
Geographies 2025, 5(4), 54; https://doi.org/10.3390/geographies5040054 - 1 Oct 2025
Viewed by 343
Abstract
Europe has experienced a growing divergence in trends of population change across the urban hierarchy. A key driver of this divergence is internal migration, which underpins the efficient functioning of the economy by enhancing labor market flexibility and allowing people to choose the [...] Read more.
Europe has experienced a growing divergence in trends of population change across the urban hierarchy. A key driver of this divergence is internal migration, which underpins the efficient functioning of the economy by enhancing labor market flexibility and allowing people to choose the most desired locations. Internal migration in Latvia is of increasing importance, as the propensity to change residence within national borders has become the primary mechanism of demographic change, shaping population redistribution across regions and the urban hierarchy. We used Latvia as a case study, exemplified by the monocentric urban system with Riga City at its center, as well as a relatively dense network of small towns spread across all regions. Small towns in Latvia, although not characterized by high levels of internal migration, exhibit notable changes in their demographic and socioeconomic composition. Our analysis uses administrative data on registered migration for each year from 2011 to 2021 to characterize migration patterns, as well as data from the 2011 and 2021 census rounds on 1-year migration to analyze the composition of the migrant population. The results showed sociodemographic variations in the characteristics of individuals migrating to small towns. Understanding the temporal and spatial dynamics of internal migration patterns and compositional effects is vital for effective local and regional development policies to plan essential services and infrastructure. Full article
Show Figures

Figure 1

14 pages, 4634 KB  
Article
Functionally Graded WC-Reinforced Stainless-Steel Composites via Casting: Microstructure and Wear Performance
by Aida B. Moreira, Laura M. M. Ribeiro and Manuel F. Vieira
J. Compos. Sci. 2025, 9(9), 495; https://doi.org/10.3390/jcs9090495 - 12 Sep 2025
Viewed by 500
Abstract
This study presents an effective route for producing functionally graded metal matrix composites with enhanced abrasion wear resistance by incorporating ex situ Fe–WC preforms into austenitic stainless-steel castings. The preforms, produced by cold-pressing mixed WC and Fe powders, were positioned in the desired [...] Read more.
This study presents an effective route for producing functionally graded metal matrix composites with enhanced abrasion wear resistance by incorporating ex situ Fe–WC preforms into austenitic stainless-steel castings. The preforms, produced by cold-pressing mixed WC and Fe powders, were positioned in the desired locations in sand molds and reacted in situ with the molten steel during casting. This process generated a metallurgically bonded reinforcement zone with a continuous microstructural and compositional gradient, characteristic of a Functionally Graded Material (FGM). Near the surface, the microstructure consisted of a martensitic matrix with WC particles and (W,Fe,Cr)6C carbides, while towards the base metal, it transitioned to austenitic dendrites with an interdendritic network of Cr- and W-rich carbides, including (W,Fe,Cr)6C, (Fe,Cr,W)7C3, and (Fe,Cr,W)23C6. Vickers hardness measurements revealed surface-adjacent values (969 ± 72 HV 30) approximately six times higher than those of the base alloy, and micro-abrasion tests demonstrated a 70% reduction in micro-abrasion wear rate in the reinforced zones. These findings show that WC dissolution during casting enables tailored hardness and abrasion wear performance, offering an accessible manufacturing solution for high-demand mechanical environments. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

32 pages, 3323 KB  
Article
A Data-Driven Informatics Framework for Regional Sustainability: Integrating Twin Mean-Variance Two-Stage DEA with Decision Analytics
by Pasura Aungkulanon, Roberto Montemanni, Atiwat Nanphang and Pongchanun Luangpaiboon
Informatics 2025, 12(3), 92; https://doi.org/10.3390/informatics12030092 - 11 Sep 2025
Viewed by 539
Abstract
This study introduces a novel informatics framework for assessing regional sustainability by integrating Twin Mean-Variance Two-Stage Data Envelopment Analysis (TMV-TSDEA) with a desirability-based decision analytics system. The model evaluates both the efficiency and stability of economic and environmental performance across regions, supporting evidence-based [...] Read more.
This study introduces a novel informatics framework for assessing regional sustainability by integrating Twin Mean-Variance Two-Stage Data Envelopment Analysis (TMV-TSDEA) with a desirability-based decision analytics system. The model evaluates both the efficiency and stability of economic and environmental performance across regions, supporting evidence-based policymaking and strategic planning. Applied to 16 Thai provinces, the framework incorporates a wide range of indicators—such as investment, population, tourism, industrial output, electricity use, forest coverage, and air quality. The twin mean-variance approach captures not only average efficiency but also the consistency of performance over time or under varying scenarios. A two-stage DEA structure models the transformation from economic inputs to environmental outcomes. To ensure comparability, all variables are normalized using desirability functions based on standardized statistical coding. The TMV-TSDEA framework generates composite performance scores that reveal clear disparities among regions. Provinces like Bangkok and Ayutthaya demonstrate a consistent high performance, while others show underperformance or variability requiring targeted policy action. Designed for integration with smart governance platforms, the framework provides a scalable and reproducible tool for regional benchmarking, resource allocation, and sustainability monitoring. By combining informatics principles with advanced analytics, TMV-TSDEA enhances transparency, supports decision-making, and offers a holistic foundation for sustainable regional development. Full article
Show Figures

Figure 1

25 pages, 3972 KB  
Article
Development, Characterization, and Stability of Flavored Water Kefir: Impact of Fermentation and Storage
by Samarha Pacheco Wichello, Kamila Ferreira Chaves, Wallaf Costa Vimercati, Sérgio Henriques Saraiva and Luciano Jose Quintão Teixeira
Fermentation 2025, 11(9), 513; https://doi.org/10.3390/fermentation11090513 - 31 Aug 2025
Viewed by 1253
Abstract
The increasing demand for functional beverages sparked greater interest in health-promoting craft drinks, highlighting the need to optimize production parameters and assess their stability. This study aimed to develop, optimize, and characterize a grape juice-flavored naturally carbonated water kefir, evaluating its sensory qualities, [...] Read more.
The increasing demand for functional beverages sparked greater interest in health-promoting craft drinks, highlighting the need to optimize production parameters and assess their stability. This study aimed to develop, optimize, and characterize a grape juice-flavored naturally carbonated water kefir, evaluating its sensory qualities, physicochemical and microbiological stability. Fermentation conditions (F1) were optimized using Central Composite Rotational Design, leading to the selection of 24 h at 30 °C with (6.5% w/v) brown sugar, ensuring efficient pH reduction to safe levels. Sensory analysis selected grape juice as the flavoring agent, and a mixture design coupled with the desirability function determined the optimal formulation as 50% kefired water, 46.4% grape juice, and 3.6% water, resulting in high overall sensory desirability. During 42 days of refrigerated storage (4 °C), the beverage exhibited progressive sugar consumption from residual metabolic activity, a dynamic antioxidant profile characterized by increases in total phenolic compounds and FRAP activity, stability in ABTS activity, and decline in DPPH activity. Lactic acid bacteria counts remained stable during storage, while acetic acid bacteria and yeast populations decreased. Furthermore, pH (~3.30) and alcohol content (~1.86 °GL) remained stable, although the latter requires clear labeling in compliance with regulations for similar fermented beverages. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Graphical abstract

18 pages, 3843 KB  
Article
Dual Micromechanical Interlocking Through Filler Surface Modification for Enhanced Dental Composites
by Hongyan Chen, Jiaxuan Lyu, Jia Nie, Xuhui Wang, Na Yang, Sheng Han and Mingliang Zhou
Polymers 2025, 17(17), 2384; https://doi.org/10.3390/polym17172384 - 31 Aug 2025
Cited by 1 | Viewed by 830
Abstract
A novel structure–functional-integrated particle featuring dual micromechanical interlocking property with resin matrix was constructed through surface modification of urchin-like serried hydroxyapatite (UHA) in this work, and the effect of this modification strategy on physicochemical and biological properties of dental resin composite was also [...] Read more.
A novel structure–functional-integrated particle featuring dual micromechanical interlocking property with resin matrix was constructed through surface modification of urchin-like serried hydroxyapatite (UHA) in this work, and the effect of this modification strategy on physicochemical and biological properties of dental resin composite was also investigated. A porous silica coating layer was anchored onto UHA surface via a simple template method in an oil−water biphase reaction system, and the coating time had a prominent effect on the coating thickness and morphology-structure of the particle. When these particles with different porous silica coating thickness were used as fillers for dental resin composite, results showed that UHA/PS5 (porous silica coating reaction time: 5 h) exhibited the optimal 3D urchin-like structure and a desirable porous silica coating thickness. Additionally, UHA/PS5 formed the best dual physical micromechanical interlocking structure when mixing with resin matrix, making the dental resin composites presented the desirable matrix/filler interfacial bonding, and the excellent physicochemical–biological properties, especially for flexural strength and water sorption-solubility. In vitro remineralization and cellular biological properties confirmed that the coating layer did not compromise their remineralization activity. The use of UHA/PSx provides a promising approach to develop strong, durable, and biocompatible DRCs. Full article
Show Figures

Figure 1

20 pages, 4938 KB  
Article
Development and Evaluation of Egg-Free Mayonnaise Stabilized with Aquafaba and Gum Tragacanth: Functional, Sensory, and Storage Properties
by Bakhtawar Shafique, Mian Anjum Murtaza, Muhammad Salman Farid, Kashif Ameer, Muhammad Imran Hussain, Monika Sienkiewicz, Anna Lichota and Łukasz Łopusiewicz
Molecules 2025, 30(17), 3511; https://doi.org/10.3390/molecules30173511 - 27 Aug 2025
Viewed by 993
Abstract
This study developed and evaluated plant-based mayonnaise formulations in which egg yolk was replaced with aquafaba (15–25%) and stabilized with gum tragacanth (0.3–1.0%). Formulations were prepared using canola oil and stored at 4 °C for 28 days. Aquafaba extract was characterized for total [...] Read more.
This study developed and evaluated plant-based mayonnaise formulations in which egg yolk was replaced with aquafaba (15–25%) and stabilized with gum tragacanth (0.3–1.0%). Formulations were prepared using canola oil and stored at 4 °C for 28 days. Aquafaba extract was characterized for total phenolic content (TPC) and total flavonoid content (TFC), while mayonnaise samples were assessed for physicochemical composition, creaming index, antioxidant activity, viscosity, texture, sensory properties, and microbiological stability. Total phenolic content (TPC) rose from 17.52 mg GAE/g at 10 µg to 135.34 mg GAE/g at 100 µg (p < 0.05), while total flavonoid content (TFC) increased from 76.95 to 192.42 mg TE/g over the same concentration range. These increases demonstrate the high antioxidant potential of aquafaba extract. The 25% aquafaba + 1% gum tragacanth formulation (T3) showed the highest protein content, viscosity, firmness, and antioxidant capacity, with improved storage stability compared to the control. FTIR analysis identified functional groups such as phenols, esters, and carboxylic acids, suggesting contributions to antioxidant activity and emulsion stability. Sensory evaluation indicated strong acceptance for T3. These results demonstrate that aquafaba combined with gum tragacanth can effectively replace egg yolk while maintaining desirable quality attributes. Full article
Show Figures

Figure 1

56 pages, 25615 KB  
Review
Recent Progress and Scientific Challenges in Wire-Arc Additive Manufacturing of Metallic Multi-Material Structures
by Sainand Jadhav, Sambhaji Kusekar, Akash Belure, Satyavan Digole, Abhijeet Mali, Muralimohan Cheepu, Manoj Mugale, Suhas Alkunte and Duckbong Kim
J. Manuf. Mater. Process. 2025, 9(8), 284; https://doi.org/10.3390/jmmp9080284 - 21 Aug 2025
Cited by 1 | Viewed by 2240
Abstract
Metallic multi-material structures are heterogeneous structures characterized by changing composition, microstructures, and site-specific characteristics, advantageous for numerous applications where multifunctionality is desired. Metallic multi-material structures are known as bimetallic structures (BSs), which are functionally graded materials (FGMs). In recent years, wire-arc additive manufacturing [...] Read more.
Metallic multi-material structures are heterogeneous structures characterized by changing composition, microstructures, and site-specific characteristics, advantageous for numerous applications where multifunctionality is desired. Metallic multi-material structures are known as bimetallic structures (BSs), which are functionally graded materials (FGMs). In recent years, wire-arc additive manufacturing (WAAM) advanced as a promising additive manufacturing process to realize the fabrication of these structures due to its high deposition rate, cost-effectiveness, and material utilization efficiency. This review presents a comprehensive overview of the recent progress, processing strategies, and scientific challenges in WAAM of multi-material structures. The paper begins with an introduction to multi-material structures, followed by a bibliometric analysis of the current research landscape. Conventional and additive manufacturing fabrication approaches are presented. The review highlights key developments in processing strategies and critically evaluates research studies on WAAM of BS and FGMs. Major scientific challenges, including porosity, lack of fusion, residual stresses, cracking, material compatibility, and brittle intermetallic phase formation, are critically analyzed. Additionally, modeling, simulation, and process automation issues are discussed as barriers to industrial-scale implementation. The paper concludes with an outlook on future research directions to address existing challenges and accelerate the adoption of WAAM for complex multi-material components. Full article
Show Figures

Figure 1

30 pages, 2315 KB  
Article
Exploring the Development of a Clean-Label Vegan Burger Enriched with Fermented Microalgae
by Joseane C. Bassani, Valter F. R. Martins, Joana Barbosa, Marta Coelho, Clara Sousa, Juliana Steffens, Geciane T. Backes, Hugo Pereira, Manuela E. Pintado, Paula C. Teixeira, Alcina M. M. B. Morais and Rui M. S. C. Morais
Foods 2025, 14(16), 2884; https://doi.org/10.3390/foods14162884 - 20 Aug 2025
Cited by 1 | Viewed by 774
Abstract
Haematococcus pluvialis and Porphyridium cruentum are red microalgae with high biotechnological potential due to their rich composition of bioactive compounds. However, their intense flavor limits their application in food products. This study evaluated the impact of fermentation with Lactiplantibacillus plantarum (30 °C for [...] Read more.
Haematococcus pluvialis and Porphyridium cruentum are red microalgae with high biotechnological potential due to their rich composition of bioactive compounds. However, their intense flavor limits their application in food products. This study evaluated the impact of fermentation with Lactiplantibacillus plantarum (30 °C for 48 h; LAB-to-biomass ratio of 0.1:1; 106 CFU/mL) on the physicochemical and functional properties of H. pluvialis and P. cruentum biomasses. Particular attention was given to antioxidant activity (ABTS and ORAC assays), color, amino acid profiles, and volatile organic compound (VOC) profiles, all of which may influence sensory characteristics. Results demonstrated that non-fermented H. pluvialis exhibited significantly higher antioxidant activity (AA) than P. cruentum. After fermentation, H. pluvialis showed an ABTS value of 3.22 ± 0.35 and an ORAC value of 54.32 ± 1.79 µmol TE/100 mg DW, while P. cruentum showed an ABTS of 0.26 ± 0.00 and an ORAC of 3.11 ± 0.13 µmol TE/100 mg DW. Total phenolic content (TPC) of fermented H. pluvialis and P. cruentum was 1.08 ± 0.23 and 0.18 ± 0.026 mg GAE/100 mg DW, respectively. Both AA and TPC increased after fermentation. Fermentation also significantly affected biomass color. FTIR analysis showed intensification of protein and carbohydrate vibrational bands post-fermentation. GC-MS analysis of VOCs showed that P. cruentum contained 42 VOCs before fermentation, including trans-β-ionone, 4-ethyl-6-hepten-3-one, hexanal, and heptadienal, which are responsible for fishy and algal odors. Fermentation with Lb. plantarum significantly reduced these compounds, lowering trans-β-ionone to 0.1453 mg/L and eliminating 4-ethyl-6-hepten-3-one entirely. H. pluvialis contained 22 VOCs pre-fermentation; fermentation eliminated hexanal and reduced heptadienal to 0.1747 ± 0.0323 mg/L. These changes contributed to improved sensory profiles. Fermentation also induced significant changes in the amino acid profiles of both microalgae. The fermented biomasses were incorporated into vegan burgers made from chickpea, lentil, and quinoa. Color evaluation showed more stable and visually appealing tones, while texture remained within desirable consumer parameters. These findings suggest that Lb. plantarum fermentation is an effective strategy for improving the sensory and functional characteristics of microalgal biomass, promoting their use as sustainable, value-added ingredients in innovative plant-based foods. Full article
Show Figures

Graphical abstract

21 pages, 4127 KB  
Article
Riboflavin as a Dual-Function Additive for Enhancing Biodegradation in Piezoelectric PLA/BT Composites
by Natalia Puszczykowska, Piotr Rytlewski, Agnieszka Mirkowska, Paweł Cyprys, Piotr Augustyn and Kacper Fiedurek
Materials 2025, 18(16), 3860; https://doi.org/10.3390/ma18163860 - 18 Aug 2025
Viewed by 587
Abstract
Poly(lactic acid)/barium titanate (PLA/BT) composites exhibit piezoelectric properties desirable for bone tissue engineering, but their low biodegradability limits implant resorption. In this study, riboflavin (RF) is introduced as a dual-function additive that enhances biodegradation in PLA/BT composites. Its addition led to significantly increased [...] Read more.
Poly(lactic acid)/barium titanate (PLA/BT) composites exhibit piezoelectric properties desirable for bone tissue engineering, but their low biodegradability limits implant resorption. In this study, riboflavin (RF) is introduced as a dual-function additive that enhances biodegradation in PLA/BT composites. Its addition led to significantly increased microbial colonization and a five-fold higher mass loss compared to unmodified samples. These observations are consistent with the known polarity of RF and its role as a cofactor in microbial metabolism. The PLA/BT/RF composites are subjected to full characterization, including thermogravimetric analysis (TG), differential scanning calorimetry (DSC), tensile testing, dynamic mechanical analysis (DMA), dielectric permittivity measurements, and determination of piezoelectric coefficient d33. Compared to PLA/BT, RF-containing composites exhibit significantly accelerated biodegradation, with mass loss reaching up to 16% after 28 days, while maintaining functional piezoelectricity (d33 ≈ 3.9 pC/N). Scanning electron microscopy (SEM) performed after biodegradation reveals intensified microbial colonization and surface deterioration in the RF-modified samples. The data confirm that riboflavin serves as an effective modifier, enabling controlled biodegradation without compromising electromechanical performance. These results support the use of PLA-based piezoelectric composites for resorbable biomedical implants. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

49 pages, 15124 KB  
Article
Flexible Constraint-Based Controller Framework for Ros_Control
by Miguel Prada, Asier Fernandez, Anthony Remazeilles and Joseph McIntyre
Robotics 2025, 14(8), 109; https://doi.org/10.3390/robotics14080109 - 11 Aug 2025
Viewed by 779
Abstract
Generating robot behaviors in dynamic real-world situations generally requires the programming of multiple, often redundant degrees of freedom to meet multiple goals governing the desired motions. In this work, we propose a constraint-based controller specification methodology. A novel declarative language is used to [...] Read more.
Generating robot behaviors in dynamic real-world situations generally requires the programming of multiple, often redundant degrees of freedom to meet multiple goals governing the desired motions. In this work, we propose a constraint-based controller specification methodology. A novel declarative language is used to combine semantically specialized building blocks into composite controllers. This description is automatically transformed at runtime into an executable form, which can automatically leverage multiple threads to parallelize computations whenever possible. Enabling runtime definition of controller topologies out of declarative descriptions not only reduces the work required to develop such controllers, but it also allows one to dynamically synthesize new controllers based on higher-level task planners or by user interaction through Graphical User Interfaces (GUIs). Our solution adds new functionality to the Robot Operating System (ROS)/ros_control ecosystem, where robot behaviors are typically achieved by deploying single-objective, off-the-shelf controllers for tasks like following joint trajectories, executing interpolated point-to-point motions in Cartesian space, or for basic compliant behaviors. Our proposed constraint-based framework enhances ros_control by providing the means to easily construct composite controllers from existing primary elements using our design language. Building on top of the ros_control infrastructure facilitates the usage of our controller with a wide range of supported robots and enables quick integration with the existing ROS ecosystem. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

18 pages, 798 KB  
Article
The Impact of Nut-Based Plant Beverages on Wheat Bread Quality: A Study of Almond, Hazelnut, and Walnut Beverages
by Anna Wirkijowska, Dorota Teterycz and Piotr Zarzycki
Appl. Sci. 2025, 15(16), 8821; https://doi.org/10.3390/app15168821 - 10 Aug 2025
Viewed by 684
Abstract
Nut-based plant beverages are gaining recognition for their functional properties and nutritional value in bakery applications. This study evaluated the effects of substituting water with hazelnut (BH), walnut (BW), and almond (BA) beverages in wheat bread formulations at four substitution levels (25–100%). Thirteen [...] Read more.
Nut-based plant beverages are gaining recognition for their functional properties and nutritional value in bakery applications. This study evaluated the effects of substituting water with hazelnut (BH), walnut (BW), and almond (BA) beverages in wheat bread formulations at four substitution levels (25–100%). Thirteen bread variants, including a control, were produced using the straight dough method. The impact of substitution on dough performance, crumb structure, texture, color, physicochemical composition, and sensory attributes was evaluated. All nut beverages improved bread yield, with BA100 and BW100 showing the highest values. Crumb moisture was well retained, and baking losses were reduced in some high-substitution variants. Medium-sized pores (0.1–0.9 mm2) dominated crumb structure, particularly in almond-enriched breads, which contributed to desirable loaf volume and crumb elasticity. Walnut beverage significantly darkened the crumb due to natural pigments, while BA and BH maintained lighter tones and enhanced yellowness. Nut-based beverages increased ash and fat content, with BW breads showing the highest caloric values—mainly due to beneficial unsaturated fats. Sensory evaluation confirmed high consumer acceptability, with the highest ratings observed for breads containing 100% walnut and 50–75% almond beverage. These variants demonstrated the most favorable balance of technological performance and nutritional enhancement, underscoring their potential as optimal formulations for clean-label, plant-based bread products. Full article
Show Figures

Figure 1

43 pages, 3481 KB  
Review
Why Are Long-Read Sequencing Methods Revolutionizing Microbiome Analysis?
by Adriana González, Asier Fullaondo and Adrian Odriozola
Microorganisms 2025, 13(8), 1861; https://doi.org/10.3390/microorganisms13081861 - 9 Aug 2025
Viewed by 1386
Abstract
Most of the knowledge available on the composition and functionality of microbial communities in different ecosystems comes from short-read sequencing methods. It implies limitations regarding taxonomic resolution, variant detection, and genome assembly contiguity. Long-read sequencing technologies can overcome these limitations, transforming the analysis [...] Read more.
Most of the knowledge available on the composition and functionality of microbial communities in different ecosystems comes from short-read sequencing methods. It implies limitations regarding taxonomic resolution, variant detection, and genome assembly contiguity. Long-read sequencing technologies can overcome these limitations, transforming the analysis of microbial community composition and functionality. It is essential to understand the characteristics of each sequencing technology to select the most suitable one for each microbiome study. This review aims to show how long-read sequencing methods have revolutionized microbiome analysis in ecosystems and to provide a practical tool for selecting sequencing methods. To this end, the evolution of sequencing technologies, their advantages and disadvantages for microbiome studies, and the new dimensions enabled by long-read sequencing technologies, such as virome and epigenetic analysis, are described. Moreover, desirable characteristics for microbiome sequencing technologies are proposed, including a visual comparison of available sequencing platforms. Finally, amplicon and metagenomics approaches and the sequencing depth are discussed when using long-read sequencing technologies in microbiome studies. In conclusion, although no single sequencing method currently possesses all the ideal features for microbiome analysis in ecosystems, long-read sequencing technologies represent an advancement in key aspects, including longer read lengths, higher accuracy, shorter runtimes, higher output, more affordable costs, and greater portability. Therefore, more research using long-read sequencing is recommended to strengthen its application in microbiome analysis. Full article
(This article belongs to the Special Issue The Microbiome in Ecosystems)
Show Figures

Figure 1

10 pages, 1873 KB  
Article
Stacking Order-Dependent Electronic and Optical Properties of h-BP/Borophosphene Van Der Waals Heterostructures
by Kejing Ren, Quan Zhang, Shengli Zhang and Yang Zhang
Nanomaterials 2025, 15(15), 1155; https://doi.org/10.3390/nano15151155 - 25 Jul 2025
Viewed by 386
Abstract
Van der Waals (vdW) heterostructures, typically composed of two-dimensional (2D) atomic layers, have attracted significant attention over the past few decades. Their performance is closely dependent on their composition and interlayer interactions. In this study, we constructed four types of 2D hexagonal BP [...] Read more.
Van der Waals (vdW) heterostructures, typically composed of two-dimensional (2D) atomic layers, have attracted significant attention over the past few decades. Their performance is closely dependent on their composition and interlayer interactions. In this study, we constructed four types of 2D hexagonal BP monolayer (h-BP)/borophosphene vdW heterostructures with different stacking orders: (i) B-B stacking, (ii) P-P stacking, (iii) moire-I, and (iv) moire-II. Their structural stability and their electronic and optical properties were explored by using first-principles calculations. The results show that h-BP/borophosphene heterostructures can maintain their configurations with good structural stability and minimal lattice mismatch. All vdW heterostructures exhibit semiconducting characteristics, and their band gaps are highly dependent on interlayer stacking orders. Due to the regular atomic arrangement and enhanced interlayer dipole interactions, the B-B stacking bilayer opens a relatively large band gap of 0.157 eV, while the moire-II bilayer exhibits a very small band gap of 0.045 eV because of its irregular atom arrangements. By calculating the complex dielectric function, optical absorption spectra of B-B and P-P stacking bilayers were discussed. This study suggests that h-BP/borophosphene heterostructures have desirable optical properties, broadening the potential applications of the constituent monolayers. Full article
Show Figures

Figure 1

16 pages, 1006 KB  
Article
Spray Drying of Jackfruit (Artocarpus heterophyllus Lam.) Seeds Protein Concentrate: Physicochemical, Structural, and Thermal Characterization
by Dulce María de Jesús Miss-Zacarías, Montserrat Calderón-Santoyo, Victor Manuel Zamora-Gasga, Gabriel Ascanio and Juan Arturo Ragazzo-Sánchez
Processes 2025, 13(7), 2319; https://doi.org/10.3390/pr13072319 - 21 Jul 2025
Viewed by 801
Abstract
Jackfruit seeds (Artocarpus heterophyllus Lam.) are a viable option for supporting a sustainable protein supply. The objective was to obtain protein powder from jackfruit seeds protein concentrate (JSPC) by spray drying. A central composite design was used; the independent variables were inlet [...] Read more.
Jackfruit seeds (Artocarpus heterophyllus Lam.) are a viable option for supporting a sustainable protein supply. The objective was to obtain protein powder from jackfruit seeds protein concentrate (JSPC) by spray drying. A central composite design was used; the independent variables were inlet temperature (110, 115, and 120 °C) and the solids of the JSPC solution (5, 7.5, and 10%). With the desirability function, the optimal drying parameters to maximize the process yield and achieve a low moisture content were 7.5% solids in the JSPC solution and an inlet temperature of 115 °C, resulting in a process yield of 71.51 ± 1.21%. Moisture (5.33 ± 0.11%), water activity (0.15 ± 0.02), bulk density (0.40 ± 0.01 g/mL), and color (L*: 70.56 ± 0.38, a*: 7.80 ± 0.11 and b*: 15.18 ± 0.15) were measured; these parameters are within the allowed ranges for stable food powders. Hydrosolubility (82.46 ± 1.68%), foaming capacity (48.33 ± 1.66%), and emulsifying activity (105.74 ± 10.20 m2/g) were evaluated. Glass transition temperature (129.49 °C) of the JSPC powder enables the establishment of optimal storage and processing conditions for the protein. JSPC powder could be applied to the elaboration of food products with nutritional and functional value. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

Back to TopTop