A Data-Driven Informatics Framework for Regional Sustainability: Integrating Twin Mean-Variance Two-Stage DEA with Decision Analytics
Abstract
1. Introduction
2. Literature Review
3. Research Methods
3.1. Simple Additive Weighting (SAW)
3.2. Desirability Function Approach (DFA)
3.3. Data Envelopment Analysis (DEA) and Its Variants
4. Informatics-Enabled Twin Mean-Variance DEA (TMV-DEA) Framework
4.1. Conceptual Framework of the Informatics-Enabled TMV-DEA
4.2. Informatics-Enabled TMV-DEA Sequential Procedures
4.2.1. Data Collection
4.2.2. Mean Calculation
4.2.3. Variance Calculation
4.2.4. Efficiency Evaluation
4.2.5. Stability Evaluation
4.2.6. Integration of Scores
4.2.7. Decision-Ready Output
4.3. Evaluating Provincial Sustainability Performance Using TMV-TSDEA
4.3.1. Type I: Baseline Configuration of the Informatics-Enabled TMV-TSDEA (TMV-TSDEA_Type_I)
4.3.2. Type II: Context-Enriched Configuration of the Informatics-Enabled TMV-TSDEA (TMV-TSDEA_Type_II)
4.3.3. Type III: Partial Output-Releasing Configuration of the Informatics-Enabled TMV-TSDEA (TMV-TSDEA_Type_III)
4.3.4. Type IV: Fully Integrated Multi-Input Configuration of the Informatics-Enabled TMV-TSDEA (TMV-TSDEA_Type_IV)
- For BCC SE Relational TMV-TSDEA append
5. Results and Discussion
5.1. Selection and Representation of Decision-Making Units (DMUs)
5.2. Performance Evaluation Using TMV-TSDEA Models
5.3. DEA Configurations and Comparative Efficiency Analysis
5.4. Interpretation of Provincial Rankings
5.5. Effect of Stage 2 External Inputs and Spatial Variables
5.6. Role of Green Technology Indicators in Type III–IV Models
5.7. Regional Performance Trends and Policy Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halkos, G.; Argyropoulou, G. Modeling energy and air pollution health damaging: A two-stage DEA approach. Air Qual. Atmos. Health 2021, 14, 1221–1231. [Google Scholar]
- Moutinho, V.; Madaleno, M. A two-stage DEA model to evaluate the technical eco-efficiency indicator in the EU countries. Int. J. Environ. Res. Public Health 2021, 18, 1–21. [Google Scholar]
- Liu, H.; Chen, Y.; Wu, J.; Pan, Y.; Song, Y. Allocation of CO2 emission quotas for industrial production in Industry 4.0: Efficiency and equity. Comput. Ind. Eng. 2024, 194, 110375. [Google Scholar] [CrossRef]
- Gökgöz, F.; Yalçın, E.; Salahaldeen, N.A. Investigating the financial efficiencies and productivities of the banking sector. J. Econ. Stud. 2024, 51, 1036–1057. [Google Scholar]
- Chu, J.; Xu, F.; Zhu, Q.; Fukuyama, H. Production scale expansion and congestion in two-stage network systems. Comput. Ind. Eng. 2024, 193, 110317. [Google Scholar] [CrossRef]
- Ratner, S.V.; Lychev, A.V.; Krivonozhko, V.E. Data Envelopment Analysis-Based Approach to Improving of the Budget Allocation System for Decarbonization Targets. Economies 2024, 12, 160. [Google Scholar] [CrossRef]
- Despotis, D.K.; Sotiros, D.; Koronakos, G. Data envelopment analysis of two-stage processes: An alternative (non-conventional) approach. Int. Trans. Oper. Res. 2025, 32, 384–405. [Google Scholar] [CrossRef]
- Lamesgen, A.; Mengist, B.; Mazengia, E.M.; Endalew, B. Level of technical efficiency and associated factors among health centers in East Gojjam Zone, Northwest Ethiopia: An application of the data envelopment analysis. BMC Health Serv. Res. 2024, 24, 361. [Google Scholar]
- Amirteimoori, A.; Allahviranloo, T.; Arabmaldar, A. Scale elasticity and technical efficiency measures in two-stage network production processes: An application to the insurance sector. Financ. Innov. 2024, 10, 43. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, F.; Xia, Q.; Song, S.; Wang, D. Efficiency assessment of two-stage systems with fixed-sum outputs: A noncooperative DEA model with uncertain stage priority. Expert Syst. Appl. 2024, 253, 124274. [Google Scholar] [CrossRef]
- Abdul Rashid, A.; See, K.F.; Yu, M.-M. Measuring airline efficiency using a dynamic network data envelopment analysis in the presence of innovation capital. Technol. Forecast. Soc. Chang. 2024, 206, 123457. [Google Scholar] [CrossRef]
- An, Q.; Huang, S.; Han, Y.; Zhu, Y. Ensemble learning method for classification: Integrating data envelopment analysis with machine learning. Comput. Oper. Res. 2024, 169, 106739. [Google Scholar] [CrossRef]
- Afsharian, M.; Kamali, S.; Ahn, H.; Bogetoft, P. Individualized second stage corrections in data envelopment analysis. Eur. J. Oper. Res. 2024, 317, 563–577. [Google Scholar] [CrossRef]
- Wu, D.; Li, H.; Huang, Q.; Li, C.; Liang, S. Measurement and determinants of smart destinations’ sustainable performance: A two-stage analysis using DEA-Tobit model. Curr. Issues Tour. 2024, 27, 529–545. [Google Scholar] [CrossRef]
- Teixeira, R.; Antunes, J.J.M.; Wanke, P.; Correa, H.L.; Tan, Y. Customer satisfaction and airport efficiency in Brazil: A hybrid NDEA-AHP approach. Benchmarking 2024, 31, 2239–2266. [Google Scholar] [CrossRef]
- Huang, K.-Y.; Chiu, Y.-H.; Chang, T.-H.; Lin, T.-Y. The effect of extreme temperature on electricity consumption, air pollution, and gross domestic product. Energy Environ. 2024, 35, 372–394. [Google Scholar] [CrossRef]
- He, K.; Zhu, N. Efficiency evaluation of Chinese provincial industry systems: A dynamic two-stage slacks-based measure with shared inputs. J. Ind. Manag. Optim. 2023, 19, 4959–4988. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Zha, Y. Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach. Socio-Econ. Plan. Sci. 2021, 77, 101031. [Google Scholar] [CrossRef]
- de Oliveira, M.S.; Steffen, V.; Krukoski, F.A.; Mezoni, M.F.; Trojan, F. An integrated data envelopment analysis framework for operational efficiency assessment in Brazilian international airports. Decis. Anal. J. 2024, 12, 100493. [Google Scholar] [CrossRef]
- İlkaz, A.; Çebi, F. Multi-criteria decision-making model for evaluation of financial performance of insurance companies. In Chaos, Complexity, and Sustainability in Management; IGI Global: Hershey, PA, USA, 2024; pp. 141–170. [Google Scholar]
- Pimentel, V.; Mora-Monge, C.A. Benchmarking the operational efficiency of Mexican hospitals—A longitudinal study. Benchmarking 2024, 31, 309–329. [Google Scholar] [CrossRef]
- Adugna, M.; Dinsa, G.; Khuzwayo, N. Can performance-based financing improve efficiency of health centers in Ethiopia? A Malmquist Productivity Index analysis. BMC Health Serv. Res. 2024, 24, 696. [Google Scholar] [CrossRef]
- Ray, S.C. Nonparametric measurement of productivity growth and technical change. Found. Trends Econom. 2024, 13, 67–169. [Google Scholar]
- Min, H.; Ahn, Y.-H.; Ma, J.-H. Measuring dynamic supply chain risks for the offshoring decision in the post-COVID-19 era: A longitudinal study. Transp. J. 2024, 63, 188–206. [Google Scholar] [CrossRef]
- Georgiadis, G.; Kopsacheilis, A.; Andreadis, I.M.; Politis, I. Analyzing efficiency and built environment factors for achieving convenient access to public transport: A Europe-wide DEA application. Environ. Sci. Policy 2024, 158, 103792. [Google Scholar] [CrossRef]
- Salazar-Adams, A.; Ramirez-Figueroa, C. Organization, capital, and human resource factors influencing waste collection efficiency in Mexico. Util. Policy 2024, 88, 101747. [Google Scholar] [CrossRef]
- Jakšić, M.; Srejović, A.K.; Milanović, M.; Mimović, P. Measuring the economic performance of transition economies: DEA-bootstrapping approach. J. Econ. Stud. 2024, 51, 238–260. [Google Scholar] [CrossRef]
- Lou, J.; Yang, G.-L.; Song, L.; Liu, K.-D. From resources to capital: Investigating the efficiency of forest ecosystem products value realization in China. Socio-Econ. Plan. Sci. 2024, 96, 102052. [Google Scholar] [CrossRef]
- Omid, A.; Azar, A.; Taleb, M. Assessing environmental and operational efficiencies: A multi-objective optimization problem in a two-stage network data envelopment analysis. IMA J. Manag. Math. 2024, 35, 693–713. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Allahviranloo, T.; Nematizadeh, M. A firm-specific Malmquist productivity index model for stochastic data envelopment analysis: An application to commercial banks. Financ. Innov. 2024, 10, 66. [Google Scholar] [CrossRef]
- Wei, B.-W.; Ma, Y.-Y.; Ji, A.-B. Stage stochastic incremental data envelopment analysis models and applications. Socio-Econ. Plan. Sci. 2024, 95, 102056. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Cezar, A.; Zadmirzaei, M.; Susaeta, A. Environmental performance evaluation in the forest sector: An extended stochastic data envelopment analysis approach. Socio-Econ. Plan. Sci. 2024, 94, 101943. [Google Scholar] [CrossRef]
- Yin, C.; Hsiao, B.; See, K.F. Efficiency analysis of China’s urban water supply utilities using a dynamic multiactivity network DEA model. Struct. Chang. Econ. Dyn. 2024, 71, 387–404. [Google Scholar] [CrossRef]
- Anouze, A.L.; Al Khalifa, M.M.; Al-Jayyousi, O.R. Reevaluating national innovation systems: An index based on dynamic-network data envelopment analysis. Socio-Econ. Plan. Sci. 2024, 95, 102003. [Google Scholar] [CrossRef]
- Hu, J.-L.; Huang, Y.-S.; You, C.-Y. Renewable Energy Generation Efficiency of Asian Economies: An Application of Dynamic Data Envelopment Analysis. Energies 2024, 17, 4682. [Google Scholar] [CrossRef]
- Perroni, M.G.; da Veiga, C.P.; Su, Z.; Ramos, F.M.; da Silva, W.V. Dynamic Equilibrium of Sustainable Ecosystem Variables: An Experiment. Sustainability 2023, 15, 6744. [Google Scholar] [CrossRef]
Ref. | Authors | Application Domain | DEA Variant and Contribution |
---|---|---|---|
[1] | Halkos & Argyropoulou (2021) | Health and Pollution Informatics | Two-stage DEA with undesirable outputs |
[2] | Moutinho & Madaleno (2021) | Environmental Policy | Two-stage DEA with fractional regression |
[3] | Liu et al. (2024) | CO2 Policy Planning | Two-stage DEA for emissions and equity analysis |
[4] | Gökgöz et al. (2024) | Financial Informatics | DEA with MPI for dynamic bank efficiency |
[5] | Chu et al. (2024) | Network Efficiency | Two-stage network DEA for scalability analysis |
[6] | Ratner et al. (2024) | Energy Innovation Governance | Two-stage DEA for public investment effectiveness |
[7] | Despotis et al. (2025) | Automotive Informatics | Two-stage DEA with shared intermediate products |
[8] | Lamesgen et al. (2024) | Healthcare Systems | Two-stage output-oriented DEA with VRS |
[9] | Amirteimoori et al. (2024) | Insurance Sector Evaluation | DEA for scale elasticity in parallel-series networks |
[10] | Zhang et al. (2024) | Priority-based Evaluation | Noncooperative DEA with flexible stage priorities |
[11] | Abdul Rashid et al. (2024) | Airline Performance | Dynamic DEA with innovation capital and carry-over effects |
[12] | An et al. (2024) | Big Data Classification | DEA integrated with ensemble learning |
[13] | Afsharian et al. (2024) | Energy Sector Analysis | Context-aware DEA corrections in second-stage analysis |
[15] | Teixeira et al. (2024) | Airport and User Satisfaction | NDEA-AHP hybrid for service quality and operational efficiency |
[14] | Wu et al. (2024) | Smart Tourism Performance | DEA-Tobit model for sustainable destination analytics |
[16] | Huang et al. (2024) | Environmental Stress Modeling | Two-stage meta-EBM model for temperature, pollution, and GDP |
[17] | He & Zhu (2023) | Pollution Control Informatics | SBM-DEA with shared inputs for industrial performance |
[18] | Zhang et al. (2021) | Industrial Policy Analysis | Dynamic two-stage DEA for air pollution control |
[19] | de Oliveira et al. (2024) | Airport Efficiency Over Time | Window Analysis for time-based DEA |
[20] | İlkaz & Çebi (2024) | Insurance Efficiency | Window Analysis for temporal performance tracking |
[21] | Pimentel & Mora-Monge (2024) | Hospital Performance | DEA Window Analysis post-policy shift |
[22] | Adugna et al. (2024) | Healthcare Productivity | MPI for technical and productivity change |
[23] | Ray (2024) | Firm-Level Productivity | MPI under variable returns to scale |
[24] | Min et al. (2024) | Logistics and Offshoring Risk | MPI to evaluate dynamic risks |
[25] | Georgiadis et al. (2024) | Public Transport Systems | Bootstrapped DEA for European cities |
[26] | Salazar-Adams & Ramirez (2024) | Waste Management Efficiency | Bootstrapped DEA with operational factors |
[27] | Jakšić et al. (2024) | Economic Resilience in Balkans | DEA with bootstrapping during COVID |
[28] | Lou et al. (2024) | Forest Ecosystem Value Chains | NDEA to track inefficiency in value conversion |
[29] | Omid et al. (2024) | Industrial Sustainability | NDEA for operational and environmental performance |
[30] | Amirteimoori et al. (2024) | Banking Sector | Stochastic DEA for inefficiency analysis |
[31] | Wei et al. (2024) | Energy-Saving Enterprises | Stochastic DEA to improve stage accuracy |
[32] | Amirteimoori et al. (2024) | Forestry Environmental Impact | Stochastic DEA modeling CO2 emission reduction |
[33] | Yin et al. (2024) | Urban Water Utilities | Dynamic DEA for long-term efficiency planning |
[34] | Anouze et al. (2024) | National Innovation Systems | Dynamic Network DEA with policy implications |
[35] | Hu et al. (2024) | Renewable Energy in Asia | Dynamic DEA showing effects of digital transformation |
[36] | Perroni et al. (2023) | Ecosystem Sustainability | Matrix decomposition with DEA in environmental equilibrium |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
DMU | 15 | 14,977.0 | 998.469 | 22.07 | 0.000 |
TMV-TSDEA | 1 | 6.3 | 6.338 | 0.14 | 0.713 |
Error | 15 | 678.5 | 45.235 | ||
Total | 31 | 15,661.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aungkulanon, P.; Montemanni, R.; Nanphang, A.; Luangpaiboon, P. A Data-Driven Informatics Framework for Regional Sustainability: Integrating Twin Mean-Variance Two-Stage DEA with Decision Analytics. Informatics 2025, 12, 92. https://doi.org/10.3390/informatics12030092
Aungkulanon P, Montemanni R, Nanphang A, Luangpaiboon P. A Data-Driven Informatics Framework for Regional Sustainability: Integrating Twin Mean-Variance Two-Stage DEA with Decision Analytics. Informatics. 2025; 12(3):92. https://doi.org/10.3390/informatics12030092
Chicago/Turabian StyleAungkulanon, Pasura, Roberto Montemanni, Atiwat Nanphang, and Pongchanun Luangpaiboon. 2025. "A Data-Driven Informatics Framework for Regional Sustainability: Integrating Twin Mean-Variance Two-Stage DEA with Decision Analytics" Informatics 12, no. 3: 92. https://doi.org/10.3390/informatics12030092
APA StyleAungkulanon, P., Montemanni, R., Nanphang, A., & Luangpaiboon, P. (2025). A Data-Driven Informatics Framework for Regional Sustainability: Integrating Twin Mean-Variance Two-Stage DEA with Decision Analytics. Informatics, 12(3), 92. https://doi.org/10.3390/informatics12030092