Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,011)

Search Parameters:
Keywords = complete genomes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3361 KiB  
Article
Bacteremia Caused by a Putative Novel Species in the Genus Erwinia: A Case Report and Genomic Analysis
by Jiwoo Lee, Taek Soo Kim, Hyunwoong Park and Jae Hyeon Park
Life 2025, 15(8), 1227; https://doi.org/10.3390/life15081227 (registering DOI) - 3 Aug 2025
Abstract
We report a case of catheter-associated bloodstream infection caused by a putative novel species in the genus Erwinia, identified using whole-genome sequencing (WGS). A female adolescent receiving long-term home parenteral nutrition via a central venous catheter (CVC) presented with a fever. Gram-negative [...] Read more.
We report a case of catheter-associated bloodstream infection caused by a putative novel species in the genus Erwinia, identified using whole-genome sequencing (WGS). A female adolescent receiving long-term home parenteral nutrition via a central venous catheter (CVC) presented with a fever. Gram-negative rods were isolated from two CVC-derived blood culture sets, while peripheral cultures remained negative. Conventional identification methods, including VITEK 2, Phoenix M50, MALDI-TOF MS, and 16S rRNA and rpoB gene sequencing, failed to achieve species-level identification. WGS was performed on the isolate using Illumina MiSeq. Genomic analysis revealed a genome size of 5.39 Mb with 56.8% GC content and high assembly completeness. The highest average nucleotide identity (ANI) was 90.3% with Pantoea coffeiphila, and ≤85% with known Erwinia species, suggesting that it represents a distinct taxon. Phylogenetic analyses placed the isolate within the Erwinia clade but separate from any known species. Antimicrobial susceptibility testing showed broad susceptibility. This case highlights the utility of WGS for the identification of rare or novel organisms not captured by conventional methods and expands the clinical spectrum of Erwinia species. While the criteria for species delineation were met, the phenotypic characterization remains insufficient to formally propose a new species. Full article
Show Figures

Figure 1

16 pages, 2901 KiB  
Article
Unveiling the Genetic Landscape of Canine Papillomavirus in the Brazilian Amazon
by Jeneffer Caroline de Macêdo Sousa, André de Medeiros Costa Lins, Fernanda dos Anjos Souza, Higor Ortiz Manoel, Cleyton Silva de Araújo, Lorena Yanet Cáceres Tomaya, Paulo Henrique Gilio Gasparotto, Vyctoria Malayhka de Abreu Góes Pereira, Acácio Duarte Pacheco, Fernando Rosado Spilki, Mariana Soares da Silva, Felipe Masiero Salvarani, Cláudio Wageck Canal, Flavio Roberto Chaves da Silva and Cíntia Daudt
Microorganisms 2025, 13(8), 1811; https://doi.org/10.3390/microorganisms13081811 (registering DOI) - 2 Aug 2025
Abstract
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) [...] Read more.
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) remain scarce. This study investigated CPV types present in oral and cutaneous papillomatous lesions in domiciled dogs from Acre and Rondônia States, Brazil. Sixty-one dogs with macroscopically consistent lesions were clinically evaluated, and tissue samples were collected for histopathological examination and PCR targeting the L1 gene. Among these, 37% were histologically diagnosed as squamous papillomas or fibropapillomas, and 49.2% (30/61) tested positive for papillomavirus DNA. Sequencing of the L1 gene revealed that most positive samples belonged to CPV1 (Lambdapapillomavirus 2), while one case was identified as CPV8 (Chipapillomavirus 3). Complete genomes of three CPV1 strains were obtained via high-throughput sequencing and showed high identity with CPV1 strains from other Brazilian regions. Phylogenetic analysis confirmed close genetic relationships among isolates across distinct geographic areas. These findings demonstrate the circulation of genetically conserved CPVs in the Amazon and reinforce the value of molecular and histopathological approaches for the accurate diagnosis and surveillance of viral diseases in domestic dogs, especially in ecologically complex regions. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

14 pages, 2230 KiB  
Article
Complete Mitochondrial (mtDNA) Genome Analysis of Economically Significant Fish Cirrhinus cirrhosus in Bangladesh
by Tajmirul Huda, Md. Alamgir Kabir and Md. Golam Rabbane
Int. J. Mol. Sci. 2025, 26(15), 7473; https://doi.org/10.3390/ijms26157473 (registering DOI) - 2 Aug 2025
Abstract
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 [...] Read more.
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and a D-loop region. The overall base composition was 32% adenine, 25% thiamine, 16% guanine, and 27% cytosine. This mitochondrial DNA exhibits an AT biasness, with 56% AT content in its genome. Significant fluctuations were identified in the AT and GC skew values of the ND6 gene, indicating that the selection and mutation forces acting on this gene might be different from those acting on other genes. The Ka/Ks ratios of most protein-coding genes were less than 1, indicating very strong natural selection pressure. Phylogenetic analysis of Cirrhinus cirrhosus with Cirrhinus mrigala and Bangana tungting suggested a closer evolutionary relationship among these species, which might have shared a more recent common ancestor. It has been also found that the genera Labeo and Cirrhinus are not monophyletic. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 1990 KiB  
Article
Fecal and Environmental Shedding of Influenza A Virus in Brazilian Swine: Genomic Evidence of Recent Human-to-Swine Transmission
by Nágila Rocha Aguilar, Beatriz Senra Alvares da Silva Santos, Bruno Zinato Carraro, Brenda Monique Magalhães Rocha, Jardelina de Souza Todao Bernardino, Ana Luiza Soares Fraiha, Alex Ranieri Jeronimo Lima, Gabriela Ribeiro, Alessandra Silva Dias, Renata Rezende Carvalho, Bruna Ferreira Sampaio Ribeiro, Marta Giovanetti, Luiz Carlos Júnior Alcântara, Sandra Coccuzzo Sampaio, Maria Carolina Quartim Barbosa Elias Sabbaga, Rafael Romero Nicolino, Zélia Inês Portela Lobato, Maria Isabel Maldonado Coelho Guedes, Cesar Rossas Mota Filho, Vincent Louis Viala, Bruna Coelho Lopes and Erica Azevedo Costaadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 753; https://doi.org/10.3390/pathogens14080753 (registering DOI) - 31 Jul 2025
Viewed by 169
Abstract
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples [...] Read more.
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples from naturally infected pigs in a commercial farm in Minas Gerais, Brazil. IAV RNA was detected in 25% of samples, including 42% from asymptomatic animals, with nasal swabs showing higher detection rates (30%) than rectal swabs (20%), though rectal Ct values were consistently higher, indicative of lower viral loads. We successfully isolated viable viruses from feces and effluent samples. Whole-genome sequencing revealed co-circulation of enzootic pH1N1 clade #2 (HA) and pN1 clade #4 (NA), alongside human-origin H3N2 sequences clustering within clade 3C.2a1b.2a.2a.1, and N2 segments related to pre-3C human lineages from 2001 to 2002. Phylogenetic and p-distance analyses support both recent reverse zoonosis and historical transmission events. Detection of complete HA/NA sequences from rectal swabs and treated effluent further emphasizes the surveillance value of non-respiratory matrices. The integration of respiratory and fecal/environmental sampling appears important to achieve more comprehensive IAV monitoring in swine herds and may have significant implications for One Health strategies in Brazil and beyond. Full article
Show Figures

Graphical abstract

15 pages, 7581 KiB  
Article
Complete Chloroplast Genome Sequence of Medicago falcata: Comparative Analyses with Other Species of Medicago
by Wei Duan, Xueli Zhang, Yuxiang Wang and Qian Li
Agronomy 2025, 15(8), 1856; https://doi.org/10.3390/agronomy15081856 - 31 Jul 2025
Viewed by 140
Abstract
Medicago falcata is one of the most important perennial forage legumes in the Medicago genus. In this study, we reported the complete chloroplast genome of two M. falcata ecotypes grown in different regions, and compared them with those of Medicago truncatula and Medicago [...] Read more.
Medicago falcata is one of the most important perennial forage legumes in the Medicago genus. In this study, we reported the complete chloroplast genome of two M. falcata ecotypes grown in different regions, and compared them with those of Medicago truncatula and Medicago sativa. We found that the M. falcata chloroplast genome lacks a typical quadripartite structure, containing 78 protein-coding genes, 30 tRNA genes, and four ribosomal RNA genes. They shared high conservation in size, genome structure, gene order, gene number and GC content with those of M. truncatula and M. sativa. High nucleotide diversity occurred in the coding gene regions of rps16, rps3, and ycf4 genes. Meanwhile, mononucleotide repeats are the most abundant repeat type, followed by the di-, tri-, tetra-, and pentanucleotides, and forward repeats were more abundant than reverse and palindrome repeats for all these three Medicago species. Phylogenetic analyses using both coding sequences and complete chloroplast genomes revealed that M. falcata shares the closest phylogenetic relationship with M. hybrida and M. sativa. This study provided valuable information for further studies on the genetic relationship of the Medicago genus. Full article
Show Figures

Figure 1

14 pages, 2067 KiB  
Article
Selection Signature Analysis of Whole-Genome Sequences to Identify Genome Differences Between Selected and Unselected Holstein Cattle
by Jiarui Cai, Liu Yang, Yahui Gao, George E. Liu, Yang Da and Li Ma
Animals 2025, 15(15), 2247; https://doi.org/10.3390/ani15152247 - 31 Jul 2025
Viewed by 152
Abstract
A unique line of Holstein cattle has been maintained without selection in Minnesota since 1964. After many generations, unselected cattle produce less milk, but have better reproductive performance and health traits when compared with contemporary cows. Comparisons between this line of unselected Holstein [...] Read more.
A unique line of Holstein cattle has been maintained without selection in Minnesota since 1964. After many generations, unselected cattle produce less milk, but have better reproductive performance and health traits when compared with contemporary cows. Comparisons between this line of unselected Holstein and those under selection provide useful insights that connect selection and complex traits in cattle. Utilizing these unique resources and sequence data, we sought to identify genome changes due to selection. We sequenced 30 unselected and 54 selected Holstein cattle and compared their sequence variants to identify selection signatures. After many years, the two populations showed completely different patterns in their genome-level population structures and linkage disequilibrium. By integrating signals from five different detection methods, we detected consensus selection signatures from at least four methods covering 14,533 SNPs and 155 protein-coding genes. An integrated analysis of selection signatures with gene annotation, pathways, and the cattle QTL database demonstrated that the genomic regions under selection are related to milk productivity, health, and reproductive efficiency. The polygenic nature of these complex traits is evident from hundreds of selection signatures and candidate genes, suggesting that long-term artificial selection has acted on the whole genome rather than a few major genes. In summary, our study identified candidate selection signatures underlying phenotypic differences between unselected and selected Holstein cows and revealed insights into the genetic basis of complex traits in cattle. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4134 KiB  
Communication
An Improved Agrobacterium-Mediated Transformation Method for an Important Fresh Fruit: Kiwifruit (Actinidia deliciosa)
by Chun-Lan Piao, Mengdou Ding, Yongbin Gao, Tao Song, Ying Zhu and Min-Long Cui
Plants 2025, 14(15), 2353; https://doi.org/10.3390/plants14152353 - 31 Jul 2025
Viewed by 205
Abstract
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations [...] Read more.
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations (a minimum of six months), and substantial labor requirements. In this research, we established an efficient system for shoot regeneration and the stable genetic transformation of the ‘Hayward’ cultivar, utilizing leaf explants in conjunction with two strains of Agrobacterium that harbor the expression vector pBI121-35S::GFP, which contains the green fluorescent protein (GFP) gene as a visible marker within the T-DNA region. Our results show that 93.3% of leaf explants responded positively to the regeneration medium, producing multiple independent adventitious shoots around the explants within a six-week period. Furthermore, over 71% of kanamycin-resistant plantlets exhibited robust GFP expression, and the entire transformation process was completed within four months of culture. Southern blot analysis confirmed the stable integration of GFP into the genome, while RT-PCR and fluorescence microscopy validated the sustained expression of GFP in mature plants. This efficient protocol for regeneration and transformation provides a solid foundation for micropropagation and the enhancement of desirable traits in kiwifruit through overexpression and gene silencing techniques. Full article
(This article belongs to the Special Issue Plant Transformation and Genome Editing)
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 324
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

24 pages, 1508 KiB  
Article
Genomic Prediction of Adaptation in Common Bean (Phaseolus vulgaris L.) × Tepary Bean (P. acutifolius A. Gray) Hybrids
by Felipe López-Hernández, Diego F. Villanueva-Mejía, Adriana Patricia Tofiño-Rivera and Andrés J. Cortés
Int. J. Mol. Sci. 2025, 26(15), 7370; https://doi.org/10.3390/ijms26157370 - 30 Jul 2025
Viewed by 228
Abstract
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, [...] Read more.
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, since common beans are generally heat and drought susceptible, it is imperative to speed up their molecular introgressive adaptive breeding so that they can be cultivated in regions affected by extreme weather. Therefore, this study aimed to couple an advanced panel of common bean (Phaseolus vulgaris L.) × tolerant Tepary bean (P. acutifolius A. Gray) interspecific lines with Bayesian regression algorithms to forecast adaptation to the humid and dry sub-regions at the Caribbean coast of Colombia, where the common bean typically exhibits maladaptation to extreme heat waves. A total of 87 advanced lines with hybrid ancestries were successfully bred, surpassing the interspecific incompatibilities. This hybrid panel was genotyped by sequencing (GBS), leading to the discovery of 15,645 single-nucleotide polymorphism (SNP) markers. Three yield components (yield per plant, and number of seeds and pods) and two biomass variables (vegetative and seed biomass) were recorded for each genotype and inputted in several Bayesian regression models to identify the top genotypes with the best genetic breeding values across three localities on the Colombian coast. We comparatively analyzed several regression approaches, and the model with the best performance for all traits and localities was BayesC. Also, we compared the utilization of all markers and only those determined as associated by a priori genome-wide association studies (GWAS) models. Better prediction ability with the complete SNP set was indicative of missing heritability as part of GWAS reconstructions. Furthermore, optimal SNP sets per trait and locality were determined as per the top 500 most explicative markers according to their β regression effects. These 500 SNPs, on average, overlapped in 5.24% across localities, which reinforced the locality-dependent nature of polygenic adaptation. Finally, we retrieved the genomic estimated breeding values (GEBVs) and selected the top 10 genotypes for each trait and locality as part of a recommendation scheme targeting narrow adaption in the Caribbean. After validation in field conditions and for screening stability, candidate genotypes and SNPs may be used in further introgressive breeding cycles for adaptation. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

18 pages, 11501 KiB  
Article
Comparative Chloroplast Genomics, Phylogenomics, and Divergence Times of Sassafras (Lauraceae)
by Zhiyuan Li, Yunyan Zhang, David Y. P. Tng, Qixun Chen, Yahong Wang, Yongjing Tian, Jingbo Zhou and Zhongsheng Wang
Int. J. Mol. Sci. 2025, 26(15), 7357; https://doi.org/10.3390/ijms26157357 - 30 Jul 2025
Viewed by 194
Abstract
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled [...] Read more.
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled the complete cp genomes of Sassafras, and conducted the comparative cp genomics, phylogenomics, and divergence time estimation of this ecological and economic important genus. The whole length of cp genomes of the 10 Sassafras ranged from 151,970 bp to 154,011 bp with typical quadripartite structure, conserved gene arrangements and contents. Variations in length of cp were observed in the inverted repeat regions (IRs) and a relatively high usage frequency of codons ending with T/A was detected. Four hypervariable intergenic regions (ccsA-ndhD, trnH-psbA, rps15-ycf1, and petA-psbJ) and 672 cp microsatellites were identified for Sassafras. Phylogenetic analysis based on 106 cp genomes from 30 genera within the Lauraceae family demonstrated that Sassafras constituted a monophyletic clade and grouped a sister branch with the Cinnamomum sect. Camphora within the tribe Cinnamomeae. Divergence time between S. albidum and its East Asian siblings was estimated at the Middle Miocene (16.98 Mya), S. tzumu diverged from S. randaiense at the Pleistocene epoch (3.63 Mya). Combined with fossil evidence, our results further revealed the crucial role of the Bering Land Bridge and glacial refugia in the speciation and differentiation of Sassafras. Overall, our study clarified the evolution pattern of Sassafras cp genomes and elucidated the phylogenetic position and divergence time framework of Sassafras. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 1043 KiB  
Review
GPR143-Associated Ocular Albinism in a Hispanic Family and Review of the Literature
by Anushree Aneja, Brenda L. Bohnsack, Valerie Allegretti, Allison Goetsch Weisman, Andy Drackley, Alexander Ing, Patrick McMullen, Andrew Skol, Hantamalala Ralay Ranaivo, Kai Lee Yap, Pamela Rathbun, Adam Gordon and Jennifer L. Rossen
Genes 2025, 16(8), 911; https://doi.org/10.3390/genes16080911 - 30 Jul 2025
Viewed by 227
Abstract
Background/Objectives: While ocular albinism (OA) is usually associated with reduced vision, nystagmus, and foveal hypoplasia, there is phenotypic variability in iris and fundus hypopigmentation. Hemizygous pathogenic/likely pathogenic (P/LP) variants in GPR143 at X: 151.56–151.59 have been shown in the literature to be associated [...] Read more.
Background/Objectives: While ocular albinism (OA) is usually associated with reduced vision, nystagmus, and foveal hypoplasia, there is phenotypic variability in iris and fundus hypopigmentation. Hemizygous pathogenic/likely pathogenic (P/LP) variants in GPR143 at X: 151.56–151.59 have been shown in the literature to be associated with OA. The purpose of this study was to report the case of a Hispanic male with X-linked inherited OA associated with a hemizygous GPR143 variant and to review the literature relating to genotype–phenotype associations with GPR143 and OA. Methods: After consent to an IRB-approved protocol, a 14-year-old Hispanic male patient with OA and his parents underwent whole genome sequencing (WGS) in 2023. Two maternal uncles with nystagmus underwent targeted variant testing in 2024. A literature review of reported GPR143 variants was completed. Results: A male with reduced visual acuity, infantile-onset nystagmus, foveal hypoplasia, and iris hypopigmentation was identified to have the variant GPR143, c.455+3A>G, which was also present in his mother and two affected maternal uncles. This variant has been previously identified in other Hispanic patients of Mexican descent. Additionally, 127 variants were identified in the literature and reported to be associated with OA. All patients had reduced visual acuity (average 0.71 ± 0.23 logMAR), 99% had nystagmus, 97% foveal hypoplasia, 79% fundus hypopigmentation, and 71% iris hypopigmentation. Of those patients with reported optotype best corrected visual acuity (BCVA), eight (9%) had VA from 20/25 to 20/40, 24 (24%) had VA from 20/50 to 20/80, and 63 (67%) had VA from 20/100 to 20/200. The most frequent type of variant was missense (31%, n = 39). Frameshift and nonsense variants were associated with the lowest rates of iris hypopigmentation (50% [n = 11] and 44% [n = 8], respectively; p = 0.0068). Conclusions: This case represents phenotypic variability of GPR143-associated OA and highlights the importance of repeat genetic testing and independent analyses of test results for accurate variant classification, particularly in non-White and Hispanic patients. Further studies in more diverse populations are needed to better develop genotype–phenotype associations for GPR143-associated OA. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 1365 KiB  
Article
Molecular Genetic Basis of Reproductive Fitness in Tibetan Sheep on the Qinghai-Tibet Plateau
by Wangshan Zheng, Siyu Ge, Zehui Zhang, Ying Li, Yuxing Li, Yan Leng, Yiming Wang, Xiaohu Kang and Xinrong Wang
Genes 2025, 16(8), 909; https://doi.org/10.3390/genes16080909 - 29 Jul 2025
Viewed by 139
Abstract
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. [...] Read more.
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. Methods: We integrated transcriptomic and genomic data from Tibetan sheep and two lowland breeds (Small-tailed Han sheep and Hu sheep) to identify Tibetan sheep reproduction-associated genes (TSRGs). Results: We identified 165 TSRGs: four genes were differentially expressed (DEGs) versus Small-tailed Han sheep, 77 DEGs versus Hu sheep were found, and 73 genes were annotated in reproductive pathways. Functional analyses revealed enrichment for spermatogenesis, embryonic development, and transcriptional regulation. Notably, three top-ranked selection signals (VEPH1, HBB, and MEIKIN) showed differential expression. Murine Gene Informatics (MGI) confirmed that knockout orthologs exhibit significant phenotypes including male infertility, abnormal meiosis (male/female), oligozoospermia, and reduced neonatal weight. Conclusions: Tibetan sheep utilize an evolved suite of genes underpinning gametogenesis and embryogenesis under chronic hypoxia, ensuring high reproductive fitness—a vital component of their adaptation to plateaus. These genes provide valuable genetic markers for the selection, breeding, and conservation of Tibetan sheep as a critical genetic resource. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

10 pages, 1920 KiB  
Case Report
Junctional Epidermolysis Bullosa Caused by a Hemiallelic Nonsense Mutation in LAMA3 Revealed by 18q11.2 Microdeletion
by Matteo Iacoviello, Marilidia Piglionica, Ornella Tabaku, Antonella Garganese, Aurora De Marco, Fabio Cardinale, Domenico Bonamonte and Nicoletta Resta
Int. J. Mol. Sci. 2025, 26(15), 7343; https://doi.org/10.3390/ijms26157343 - 29 Jul 2025
Viewed by 247
Abstract
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the [...] Read more.
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the skin layers, commonly at the “lamina lucida”. Laryngo-onycho-cutaneous syndrome (LOC) is an extremely rare variant of JEB, characterized by granulation tissue formation in specific body sites (skin, larynx, and nails). Although most cases of JEB are caused by pathogenic variants occurring in the genes encoding for classical components of the lamina lucida, such as laminin 332 (LAMA3, LAMB3, LAMC2), integrin α6β4 (ITGA6, ITGB4), and collagen XVII (COL17A1), other variants have also been described. We report the case of a 4-month-old male infant who presented with recurrent bullous and erosive lesions from the first month of life. At the first dermatological evaluation, the patient was agitated and exhibited hoarse breathing, a clinical sign suggestive of laryngeal involvement. Multiple polygonal skin erosions were observed on the cheeks, along with similar isolated, roundish lesions on the scalp and legs. Notably, nail dystrophy and near-complete anonychia were evident on the left first and fifth toes. Due to the coexistence of skin erosions and nail dystrophy in such a young infant, a congenital bullous disorder was suspected, prompting molecular analysis of all potentially involved genes. In the patient’s DNA, clinical exome sequencing (CES) identified a pathogenic variant, apparently in homozygosity, in the exon 1 of the LAMA3 gene (18q11.2; NM_000227.6): c.47G > A;p.Trp16*. The presence of this variant was confirmed, in heterozygosity, in the genomic DNA of the patient’s mother, while it was absent in the father’s DNA. Subsequently, trio-based SNP array analysis was performed, revealing a paternally derived pathogenic microdeletion encompassing the LAMA3 locus (18q11.2). To our knowledge, this is the first reported case of JEB with a LOC-like phenotype caused by a maternally inherited monoallelic nonsense mutation in LAMA3, unmasked by an almost complete deletion of the paternal allele. The combined use of exome sequencing and SNP array is proving essential for elucidating autosomal recessive diseases with a discordant segregation. This is pivotal for providing accurate genetic counseling to parents regarding future pregnancies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 2147 KiB  
Article
Streamlining Bacillus Strain Selection Against Listeria monocytogenes Using a Fluorescence-Based Infection Assay Integrated into a Multi-Tiered Validation Pipeline
by Blanca Lorente-Torres, Pablo Castañera, Helena Á. Ferrero, Sergio Fernández-Martínez, Suleiman Adejoh Ocholi, Jesús Llano-Verdeja, Farzaneh Javadimarand, Yaiza Carnicero-Mayo, Amanda Herrero-González, Alba Puente-Sanz, Irene Sainz Machín, Isabel Karola Voigt, Silvia Guerrero Villanueva, Álvaro López García, Eva Martín Gómez, James C. Ogbonna, José M. Gonzalo-Orden, Jesús F. Aparicio, Luis M. Mateos, Álvaro Mourenza and Michal Letekadd Show full author list remove Hide full author list
Antibiotics 2025, 14(8), 765; https://doi.org/10.3390/antibiotics14080765 - 29 Jul 2025
Viewed by 231
Abstract
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential [...] Read more.
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential against L. monocytogenes. Methods: A total of 26 Bacillus isolates were screened for antimicrobial activity, gastrointestinal resilience, and host cell adhesion. A fluorescence-based infection assay using mCherry-expressing HCT 116 cells was used to assess cytoprotection against L. monocytogenes NCTC 7973. Eight strains significantly improved host cell viability and were validated by quantification of intracellular CFU. Two top candidates were tested in a murine model of listeriosis. The genome of the lead strain was sequenced to evaluate safety and biosynthetic potential. Results: B. subtilis CECT 8266 completely inhibited intracellular replication of L. monocytogenes in HCT 116 cells, reducing bacterial recovery to undetectable levels. In vivo, it decreased splenic bacterial burden by approximately 6-fold. Genomic analysis revealed eight bacteriocin biosynthetic clusters and silent antibiotic resistance genes within predicted genomic islands, as determined by CARD and Alien Hunter analysis. The strain also demonstrated bile and acid tolerance, as well as strong adhesion to epithelial cells. Conclusions: The proposed pipeline enables efficient identification of probiotic Bacillus strains with intracellular protective activity. B. subtilis CECT 8266 is a promising candidate for translational applications in food safety or health due to its efficacy, resilience, and safety profile. Full article
Show Figures

Figure 1

15 pages, 3534 KiB  
Article
Detection and Genomic Characteristics of NDM-19- and QnrS11-Producing O101:H5 Escherichia coli Strain Phylogroup A: ST167 from a Poultry Farm in Egypt
by Ahmed M. Soliman, Hazem Ramadan, Toshi Shimamoto, Tetsuya Komatsu, Fumito Maruyama and Tadashi Shimamoto
Microorganisms 2025, 13(8), 1769; https://doi.org/10.3390/microorganisms13081769 - 29 Jul 2025
Viewed by 363
Abstract
This study describes the first complete genomic sequence of an NDM-19 and QnrS11-producing multidrug-resistant (MDR) Escherichia coli isolate collected from a fecal swab from a poultry farm in 2019 in Egypt. The blaNDM-19 was identified by PCR screening and DNA sequencing. The [...] Read more.
This study describes the first complete genomic sequence of an NDM-19 and QnrS11-producing multidrug-resistant (MDR) Escherichia coli isolate collected from a fecal swab from a poultry farm in 2019 in Egypt. The blaNDM-19 was identified by PCR screening and DNA sequencing. The isolate was then subjected to antimicrobial susceptibility testing, conjugation and transformation experiments, and complete genome sequencing. The chromosome of strain M2-13-1 measures 4,738,278 bp and encodes 4557 predicted genes, with an average G + C content of 50.8%. M2-13-1 is classified under ST167, serotype O101:H5, phylogroup A, and shows an MDR phenotype, having minimum inhibitory concentrations (MICs) of 64 mg/L for both meropenem and doripenem. The genes blaNDM-19 and qnrS11 are present on 49,816 bp IncX3 and 113,285 bp IncFII: IncFIB plasmids, respectively. M2-13-1 harbors genes that impart resistance to sulfonamides (sul1), trimethoprim (dfrA14), β-lactams (blaTEM-1B), aminoglycosides (aph(6)-Id, aph(3′)-Ia, aph(3″)-Ib, aac(3)-IV, and aph(4)-Ia), tetracycline (tet(A)), and chloramphenicol (floR). It was susceptible to aztreonam, colistin, fosfomycin, and tigecycline. The genetic context surrounding blaNDM-19 includes ISAba125-IS5-blaNDM-19-bleMBL-trpF-hp1-hp2-IS26. Hierarchical clustering of the core genome MLST (HierCC) indicated M2-13-1 clusters with global ST167 E. coli lineages, showing HC levels of 100 (HC100) core genome allelic differences. Plasmids of the IncX3 group and the insertion sequence (ISAba125) are critical vehicles for the dissemination of blaNDM and its related variants. To our knowledge, this is the first genomic report of a blaNDM-19/IncX3-carrying E. coli isolate of animal origin globally. Full article
(This article belongs to the Special Issue Gut Microbiota of Food Animal)
Show Figures

Figure 1

Back to TopTop