Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = commercial food supplements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 9914 KiB  
Review
Technology Advancements and the Needs of Farmers: Mapping Gaps and Opportunities in Row Crop Farming
by Rana Umair Hameed, Conor Meade and Gerard Lacey
Agriculture 2025, 15(15), 1664; https://doi.org/10.3390/agriculture15151664 - 1 Aug 2025
Viewed by 326
Abstract
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the [...] Read more.
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the robotic systems used in row crop farming. We review current commercial agricultural robots and research, and map these to the needs of farmers, as expressed in the literature, to identify the key issues holding back large-scale adoption. From initial pool of 184 research articles, 19 survey articles, and 82 commercial robotic solutions, we selected 38 peer-reviewed academic studies, 12 survey articles, and 18 commercially available robots for in-depth review and analysis for this study. We identify the key challenges faced by farmers and map them directly to the current and emerging capabilities of agricultural robots. We supplement the data gathered from the literature review of surveys and case studies with in-depth interviews with nine farmers to obtain deeper insights into the needs and day-to-day operations. Farmers reported mixed reactions to current technologies, acknowledging efficiency improvements but highlighting barriers such as capital costs, technical complexity, and inadequate support systems. There is a notable demand for technologies for improved plant health monitoring, soil condition assessment, and enhanced climate resilience. We then review state-of-the-art robotic solutions for row crop farming and map these technological capabilities to the farmers’ needs. Only technologies with field validation or operational deployment are included, to ensure practical relevance. These mappings generate insights that underscore the need for lightweight and modular robot technologies that can be adapted to diverse farming practices, as well as the need for farmers’ education and simpler interfaces to robotic operations and data analysis that are actionable for farmers. We conclude with recommendations for future research, emphasizing the importance of co-creation with the farming community to ensure the adoption and sustained use of agricultural robotic solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 4658 KiB  
Article
Valorizing Carasau Bread Residue Through Sourdough Fermentation: From Bread Waste to Bread Taste
by Simonetta Fois, Valentina Tolu, Vanna Sanna, Antonio Loddo, Manuela Sanna, Piero Pasqualino Piu, Daniela Piras, Tonina Roggio and Pasquale Catzeddu
Microorganisms 2025, 13(8), 1745; https://doi.org/10.3390/microorganisms13081745 - 25 Jul 2025
Viewed by 228
Abstract
Surplus bread accounts for a significant proportion of food waste in many countries. The focus of this study was twofold: firstly, to investigate the use of carasau bread residue as a sourdough substrate, and secondly, to reuse this sourdough into a new carasau [...] Read more.
Surplus bread accounts for a significant proportion of food waste in many countries. The focus of this study was twofold: firstly, to investigate the use of carasau bread residue as a sourdough substrate, and secondly, to reuse this sourdough into a new carasau baking process. Selected lactic acid bacteria (Lactiplantibacillus plantarum) and yeast strains (Saccharomyces cerevisiae and Wickerhamomyces anomalus) were used to inoculate three substrates: bread residue (S1), bread residue supplemented with durum wheat middlings (S2), and semolina (S3). Sourdoughs were refreshed for five days by backslopping, and microbiological and physicochemical analyses were performed. Results indicated that incorporating wheat middlings into bread residue enhanced microbial performance, as evidence by a decrease in pH from 6.0 to around 4.5 compared to using bread residue alone as a substrate. Carasau bread produced with the sourdough derived from bread residue and wheat middlings exhibited comparable physicochemical properties to commercial baker’s yeast carasau bread, but had better sensory properties, scoring a mean acceptability of 7.0 versus 6.0 for baker’s yeast bread. These results show that bread residue supplemented with wheat middlings can serve as a sourdough substrate, allowing its reuse in the baking process to produce high-quality carasau bread and promote the circular economy. Full article
Show Figures

Graphical abstract

14 pages, 1114 KiB  
Article
Deciphering Important Odorants in a Spirulina (Arthrospira platensis) Dietary Supplement by Aroma Extract Dilution Analysis Using Offline and Online Fractionation Approaches
by Aikaterina Paraskevopoulou, Veronika Mall, Theodoros M. Triantis, Triantafyllos Kaloudis, Anastasia Hiskia, Dimitra Dimotikali and Martin Steinhaus
Int. J. Mol. Sci. 2025, 26(14), 6767; https://doi.org/10.3390/ijms26146767 - 15 Jul 2025
Viewed by 639
Abstract
Investigating the volatiles isolated from a commercial spirulina (Arthrospira platensis) dietary supplement by gas chromatography–olfactometry (GC–O) in combination with an aroma extract dilution analysis (AEDA) resulted in 29 odor events with flavor dilution (FD) factors between 8 and 2048. Identification experiments, [...] Read more.
Investigating the volatiles isolated from a commercial spirulina (Arthrospira platensis) dietary supplement by gas chromatography–olfactometry (GC–O) in combination with an aroma extract dilution analysis (AEDA) resulted in 29 odor events with flavor dilution (FD) factors between 8 and 2048. Identification experiments, including various offline and online fractionation approaches, led to the structure assignment of 30 odorants, among which the most potent were sweaty 2- and 3-methylbutanoic acid (FD 2048), roasty, earthy, shrimp-like 2-ethyl-3,5-dimethylpyrazine (FD 2048), vinegar-like acetic acid (FD 1024), and floral, violet-like β-ionone (FD 1024). Static headspace dilution analysis revealed sulfuric, cabbage-like methanethiol (FD factor ≥ 32) as an additional potent odorant. In summary, 31 important spirulina odorants were identified in this study, and 14 were reported for the first time as spirulina constituents. Our data will provide a basis for future odor optimization of spirulina-based food products. Full article
(This article belongs to the Special Issue Recent Research of Natural Products from Microalgae and Cyanobacteria)
Show Figures

Figure 1

9 pages, 856 KiB  
Article
The Application of Quantitative 1H-NMR for the Determination of Melatonin and Vitamin B6 in Commercial Melatonin Products
by Xinyu Gao, Jiahao Niu, Zhengjian Xiao, Da Rong, Mingming Yu, Sherwin K. B. Sy, Cong Wang and Zhihua Lv
Molecules 2025, 30(14), 2942; https://doi.org/10.3390/molecules30142942 - 11 Jul 2025
Viewed by 378
Abstract
Melatonin supplements have been widely used to improve sleep quality and overcome sleep disorders, with melatonin and vitamin B6 serving as the primary active ingredients. This study developed a novel analytical method for the simultaneous quantification of melatonin and vitamin B6 using 1 [...] Read more.
Melatonin supplements have been widely used to improve sleep quality and overcome sleep disorders, with melatonin and vitamin B6 serving as the primary active ingredients. This study developed a novel analytical method for the simultaneous quantification of melatonin and vitamin B6 using 1H-NMR spectroscopy. The characteristic signals of melatonin and vitamin B6 hydrochloride at δ 7.09 ppm and δ 8.12 ppm were selected for quantitative analysis, with maleic acid used as the internal standard. The method was validated for specificity, precision, and stability. The results demonstrate that the method exhibits high precision and complies with the guidelines established by the China Food and Drug Administration (CFDA). Furthermore, this method has been successfully applied to commercially available formulations. Compared to conventional methods, the 1H-NMR technique offers a more efficient and simpler alternative, making it suitable for the simultaneous quantitative determination of melatonin and vitamin B6 hydrochloride. This approach ensures the quality, stability, and safety of commercial melatonin products. Full article
Show Figures

Graphical abstract

21 pages, 4321 KiB  
Article
Efficient Hydrolysis of Earthworm Protein and the Lipid-Lowering Mechanism of Peptides in the Hydrolysate
by Mengmeng Zhang, Xiang Mai, Shanghua Yang, Yuhua Huang, Lina Zhang, Wenbin Ren, Weidong Bai, Xuan Xin, Wenhong Zhao and Lisha Hao
Foods 2025, 14(13), 2338; https://doi.org/10.3390/foods14132338 - 1 Jul 2025
Viewed by 467
Abstract
Earthworms are valued as a dietary protein source in many regions. Earthworm protein can yield bioactive peptides, but enzymatic hydrolysis is inefficient by commercial proteases, and bioactivity development is still inadequate. This study developed a novel efficient method for degrading earthworm protein and [...] Read more.
Earthworms are valued as a dietary protein source in many regions. Earthworm protein can yield bioactive peptides, but enzymatic hydrolysis is inefficient by commercial proteases, and bioactivity development is still inadequate. This study developed a novel efficient method for degrading earthworm protein and investigated the lipid-lowering activity and mechanism of earthworm peptides. It was found that combining autolysis and alcalase exhibited a higher hydrolysis degree of earthworm protein of 43.64 ± 0.78% compared to using autolysis or alcalase only. The hydrolysate significantly reduced lipid accumulation in steatotic hepatocytes. LC-MS/MS results showed that the primary lipid-lowering peptides (EWPs) in the hydrolysate were small molecule peptides with molecular weights of 500–1000 Da and chain lengths of 4–7 amino acid residues. Western blot results demonstrated that EWP regulated the expression of lipid metabolism-related proteins, including APOC3, HMGCR, PCSK9, SREBP1, C/EBP-α, NPC1L1, PPAR-γ, and CYP7A1. Transcriptomic analysis and validation experiments indicated that the lipid-lowering activity of EWP was associated with its suppression of inflammatory factors, such as IL-6. This study presents an efficient enzymatic hydrolysis strategy for earthworm protein utilization, laying the foundation for its application in functional foods such as protein supplements, nutraceutical capsules, hypoallergenic infant formulas, and sports nutrition products. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

16 pages, 1025 KiB  
Article
Comprehensive Analysis of Mycotoxins in Green Coffee Food Supplements: Method Development, Occurrence, and Health Risk Assessment
by Laura Carbonell-Rozas, Octavian Augustin Mihalache, Renato Bruni and Chiara Dall’Asta
Toxins 2025, 17(7), 316; https://doi.org/10.3390/toxins17070316 - 21 Jun 2025
Viewed by 724
Abstract
This study investigates the presence of mycotoxins in green coffee-based dietary supplements to ensure their safety, given the potential risks of contamination and the growing interest in them among consumers. A sample treatment based on a salting-out assisted liquid–liquid extraction (SALLE) followed by [...] Read more.
This study investigates the presence of mycotoxins in green coffee-based dietary supplements to ensure their safety, given the potential risks of contamination and the growing interest in them among consumers. A sample treatment based on a salting-out assisted liquid–liquid extraction (SALLE) followed by one-step solid-phase extraction (SPE) was selected for the extraction and clean-up of 15 mycotoxins followed by ultra-high performance chromatography–tandem mass spectrometry detection (UHPLC-MS/MS). The target mycotoxins included aflatoxins (AFG1, AFG2, AFB1, AFB2), Alternaria toxins (AOH, AME, TEN), ochratoxin A (OTA), fumonisins (FB1, FB2), zearalenone (ZEN), trichothecenes (T-2, HT-2), enniatin B1 (ENNB1), and beauvericin (BEA). The proposed method was successfully characterized, obtaining high recoveries, a satisfactory precision, and low detection limits. Subsequently, the method was applied for the analysis of 16 commercial food supplements. The analysis revealed the presence of mycotoxins in all samples investigated with Fusarium mycotoxins as the most prevalent. The dietary exposure and risk characterization revealed a low level of risk, except for AFs where chronic exposure in adults may lead to potential health concerns. Full article
Show Figures

Graphical abstract

21 pages, 1372 KiB  
Article
Biochemical Analysis of Wheat Milling By-Products for Their Valorization as Potential Food Ingredients
by Chiara Suanno, Lorenzo Marincich, Simona Corneti, Iris Aloisi, Luca Pincigher, Elisa Papi, Luigi Parrotta, Fabiana Antognoni and Stefano Del Duca
Int. J. Mol. Sci. 2025, 26(12), 5830; https://doi.org/10.3390/ijms26125830 - 18 Jun 2025
Viewed by 345
Abstract
Wheat bran forms the outermost part of the kernel, which is typically discarded as a by-product. Depending on the milling process, bran can be separated into four fractions: coarse bran (CB), coarse weatings (CW), fine weatings (FW), and low-grade flour (LGF). This study [...] Read more.
Wheat bran forms the outermost part of the kernel, which is typically discarded as a by-product. Depending on the milling process, bran can be separated into four fractions: coarse bran (CB), coarse weatings (CW), fine weatings (FW), and low-grade flour (LGF). This study aimed to analyze the macronutrient and bioactive compound profiles of these four by-products across five cultivars and two wheat mixtures. Dietary fibers, free and bound phenolics, phytic acid, fatty acids, and aleurone layer markers were examined in all samples. The results indicate that insoluble fibers, phenolic compounds, and phytic acid decreased from CB to LGF, whereas soluble fiber content exhibited a greater variability among fractions. In all samples, coarse bran was the richest fraction in the protein 7S globulin. The same fraction from the two commercial mixtures and Manitoba cultivar exhibited significantly higher levels of bound ferulic acid compared to the other cultivars (+34%). Manitoba CB also had the highest oleic acid content (18.04% of total lipid content) among all samples, followed by the Rumeno cultivar (17.75%), which also had the highest linolenic acid content (6.35%). Given their health-promoting and technological potential, these by-products could be selectively used to enrich food products and dietary supplements with functional nutrients. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

25 pages, 757 KiB  
Review
Valorization of Olive Mill Wastewater via Yarrowia lipolytica: Sustainable Production of High-Value Metabolites and Biocompounds—A Review
by Amina Laribi, Bartłomiej Zieniuk, Doria Naila Bouchedja, Kahina Hafid, Lamia Elmechta and Samira Becila
Fermentation 2025, 11(6), 326; https://doi.org/10.3390/fermentation11060326 - 6 Jun 2025
Viewed by 963
Abstract
Olive oil production generates vast quantities of by-products, with olive mill wastewater (OMW) being a particularly challenging effluent. Characterized by its dark color, high acidity, and rich composition of organic matter, phenolic compounds, and residual oils, OMW resists conventional degradation methods and poses [...] Read more.
Olive oil production generates vast quantities of by-products, with olive mill wastewater (OMW) being a particularly challenging effluent. Characterized by its dark color, high acidity, and rich composition of organic matter, phenolic compounds, and residual oils, OMW resists conventional degradation methods and poses significant environmental risks due to its phytotoxicity and microbial inhibition. Addressing this issue requires sustainable solutions that align with circular economy principles. A promising strategy involves the biotechnological valorization of OMW using the non-conventional yeast Yarrowia lipolytica, which thrives on organic-rich substrates and converts them into high-value metabolites. This review provides a comprehensive analysis of recent advances in Y. lipolytica applications for OMW valorization, emphasizing its role in developing eco-friendly industrial processes. It begins by outlining the physicochemical challenges of OMW and the metabolic versatility of Y. lipolytica, including its ability to adapt to acidic, phenolic-rich environments. Subsequent sections critically evaluate the yeast’s capacity to synthesize commercially valuable products such as lipases (used in the food and biofuel industries), citric acid (a food and pharmaceutical additive), and polyols like mannitol and erythritol (low-calorie sweeteners). Strategies to optimize microbial productivity, such as substrate pre-treatment, nutrient supplementation, and process engineering, are also discussed. By synthesizing current research, the review highlights how Y. lipolytica-driven OMW valorization can mitigate environmental harm while creating economic opportunities, bridging the gap between waste management and green chemistry. Full article
Show Figures

Figure 1

14 pages, 2070 KiB  
Article
Development of an Efficient Micropropagation Protocol for Curcuma longa L. cv. Trang 1
by Atcha Boonprasert, Pundanai Chitphet, Nuttha Sanevas, Ekaphan Kraichak, Supachai Vuttipongchaikij and Narong Wongkantrakorn
Int. J. Plant Biol. 2025, 16(2), 64; https://doi.org/10.3390/ijpb16020064 - 6 Jun 2025
Viewed by 580
Abstract
Turmeric (Curcuma longa L. cv. Trang 1), a high-value cultivar known for its elevated curcuminoid and volatile oil content, holds significant potential in pharmaceutical and food applications. However, its commercial propagation is constrained by low rhizome productivity and the limitations of conventional [...] Read more.
Turmeric (Curcuma longa L. cv. Trang 1), a high-value cultivar known for its elevated curcuminoid and volatile oil content, holds significant potential in pharmaceutical and food applications. However, its commercial propagation is constrained by low rhizome productivity and the limitations of conventional vegetative propagation. This study aimed to improve the propagation efficiency of turmeric cv. Trang 1 by developing optimized protocols for explant sterilization, shoot proliferation, root induction, and acclimatization. Sprouted rhizome buds were sterilized and cultured on a Murashige and Skoog (MS) medium supplemented with various plant growth regulators, including cytokinins (benzyladenine [BA], thidiazuron [TDZ], and meta-topolin [mT]) and auxins (indole-3-butyric acid [IBA] and 1-naphthaleneacetic acid [NAA]). The shoot induction (4.60 ± 1.47 shoots per explant) and shoot height (2.34 ± 0.61 cm) were observed on the MS medium with 3.0 mg/L BA, while the TDZ, at 0.5 mg/L, also induced a high number of shoots (5.22 ± 0.64). When using single shoots derived from bud explants, mT at 1.5 mg/L significantly enhanced the shoot formation. For the root induction, 2.0 mg/L IBA yielded the highest number of roots (7.33 ± 1.49), while NAA was less effective. The plantlets acclimatized in a 1:1 soil and peat moss mixture showed the highest survival rate (86.67%). This improved protocol enables the efficient production of turmeric plantlets, supporting commercial deployment. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

21 pages, 428 KiB  
Article
Health Claims for Protein Food Supplements for Athletes—The Analysis Is in Accordance with the EFSA’s Scientific Opinion
by María Dolores Rodríguez-Hernández, José Miguel Martínez-Sanz, Carlos Javier García, José Antonio Gabaldón, Federico Ferreres, Miguel Escribano, Daniel Giménez-Monzó and Ángel Gil-Izquierdo
Nutrients 2025, 17(11), 1923; https://doi.org/10.3390/nu17111923 - 3 Jun 2025
Viewed by 2416
Abstract
Background: Protein supplements are among the most popular, available and growing complementary products. Fraud related to the mislabeling, inaccurate analysis or declaration of ingredient quantities, and health claims not aligned with those approved by EFSA is high. This study aims to analyze the [...] Read more.
Background: Protein supplements are among the most popular, available and growing complementary products. Fraud related to the mislabeling, inaccurate analysis or declaration of ingredient quantities, and health claims not aligned with those approved by EFSA is high. This study aims to analyze the claims related to protein supplements in commercial messages. Methods: An observational cross-sectional study was conducted to analyze the content and the degree to which health claims stated on the labeling or technical data sheets of protein supplements comply with those authorized by current European legislation and supported by existing scientific evidence. The products were searched for using Amazon and Google Shopping. Results: Of the 209 health claims evaluated, 60 claims fully complied with the recommendations, representing 28.7% of the total (n = 209). In contrast, 12 claims in which the stated text did not conform to the health claims established by EFSA were identified, representing 5.7% of the total (n = 209). The most widely used unauthorized health claims on the market are those referring to “Post-workout recovery” (11.1%), followed by “Promotes muscle recovery (casein)” (9.5% each), referring to whey protein and casein, respectively. Of all the products analyzed in the study, 43.8% (n = 46) of the products made health claims not authorized by the EFSA. Conclusions: These findings suggest that the high-quality advertising of protein supplements should engage consumers, industry stakeholders, scientific research, and the European Food Safety Authority to ensure compliance with European regulations, provide accurate guidance for manufacturers, and protect consumer rights under current legislation. Full article
Show Figures

Graphical abstract

26 pages, 2243 KiB  
Review
Microecological Preparations as Antibiotic Alternatives in Cyprinid Aquaculture
by Ruiheng Qu, Hao Wu, Alkhateib Y. Gaafar, Abdelgayed Metwaly Younes and Quanquan Cao
Fishes 2025, 10(6), 263; https://doi.org/10.3390/fishes10060263 - 2 Jun 2025
Cited by 1 | Viewed by 826
Abstract
Microecological preparations (MPs), encompassing probiotics, prebiotics, synbiotics, and postbiotics, are microbial feed supplements that enhance host health through gut microbiota modulation. Unlike the narrow definition of probiotics (viable microorganisms), MPs constitute a broader category including non-viable microbial derivatives and selectively fermented substrates. Their [...] Read more.
Microecological preparations (MPs), encompassing probiotics, prebiotics, synbiotics, and postbiotics, are microbial feed supplements that enhance host health through gut microbiota modulation. Unlike the narrow definition of probiotics (viable microorganisms), MPs constitute a broader category including non-viable microbial derivatives and selectively fermented substrates. Their application in aquaculture significantly reduces antibiotic dependence. Given the industry’s intensification challenges, while meeting global protein demands, high-density aquaculture elevates disease risks, driving prophylactic antibiotic overuse. This practice accelerates antimicrobial resistance (AMR) development, compromising treatment efficacy and causing residual antibiotics in aquatic products. Such residues violate international food safety standards, triggering trade disputes. As sustainable alternatives, MPs operate through multiple mechanisms: the competitive exclusion of pathogens, immune stimulation, and nutrient absorption enhancement. This review examines the patterns of antibiotic abuse and the emergence of AMR in carp aquaculture, evaluates MP-based mitigation strategies from the perspective of antibiotic alternatives, and analyzes the advantages, disadvantages, and application progress of MPs. Based on existing evidence, we propose targeted research priorities for MP optimization, advocating for scientifically guided implementation in commercial cyprinid aquaculture. Full article
Show Figures

Figure 1

38 pages, 2898 KiB  
Review
Moringa oleifera Lam.: A Nutritional Powerhouse with Multifaceted Pharmacological and Functional Applications
by Natalina Panova, Anelia Gerasimova, Galia Gentscheva, Stoyanka Nikolova, Lubomir Makedonski, Margarita Velikova, Abdessamad Beraich, Abdelmonaem Talhaoui, Nadezhda Petkova, Daniela Batovska and Krastena Nikolova
Life 2025, 15(6), 881; https://doi.org/10.3390/life15060881 - 29 May 2025
Viewed by 2401
Abstract
Moringa oleifera, often referred to as the “miracle tree”, has gained widespread recognition for its exceptional nutritional profile and broad pharmacological potential. This review provides a comprehensive synthesis of the plant’s botanical characteristics, taxonomy, cultivation practices, and biochemical composition. Special emphasis is [...] Read more.
Moringa oleifera, often referred to as the “miracle tree”, has gained widespread recognition for its exceptional nutritional profile and broad pharmacological potential. This review provides a comprehensive synthesis of the plant’s botanical characteristics, taxonomy, cultivation practices, and biochemical composition. Special emphasis is placed on its rich content of bioactive secondary metabolites-such as flavonoids, alkaloids, phenolic acids, saponins, isothiocyanates, and glucosinolates-which underlie its diverse therapeutic effects. The paper compiles and analyzes evidence from over 200 peer-reviewed studies, documenting antioxidant, anti-inflammatory, antimicrobial, antidiabetic, anticancer, hepatoprotective, neuroprotective, and anti-obesity effects, among others. For instance, leaf extracts have demonstrated potent antioxidant and antidiabetic effects in both animal models and clinical trials, while seed-derived isothiocyanates have shown significant antibacterial and anticancer activity. In addition, clinical and in vivo data support M. oleifera’s role in fertility regulation, cardiovascular protection, and neurodegenerative disease mitigation. Beyond its medicinal applications, the review highlights its growing use in functional foods, dietary supplements, and cosmeceutical products, reflecting its commercial and industrial relevance. By consolidating findings across disciplines, this review underscores the multifaceted value of M. oleifera as a nutraceutical and therapeutic resource. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: Therapeutic Insights and Applications)
Show Figures

Figure 1

56 pages, 1734 KiB  
Review
Recent HPLC-UV Approaches for Cannabinoid Analysis: From Extraction to Method Validation and Quantification Compliance
by Eduarda M. P. Silva, Antonella Vitiello, Agnese Miro and Carlos J. A. Ribeiro
Pharmaceuticals 2025, 18(6), 786; https://doi.org/10.3390/ph18060786 - 24 May 2025
Viewed by 2448
Abstract
Since the 1990s, cannabis has experienced a gradual easing of access restrictions, accompanied by the expansion of its legalization and commercialization. This shift has led to the proliferation of cannabis-based products, available as cosmetics, food supplements, and pharmaceutical dosage forms. Consequently, there has [...] Read more.
Since the 1990s, cannabis has experienced a gradual easing of access restrictions, accompanied by the expansion of its legalization and commercialization. This shift has led to the proliferation of cannabis-based products, available as cosmetics, food supplements, and pharmaceutical dosage forms. Consequently, there has been a growing demand for reliable and reproducible extraction techniques alongside precise analytical methods for detecting and quantifying cannabinoids, both of which are essential for ensuring consumer safety and product quality. Given the variability in extraction and quantification techniques across laboratories, significant attention has recently been directed toward method validation. Validated methods ensure precise cannabinoid measurement in cannabis-based products, supporting compliance with dosage guidelines and legal limits. Thus, this review highlights recent advancements in these areas, with a particular focus on High-Performance Liquid Chromatography (HPLC) coupled with Ultraviolet (UV) detection, as it is considered the gold standard for cannabinoid analysis included in cannabis monographs present in several pharmacopeias. The research focused on studies published between January 2022 and December 2024, sourced from PubMed, Scopus, and Web of Science, that employed an HPLC-UV analytical technique for the detection of phytocannabinoids. Additionally, the review examines cannabinoid extraction techniques and the validation methodologies used by the authors in the selected papers. Notably, ultrasound extraction has emerged as the most widely utilized technique across various matrices, with Deep Eutectic Solvents (DESs) offering a promising, efficient, and environmentally friendly extraction alternative. Analytical chromatographic separations continue to be predominantly conducted using C18 reversed-phase columns. Nevertheless, in recent years, researchers have explored various stationary phases, particularly to achieve the enantioseparation of cannabinoids. Full article
Show Figures

Figure 1

12 pages, 734 KiB  
Article
Development and Taste Improvement of Polyamine-Containing Sakekasu Beverages Using Highly Polyamine-Producing Bacteria from Fermented Foods
by Yuta Ami, Narumi Kodama and Shin Kurihara
Fermentation 2025, 11(6), 297; https://doi.org/10.3390/fermentation11060297 - 22 May 2025
Viewed by 838
Abstract
In our previous study, when Levilactobacillus brevis FB215, derived from blue cheese, was cultured in a water extract of Sakekasu, a byproduct of brewing Japanese rice wine, putrescine, a polyamine that has been reported to have health-promoting effects, accumulated. However, the culture supernatant [...] Read more.
In our previous study, when Levilactobacillus brevis FB215, derived from blue cheese, was cultured in a water extract of Sakekasu, a byproduct of brewing Japanese rice wine, putrescine, a polyamine that has been reported to have health-promoting effects, accumulated. However, the culture supernatant exhibited an undesirable taste. A metabolome analysis revealed that the major metabolites that were increased by the fermentation of Sakekasu extract were lactate, citrulline, and putrescine. Sakekasu extract fermented by FB215 and cultured at 20 °C, 25 °C, 30 °C, and 37 °C contained lactate at concentrations of 35, 49, 58, and 59 mM, respectively, while the putrescine concentrations were approximately 1 mM at all culturing temperatures. Furthermore, 500 mL of Sakekasu extract fermented by FB215 contained 0.02 and 2.2% of the acceptable daily intake of tyramine and histamine, respectively, which are biogenic amines that raise safety concerns regarding their use in fermented foods. Supplementation with sucrose at a final sugar concentration of 16% (w/v) significantly improved the overall palatability of the Sakekasu extract fermented by FB215 to a level statistically equivalent to that of commercially available sugar-sweetened lactic acid bacterial beverages. A daily intake of 500 mL of Sakekasu extract fermented by FB215 provided approximately 28 mg of polyamines, which is equivalent to the increase in blood polyamine concentrations reported in a previous study. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

25 pages, 2665 KiB  
Article
Chemical Profiling of Polyphenolic Fraction of Cannabis sativa L. vr. Kompolti Industrial Inflorescences: Insights into Cannabidiol Neuroprotective Effects in a Cellular Model of Parkinson’s Disease
by Francesca Fantasma, Gilda D’Urso, Noemi Martella, Alessandra Capuano, Eleonora Boccia, Vadym Samukha, Vincenzo De Felice, Gabriella Saviano, Federico Trombetta, Gianluigi Lauro, Marco Segatto, Maria Giovanna Chini, Giuseppe Bifulco, Agostino Casapullo and Maria Iorizzi
Plants 2025, 14(10), 1473; https://doi.org/10.3390/plants14101473 - 14 May 2025
Viewed by 849
Abstract
The ultra-high-performance liquid chromatography high-resolution mass spectrometry (LC-ESI-HR-MS/MS) technique was used to characterize the polyphenolic fraction of the hot water infusion (WI) of inflorescences of Cannabis sativa L. Kompolti variety, commercially used for food preparations or cosmetic purposes. On water infusion extract, we [...] Read more.
The ultra-high-performance liquid chromatography high-resolution mass spectrometry (LC-ESI-HR-MS/MS) technique was used to characterize the polyphenolic fraction of the hot water infusion (WI) of inflorescences of Cannabis sativa L. Kompolti variety, commercially used for food preparations or cosmetic purposes. On water infusion extract, we applied a multidisciplinary approach, where NMR, MS, in vitro cell-free and cell-based assays coupled with in silico studies, were used to rationalize at the molecular level the effects of the major component Cannabidiol (CBD), in a model of Parkinson’s disease (PD). The phytochemical analysis by LC-MS/MS led to the tentative identification of many components belonging to different classes of polyphenols, such as phenolic acids, flavonoids, and their glycosides. CBD and cannabidiolic acid (CBDA) were also detected in good amounts in the infusion, together with several minor cannabinoids. In addition, the water infusion WI was evaluated for mineral content, total phenolic content, flavonoid content, and antioxidant capacity by DPPH and FRAP methods. Notably, our results in a cellular model of PD highlight that CBD protects against rotenone-induced cell death without recovering neuronal morphology. These biological outcomes were rationalized by an in silico approach, where we hypothesize that CBD could influence the cellular response to oxidative stress via its interaction with the Keap1/Nrf2 pathway. In summary, these results enriched the nutraceutical profile of the water infusion of the inflorescences of the Kompolti cultivar, which demonstrated a high CBD content. This study could lead to the development of dietary supplements that could help in the management of clinical symptoms related to the antioxidant activity of CBD in the pathophysiology of PD, which remains poorly characterized. Full article
Show Figures

Graphical abstract

Back to TopTop