Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = combustion of paintings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 16904 KiB  
Article
Analysis of Composition, Properties, and Usage Efficiency of Different Commercial Salt Fluxes for Aluminum Alloy Refining
by Boris Kulikov, Evgeniy Partyko, Aleksandr Kosovich, Pavel Yuryev, Yulbarskhon Mansurov, Nikita Stepanenko, Yuriy Baykovskiy, Dmitry Bozhko, Alexander Durnopyanov, Nikolay Dombrovskiy and Maxim Baranov
Metals 2025, 15(4), 448; https://doi.org/10.3390/met15040448 - 16 Apr 2025
Cited by 1 | Viewed by 653
Abstract
One of the key problems in the billet and shaped casting of aluminum alloys is the presence of various undesirable inclusions and impurities in the melt, which can serve as stress concentrators in the finished product, as well as dissolved hydrogen, which contributes [...] Read more.
One of the key problems in the billet and shaped casting of aluminum alloys is the presence of various undesirable inclusions and impurities in the melt, which can serve as stress concentrators in the finished product, as well as dissolved hydrogen, which contributes to the formation of porosity. The interaction of aluminum with other gases produced by the combustion of fuel particles, oil, and paint materials brought into the furnace together with charge and scrap increases the amount of nitrides, oxides, carbides, and sulfides in the melt. Flux treatment is widely used as protection of aluminum alloys from oxidation and removal of impurities. The present paper reports the data of a comparative analysis of five widely used flux compositions based on sodium, potassium, and magnesium chlorides. The study covers the following aspects: chemical composition, moisture content, melting temperature and melting range, particle size distribution, and refining ability as measured by the change in Na, Ca, and H2 content after melt treatment. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

21 pages, 9031 KiB  
Article
The Use and Deterioration of Intumescent Fire-Retardant Paint on Louise Nevelson’s Erol Beker Chapel of the Good Shepherd
by Lora V. Angelova, Aaron Shugar, Christopher A. Maines, Satoko Tanimoto, Martha Singer, Jean Dommermuth, Hannah Duggan, Teresa T. Duncan, Adam C. Finnefrock and Jennifer L. Mass
Heritage 2025, 8(4), 128; https://doi.org/10.3390/heritage8040128 - 3 Apr 2025
Cited by 1 | Viewed by 1204
Abstract
Louise Nevelson’s Erol Beker Chapel of the Good Shepherd (1977) is a sculptural environment consisting of wooden sculptures painted a monochromatic white color. The paints show signs of degradation including cracking, chipping, peeling, and the formation of blisters and powdery efflorescence. A significant [...] Read more.
Louise Nevelson’s Erol Beker Chapel of the Good Shepherd (1977) is a sculptural environment consisting of wooden sculptures painted a monochromatic white color. The paints show signs of degradation including cracking, chipping, peeling, and the formation of blisters and powdery efflorescence. A significant amount of pentaerythritol (PER) detected during a former analysis was concluded to originate from an alkyd paint. We show that the PER originates from the PVAc paint on the sculptures, which we have determined to be an intumescent, fire-retardant (IFR) coating. IFR paints and coatings are functional materials designed specifically to delay the combustion of their substrate. At least one other sculpture by Louise Nevelson is known to have been painted with an IFR coating. Our analyses by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), pyrolysis–gas chromatography/mass spectrometry (Py-GCMS), and cross-section microscopy show the presence and distribution of common IFR additives including PER, dicyandiamide, melamine, inositol, ethylenediamine, and phosphates. These are present throughout the PVAc paint and are enriched in the powdery efflorescence. In addition, the degradation behavior of the paint is typical for IFR coating systems that have been exposed to uncontrolled environmental conditions and especially high humidity events. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Art and Archaeology)
Show Figures

Figure 1

13 pages, 1722 KiB  
Review
Atmospheric Pollution Depicted in Impressionists’ Paintings
by Eirini N. Avgeri and Dimitris K. Papanastasiou
Sustainability 2024, 16(22), 10147; https://doi.org/10.3390/su162210147 - 20 Nov 2024
Viewed by 2185
Abstract
Art is perhaps the most important means of expressing creativity and imagination. It can serve as a form of communication, allowing artists to convey messages and comment on various topics. Environmental art is a dynamic and multifaceted form of artistic expression that highlights [...] Read more.
Art is perhaps the most important means of expressing creativity and imagination. It can serve as a form of communication, allowing artists to convey messages and comment on various topics. Environmental art is a dynamic and multifaceted form of artistic expression that highlights the causes and consequences of environmental problems, such as atmospheric pollution, and facilitate the environmental awareness of societies along with the need to find sustainable solutions to address environmental degradation. The aim of this study was to present paintings created by impressionists that depict atmospheric pollution. A total of 43 paintings were listed after searching the websites of 26 museums worldwide and 10 of them were indicatively selected by applying specific criteria and commented on in this paper. Four of the selected paintings were created by Claude Monet, two by Jean-Baptiste Armand Guillaumin, and the rest of them by James McNeill Whistler, Charles-François Daubigny, Camille Pissarro, and Vincent Van Gogh. These 10 paintings depict, among other things, the emission of pollutants into the atmosphere, due to fossil fuel combustion, mainly coal, which contributes to smog development. This study could be exploited by authorities, associations, educational centres, and other interested parties when planning educational activities for the causes, consequences, and solutions of atmospheric pollution over time, while promoting the use of art in environmental and sustainability education. Full article
Show Figures

Figure 1

23 pages, 9661 KiB  
Article
Oil and Gas Structures: Forecasting the Fire Resistance of Steel Structures with Fire Protection under Hydrocarbon Fire Conditions
by Marina Gravit, Ivan Dmitriev, Nikita Shcheglov and Anton Radaev
Fire 2024, 7(6), 173; https://doi.org/10.3390/fire7060173 - 21 May 2024
Cited by 4 | Viewed by 1982
Abstract
The hydrocarbon temperature–time curve is widely used instead of the standard curve to describe the temperature in the environment of structural surfaces exposed to fire in oil and gas chemical facilities and tunnels. This paper presents calculations of the ratio of time to [...] Read more.
The hydrocarbon temperature–time curve is widely used instead of the standard curve to describe the temperature in the environment of structural surfaces exposed to fire in oil and gas chemical facilities and tunnels. This paper presents calculations of the ratio of time to reach critical temperatures at different nominal fire curves for steel structures such as bulkheads and columns with different types of fireproofing. The thermophysical properties of the fireproofing materials were obtained by solving the inverse heat conduction problem using computer simulation. It was found that the time interval for reaching critical temperatures in structures with different types of fireproofing in a hydrocarbon fire decreased, on average, by a factor of 1.2–1.7 compared to the results of standard fire tests. For example, for decks and bulkheads with mineral wool fireproofing, the K-factor of the ratio of the time for reaching the critical temperature of steel under the standard curve to the hydrocarbon curve was 1.30–1.62; for plaster, it was 1.56; for cement boards, it was 1.34; for non-combustible coatings, it was 1.38–2.0; and, for epoxy paints, it was 1.71. The recommended values of the K-factor for fire resistance up to 180 min (incl.) were 1.7 and, after 180 min, 1.2. The obtained dependencies would allow fireproofing manufacturers to predict the insulation thickness for expensive hydrocarbon fire experiments if the results of fire tests under standard (cellulosic) conditions are known. Full article
(This article belongs to the Special Issue Advances in New Energy Materials and Fire Safety)
Show Figures

Figure 1

4 pages, 226 KiB  
Proceeding Paper
Resin and Bagasse, Co-Products of Guayule Rubber Extraction: Applications in Different Fields for an Economic Viability and Ecological Approach
by Hind Houria Bougherra, Lamia Taouzinet, Sabiha Bechir, Khoukha Mouhoubi, Lynda Messaoudene, Ayoub Allam and Khodir Madani
Eng. Proc. 2023, 37(1), 60; https://doi.org/10.3390/ECP2023-14661 - 17 May 2023
Viewed by 1553
Abstract
The economic viability of guayule as an industrial crop for natural rubber production depends largely on the potential valorization of these co-products. According to the studies carried out on the subject, there is a broad consensus on the added value of the resin [...] Read more.
The economic viability of guayule as an industrial crop for natural rubber production depends largely on the potential valorization of these co-products. According to the studies carried out on the subject, there is a broad consensus on the added value of the resin and bagasse in different fields of application. The process of extracting natural rubber from guayule produces mainly bagasse (±80% of the total dry mass) and resin (±10% of the total dry mass). According to guayule research, high-value co-products significantly improve the economic viability of guayule as an industrial crop and offset a substantial portion of the cultivation and processing costs. According to studies, resin remains the most fluctuating value; reducing this uncertainty, through future research on resin applications, it is essential to the success of guayule as a natural rubber raw material. It finds applications in different industrial fields, such as coatings, varnishes, paints, treated wood, biocontrol agents and controlled-release formulations. Bagasse is composed primarily of cellulose, hemicellulose, lignin and resin, and has a high calorific value, making bagasse a suitable fuel for on-site combustion to produce electricity and thermal energy. Bagasse combustion in this scenario is less complex than the logistics of biofuel production. Resin-containing guayule bagasse has been combined with a plastic binder to make high-density composite panels resistant to termite degradation. In addition, the resinous material can be solvent-extracted and used to impregnate wood with raw resin extract so that the wood is protected from destructive organisms. Guayule bagasse containing resin can modify the soil nature and improve the growth of vegetables compared to de-resinated bagasse. Full article
23 pages, 6498 KiB  
Article
Synthesis of Ce and Sm Co-Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity for Rhodamine B Dye Degradation
by Yassine Slimani, Munirah A. Almessiere, Mohamed J. S. Mohamed, Essia Hannachi, Serkan Caliskan, Sultan Akhtar, Abdulhadi Baykal and Mohammed A. Gondal
Catalysts 2023, 13(4), 668; https://doi.org/10.3390/catal13040668 - 29 Mar 2023
Cited by 44 | Viewed by 4498
Abstract
One of the major concerns that receive global attention is the presence of organic pollutants (dyes, pharmaceuticals, pesticides, phenolic compounds, heavy metals, and so on), originating from various industries, in wastewater and water resources. Rhodamine B is widely used in the dyeing of [...] Read more.
One of the major concerns that receive global attention is the presence of organic pollutants (dyes, pharmaceuticals, pesticides, phenolic compounds, heavy metals, and so on), originating from various industries, in wastewater and water resources. Rhodamine B is widely used in the dyeing of paints, plastics, textiles, and other fabrics, as well as biological products. It is highly persistent, toxic, and carcinogenic to organisms and humans when directly released into the water supply. To avoid this hazard, several studies have been conducted in an attempt to remove Rhodamine B from wastewater. Metal oxide semiconducting materials have gained great interest because of their ability to decompose organic pollutants from wastewater. TiO2 is one of the most effective photocatalysts with a broad range of applications. Several attempts have been made to improve its photocatalytic activity. Accordingly, we have prepared in this work a series of cerium (Ce) and samarium (Sm) co-doped TiO2 nanoparticles (x = 0.00, 0.25, 0.50, 1.00, and 2.00%) using a sol–gel auto-combustion approach. The influence of Ce–Sm concentrations on the structural, morphology, electronic, and optical properties, as well as the photocatalytic activity, was investigated. Structure and elemental mapping analyses proved the presence of Ce and Sm in the compositions as well as the development of the TiO2 anatase phase with a tetragonal structure and crystallite size of 15.1–17.8 nm. Morphological observations confirmed the creation of spherical nanoparticles (NPs). The examination of the electronic structure properties using density functional theory (DFT) calculations and of the optical properties using a UV/Vis diffuse spectrophotometer showed a reduction in the bandgap energy upon Ce–Sm co-doping. The photocatalytic activity of the synthesized products was assessed on the degradation of Rhodamine B dye, and it was found that all Ce–Sm co-doped TiO2 nanoparticles have better photocatalytic activities than pristine TiO2 nanoparticles. Among all of the prepared nanoparticles, the sample with x = 0.50% demonstrated the best photocatalytic activity, with a degradation efficiency of 98% within 30 min and a reaction rate constant of about 0.0616 min−1. h+ and •O2 were determined to be the most important active species in the photocatalytic degradation process. Besides the high photocatalytic degradation efficiency, these photocatalysts are highly stable and could be easily recovered and reused, which indicates their potential for practical applications in the future. Full article
Show Figures

Figure 1

40 pages, 10912 KiB  
Review
Review of Development and Comparison of Surface Thermometry Methods in Combustion Environments: Principles, Current State of the Art, and Applications
by Siyu Liu, Yu Huang, Yong He, Yanqun Zhu and Zhihua Wang
Processes 2022, 10(12), 2528; https://doi.org/10.3390/pr10122528 - 28 Nov 2022
Cited by 12 | Viewed by 4376
Abstract
Temperature is one of the most important parameters in the combustion processes. Accurate surface temperature can help to gain insight into the combustion characteristics of various solid or liquid fuels, as well as to evaluate the operating status of combustion power facilities such [...] Read more.
Temperature is one of the most important parameters in the combustion processes. Accurate surface temperature can help to gain insight into the combustion characteristics of various solid or liquid fuels, as well as to evaluate the operating status of combustion power facilities such as internal combustion engines and gas turbines. This paper mainly summarizes and compares the main surface thermometry techniques, from the aspects of their principles, current state of development, and specific applications. These techniques are divided into two categories: contact-based thermometry and non-intrusive thermometry. In contact-based thermometry, conventional thermocouples as well as thin-film thermocouples are introduced. These methods have been developed for a long time and are simple and economical. However, such methods have disadvantages such as interference to flow and temperature field and poor dynamic performance. Furthermore, this paper reviews the latest non-intrusive thermometry methods, which have gained more interest in recent years, including radiation thermometry, laser-induced phosphorescence, liquid crystal thermography, the temperature-sensitive paint technique, and the temperature-indicating paint technique. Among them, we highlighted radiation thermometry, which has the widest measurement ranges and is easy to acquire results with spatial resolution, as well as laser-induced phosphorescence thermometry, which is not interfered with by the emissivity and surrounding environment, and has the advantages of fast response, high sensitivity, and small errors. Particularly, laser-induced phosphoresce has attracted a great deal of attention, as it gets rid of the influence of emissivity. In recent years, it has been widely used in the thermometry of various combustion devices and fuels. At the end of this paper, the research progress of the above-mentioned laser-induced phosphorescence and other techniques in recent years for the surface thermometry of various solid or liquid fuels is summarized, as well as applications of combustion facilities such as internal combustion engines, gas turbines, and aero engines, which reveal the great development potential of laser-induced phosphorescence technology in the field of surface thermometry. Full article
(This article belongs to the Special Issue Advanced Combustion and Combustion Diagnostic Techniques)
Show Figures

Figure 1

15 pages, 3672 KiB  
Article
Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating
by Bin Chen and Lizhong Yang
Int. J. Mol. Sci. 2022, 23(20), 12632; https://doi.org/10.3390/ijms232012632 - 20 Oct 2022
Cited by 18 | Viewed by 2868
Abstract
Rigid polyurethane foam (RPUF) has been widely used in many fields, but its high flammability and frequent release of large amounts of toxic smoke during combustion limit its application. Hydrogel coatings, as a kind of environmentally friendly material, contain large amounts of water, [...] Read more.
Rigid polyurethane foam (RPUF) has been widely used in many fields, but its high flammability and frequent release of large amounts of toxic smoke during combustion limit its application. Hydrogel coatings, as a kind of environmentally friendly material, contain large amounts of water, which is beneficial to flame retardance of RPUF. MXene, as a two-dimensional inorganic nanomaterial, possesses a large specific surface area and good thermal stability, performing well in smoke suppression and as a physical barrier for flammable gas products and heat. Herein, to address the fire hazards of RPUF, MXene nanosheets were first grafted with double bonds, and then introduced into a polyacrylamide hydrogel system by radical polymerization to prepare MXene-based hydrogel coating (PAAm-MXene). The flame-retardant RPUF (coated RPUF) was prepared by painting the PAAm-MXene coating onto RPUF surface. The dispersion of modified MXene nanosheets (m-MXene) in hydrogels is improved compared with pristine MXene, and the addition of m-MXene contributes to the thermal stability enhancement of PAAm-MXene. Cone calorimetry, water retention test, and open flame combustion test were used to study the flame retardancy, smoke suppression, and water retention of flame-retardant RPUF. The coated RPUF exhibited significant flame retardancy, including reduced peak heat release rate (pHRR) at a maximum by 25.8%, and total heat release rate (THR) at a maximum by 24.6%, and total smoke production at a maximum by 38.9%. The results show that both MXene and m-MXene can improve the flame retardancy, smoke suppression, and water retention of hydrogels, but m-MXene has a better smoke suppression effect than MXene. That can be ascribed to the better dispersion of m-MXene than pristine MXene. The detailed performance improvement mechanisms are proposed. This work will not only improve the flame retardancy of RPUF, but also promotes the exploration of new flame-retardant strategies for RPUF. Full article
(This article belongs to the Special Issue New Advances in Synthesis of Functional Hydrogels)
Show Figures

Figure 1

15 pages, 4816 KiB  
Article
Effects of Phosphorus and Boron Compounds on Thermal Stability and Flame Retardancy Properties of Epoxy Composites
by Corneliu Hamciuc, Tăchiță Vlad-Bubulac, Diana Serbezeanu, Ana-Maria Macsim, Gabriela Lisa, Ion Anghel and Ioana-Emilia Şofran
Polymers 2022, 14(19), 4005; https://doi.org/10.3390/polym14194005 - 24 Sep 2022
Cited by 20 | Viewed by 3500
Abstract
While plastics are regarded as the most resourceful materials nowadays, ranging from countless utilities including protective or decorating coatings, to adhesives, packaging materials, electronic components, paintings, furniture, insulating composites, foams, building blocks and so on, their critical limitation is their advanced flammability, which [...] Read more.
While plastics are regarded as the most resourceful materials nowadays, ranging from countless utilities including protective or decorating coatings, to adhesives, packaging materials, electronic components, paintings, furniture, insulating composites, foams, building blocks and so on, their critical limitation is their advanced flammability, which in fire incidents can result in dramatic human fatalities and irreversible environmental damage. Herein, epoxy-based composites with improved flame-resistant characteristics have been prepared by incorporating two flame retardant additives into epoxy resin, namely 6-(hydroxy(phenyl)methyl)-6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide (PFR) and boric acid (H3BO3). The additional reaction of 9,10-dihydro-oxa-10-phosphophenanthrene-10-oxide (DOPO) to the carbonyl group of benzaldehyde yielded PFR, which was then used to prepare epoxy composites having a phosphorus content ranging from 1.5 to 4 wt%, while the boron content was 2 wt%. The structure, morphology, thermal stability and flammability of resulted epoxy composites were investigated by FTIR spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry (MCC). Thermogravimetric analysis indicated that the simultaneous incorporation of PFR and H3BO3 improved the thermal stability of the char residue at high temperatures. The surface morphology of the char residues, studied by SEM measurements, showed improved characteristics in the case of the samples containing both phosphorus and boron atoms. The MCC tests revealed a significant reduction in flammability as well as a significant decrease in heat release capacity for samples containing both PFR and H3BO3 compared to the neat epoxy thermoset. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites)
Show Figures

Figure 1

26 pages, 9154 KiB  
Article
Mechanical and Fire Performance of Innovative Hollow Glue-Laminated Timber Beams
by Nikola Perković and Vlatka Rajčić
Polymers 2022, 14(16), 3381; https://doi.org/10.3390/polym14163381 - 18 Aug 2022
Cited by 6 | Viewed by 2984
Abstract
Fire safety greatly contributes to feeling safe, and it is a key parameter for the selection of building materials. The combustibility of timber is one of the main reasons to have the strict restriction on timber for use as a building material, especially [...] Read more.
Fire safety greatly contributes to feeling safe, and it is a key parameter for the selection of building materials. The combustibility of timber is one of the main reasons to have the strict restriction on timber for use as a building material, especially for multistory buildings. Therefore, the main prerequisite for the use of timber in buildings is to ensure adequate fire resistance, using passive and active fire protection measures. This article contains the results of mechanical and fire experimental tests of both normal and innovative hollow glued laminated timber beams. A total of 10 timber beams were tested at ambient temperature, and 3 timber beams in fire conditions, which differed in cross-section type but also in the applied fire protection. The first beam was a normal GL beam without fire protection, the second a hollow beam covered by intumescent paint, while the third was also hollow, additionally protected by mineral wool infill inside the holes. The load-carrying capacity of the hollow beam in ambient conditions was estimated at 65% of the load-carrying capacity of a normal GL beam. Fire tests indicated that hollow timber beams with both intumescent paint and mineral wool infill failed at a similar time as a normal GL beam without fire protection. One-dimensional β0 and notional charring rates βn were obtained. Time to the protective material failure was 17 min. The main cause of failure of hollow beams was the appearance of delamination due to the reduction of the lamella bonding surface. Full article
(This article belongs to the Special Issue Fibre Reinforced Polymer (FRP) Composites in Structural Applications)
Show Figures

Figure 1

25 pages, 384 KiB  
Review
Nanotechnology in Fire Protection—Application and Requirements
by Anna Rabajczyk, Maria Zielecka, Tomasz Popielarczyk and Tomasz Sowa
Materials 2021, 14(24), 7849; https://doi.org/10.3390/ma14247849 - 18 Dec 2021
Cited by 28 | Viewed by 5309
Abstract
Nanotechnology is used, to an increasing extent, in practically every aspect of the economy and society. One area where nanotechnology is constantly advancing is fire protection. Nanostructures are found in elements used in direct protection, such as in protective clothing, filters, and helmets. [...] Read more.
Nanotechnology is used, to an increasing extent, in practically every aspect of the economy and society. One area where nanotechnology is constantly advancing is fire protection. Nanostructures are found in elements used in direct protection, such as in protective clothing, filters, and helmets. Solutions in the field of nanotechnology are also used in elements reducing the fire risk and increasing the fire safety, such as building materials and structures, paints, coatings, or fire safety equipment (e.g., fire detectors). However, new solutions may also pose a threat to the safety of people and the environment. As a result of operation or combustion and degradation processes, the emission of nano-substances with toxic properties may occur. Therefore, knowledge in this field is necessary, as it allows for the appropriate targeting and use of nanotechnology. Full article
(This article belongs to the Special Issue Recent Advances in Coatings, Adhesives and Construction Materials)
19 pages, 7059 KiB  
Article
Economic Optimization of Rotary Heat Exchangers Using CO2 Pricing Scenarios Based on Validated Fluid Dynamic and Thermodynamic-Based Simulation
by Eloy Melian, Harald Klein and Nikolaus Thißen
Energies 2021, 14(13), 4037; https://doi.org/10.3390/en14134037 - 4 Jul 2021
Cited by 1 | Viewed by 2705
Abstract
Rotary heat exchangers have been widely used in paint shops, combustion power plants, and in heating, ventilation, and air conditioning systems in buildings. For these processes, many types of heat exchangers are available in the market: Tube-shell heat exchangers, plate heat exchangers, and [...] Read more.
Rotary heat exchangers have been widely used in paint shops, combustion power plants, and in heating, ventilation, and air conditioning systems in buildings. For these processes, many types of heat exchangers are available in the market: Tube-shell heat exchangers, plate heat exchangers, and rotary heat exchangers, among others. For the rotary heat exchangers, the problem is that there is no net present value method and lifecycle assessment method-based optimization found in the literature. In this work, we address this issue: An optimization is carried out with help of an empirically validated simulation model, a life-cycle assessment model, an economical assessment, and an optimization algorithm. The objective function of the optimization simultaneously considers economic and environmental aspects by using different CO2 pricing. Different CO2 pricing scenarios lead to different optimization results. The ambient air empty tube velocity va, 2.1 optimum was found at 1.2 m/s, which corresponds to a specific mass flow msp of 5.4 kg/(m2·h). For the wave angle β, the optimum was found in the range between 58° and 60°. For the wave height h* the optimum values were found to be between 2.64 mm and 2.77 mm. Finally, for the rotary heat exchanger length l, the optimum was found to be between 220 mm and 236 mm. The optimization results show that there is still potential for technical improvements in the design and operation of rotary heat exchangers. In general terms, we recommend that the optimized rotary heat exchanger should cause less pressure drop while resulting in similar heat recovery efficiency. This is because the life cycle assessment shows that the use phase for rotary heat exchangers has the biggest impact on greenhouse gases, specifically by saving on Scope 2 emissions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

8 pages, 1632 KiB  
Article
Analysis of Combustion Process of Protective Coating Paints
by Andrzej Polanczyk, Malgorzata Majder-Lopatka, Anna Dmochowska and Zdzislaw Salamonowicz
Sustainability 2020, 12(10), 4008; https://doi.org/10.3390/su12104008 - 14 May 2020
Cited by 3 | Viewed by 3265
Abstract
Structural elements in buildings exposed to high temperature may lose their original stability. Application of steel structures has several advantages; however, deflection under exposure to high temperatures may be a potential obstacle. Therefore, the aim of the study was to determine how temperature [...] Read more.
Structural elements in buildings exposed to high temperature may lose their original stability. Application of steel structures has several advantages; however, deflection under exposure to high temperatures may be a potential obstacle. Therefore, the aim of the study was to determine how temperature affects decomposition of protective paints applied in the construction. A dedicated installation for the analysis of the combustion process of protective coating paints in a laboratory scale was prepared. The experimental device consisted of the following parts: top-loading furnace connected to the gas conditioner, the LAT MG-2 gas mixer, and portable gas analyzer GASMET DX-4010. The following type of the protective powder coating paints were analyzed: alkyd and polyurethane. The obtained results indicated that during thermal decomposition of paints, formaldehyde, benzene, heptane, and butanol were released, however in different concentrations. Moreover, decomposition temperature affected the type and amount of released gas mixture components. With increasing temperature, increased release of formaldehyde and benzene was noticed, while the concentration of butanol and heptane decreased. Finally, the product of thermal decomposition emitted in the highest concentration was formaldehyde, which can cause irritation and sensitization in humans. Full article
(This article belongs to the Special Issue Green Technologies in Air Treatment)
Show Figures

Figure 1

15 pages, 24106 KiB  
Article
Paint Removal with Pulsed Laser: Theory Simulation and Mechanism Analysis
by Haichao Zhao, Yulin Qiao, Xian Du, Sijie Wang, Qing Zhang, Yan Zang and Zhihai Cai
Appl. Sci. 2019, 9(24), 5500; https://doi.org/10.3390/app9245500 - 13 Dec 2019
Cited by 21 | Viewed by 4127
Abstract
This paper studies paint removal using laser technology. A finite element model was created using COMSOL Multiphysics software, and the temperature field generated during the cleaning process was analyzed and verified. Laser paint removal behavior was investigated using a fiber laser, and its [...] Read more.
This paper studies paint removal using laser technology. A finite element model was created using COMSOL Multiphysics software, and the temperature field generated during the cleaning process was analyzed and verified. Laser paint removal behavior was investigated using a fiber laser, and its mechanism studied by combining Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. In-depth analysis of this relatively new technology could provide the theoretical basis for industrial application. The results of this study show that, when compared to the original paint layer, the infrared absorption spectrum of the cleaned surface had two additional two peaks—1333.36 cm−1 and 678.82 cm−1. In addition, there was a decrease in C element content on the treated surface and an increase in O content. In addition, new organic and complex compounds were formed on the cleaned surface as a result of bond cleavage and rearrangement. Furthermore, paint particles of varying sizes and shapes were produced by the impact of plasma shock. Under high-energy laser irradiation, the paint layer underwent combustion, resulting in spherical nanoparticles of uniform shape. Full article
Show Figures

Figure 1

10 pages, 2705 KiB  
Article
Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers
by Takaaki Harada, Stephanie Spence, Athanasios Margiolakis, Skylar Deckoff-Jones, Rebecca Ploeger, Aaron N. Shugar, James F. Hamm, Keshav M. Dani and Anya R. Dani
Materials 2017, 10(2), 107; https://doi.org/10.3390/ma10020107 - 26 Jan 2017
Cited by 11 | Viewed by 7641
Abstract
Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in [...] Read more.
Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects. Full article
(This article belongs to the Special Issue Ultrafast Laser-Based Manufacturing)
Show Figures

Figure 1

Back to TopTop