Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,571)

Search Parameters:
Keywords = combinational immunotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1304 KiB  
Review
Treatment Strategies for First-Line PD-L1-Unselected Advanced NSCLC: A Comparative Review of Immunotherapy-Based Regimens by PD-L1 Expression and Clinical Indication
by Blerina Resuli, Diego Kauffmann-Guerrero, Maria Nieves Arredondo Lasso, Jürgen Behr and Amanda Tufman
Diagnostics 2025, 15(15), 1937; https://doi.org/10.3390/diagnostics15151937 (registering DOI) - 31 Jul 2025
Abstract
Background: Lung cancer remains the leading cause of cancer-related mortality worldwide. Advances in screening, diagnosis, and management have transformed clinical practice, particularly with the integration of immunotherapy and target therapies. Methods: A systematic literature search was carried out for the period between [...] Read more.
Background: Lung cancer remains the leading cause of cancer-related mortality worldwide. Advances in screening, diagnosis, and management have transformed clinical practice, particularly with the integration of immunotherapy and target therapies. Methods: A systematic literature search was carried out for the period between October 2016 to September 2024. Phase II and III randomized trials evaluating ICI monotherapy, ICI–chemotherapy combinations, and dual ICI regimens in patients with advanced NSCLC were included. Outcomes of interest included overall survival (OS), progression-free survival (PFS), and treatment-related adverse events (AEs). Results: PD-1-targeted therapies demonstrated superior OS compared to PD-L1-based regimens, with cemiplimab monotherapyranking highest for OS benefit (posterior probability: 90%), followed by sintilimab plus platinum-based chemotherapy (PBC) and pemetrexed—PBC. PFS atezolizumab plus bevacizumab and PBC, and camrelizumab plus PBC were the most effective regimens. ICI–chemotherapy combinations achieved higher ORRs but were associated with greater toxicity. The most favorable safety profiles were observed with cemiplimab, nivolumab, and avelumab monotherapy, while atezolizumab plus PBC and sugemalimab plus PBC carried the highest toxicity burdens. Conclusions: In PD-L1-unselected advanced NSCLC, PD-1 blockade—particularly cemiplimab monotherapy—and rationally designed ICI–chemotherapy combinations represent the most efficacious treatment strategies. Balancing efficacy with safety remains critical, especially in the absence of predictive biomarkers. These findings support a patient-tailored approach to immunotherapy and highlight the need for further biomarker-driven and real-world investigations to optimize treatment selection. Full article
(This article belongs to the Special Issue Lung Cancer: Screening, Diagnosis and Management: 2nd Edition)
37 pages, 1856 KiB  
Review
Current and Future Directions in Immunotherapy for Gastrointestinal Malignancies
by Catherine R. Lewis, Yazan Samhouri, Christopher Sherry, Neda Dadgar, Moses S. Raj and Patrick L. Wagner
Int. J. Transl. Med. 2025, 5(3), 33; https://doi.org/10.3390/ijtm5030033 (registering DOI) - 31 Jul 2025
Abstract
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, [...] Read more.
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, or a combination of these treatments. Emerging modalities within immunotherapy are anticipated to extend the results with conventional therapy by stimulating the patient’s own intrinsic potential for tumor-specific immunologic rejection. Combination regimens of chemotherapy and tumor-infiltrating lymphocyte (TIL) therapy in advanced colorectal cancer and pancreatic cancer, autologous monocyte therapy in advanced gastric cancer, and CAR-T therapy trained against GI-selective tumor antigens such as carcinoembryonic antigen are currently being studied. Clinical trials are underway to study the combination of various chemotherapeutic agents along with immunotherapy in the management of cholangiocarcinoma, hepatocellular carcinoma, and esophageal cancer. Alternative therapies are needed based on the tumor immune microenvironment, which can lead to a personalized approach to treatment. In this review, we discuss the current status of various modalities of immunotherapy in common GI malignancies, along with their mechanisms of immune activation and cancer suppression. We will also discuss the use of immunotherapy in less common solid GI malignancies and touch on recent advancements and clinical trials. Full article
Show Figures

Graphical abstract

31 pages, 2007 KiB  
Review
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines
by Ripesh Bhujel, Viktoria Enkmann, Hannes Burgstaller and Ravi Maharjan
Pharmaceutics 2025, 17(8), 992; https://doi.org/10.3390/pharmaceutics17080992 - 30 Jul 2025
Abstract
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the [...] Read more.
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the AI’s impact on LNP engineering through machine learning-driven predictive models, generative adversarial networks (GANs) for novel lipid design, and neural network-enhanced biodistribution prediction. AI reduces the therapeutic development timeline through accelerated virtual screening of millions of lipid combinations, compared to conventional high-throughput screening. Furthermore, AI-optimized LNPs demonstrate improved tumor targeting. GAN-generated lipids show structural novelty while maintaining higher encapsulation efficiency; graph neural networks predict RNA-LNP binding affinity with high accuracy vs. experimental data; digital twins reduce lyophilization optimization from years to months; and federated learning models enable multi-institutional data sharing. We propose a framework to address key technical challenges: training data quality (min. 15,000 lipid structures), model interpretability (SHAP > 0.65), and regulatory compliance (21CFR Part 11). AI integration reduces manufacturing costs and makes personalized cancer vaccine affordable. Future directions need to prioritize quantum machine learning for stability prediction and edge computing for real-time formulation modifications. Full article
Show Figures

Figure 1

15 pages, 2460 KiB  
Review
Oxygen-Generating Metal Peroxide Particles for Cancer Therapy, Diagnosis, and Theranostics
by Adnan Memić and Turdimuhammad Abdullah
Future Pharmacol. 2025, 5(3), 41; https://doi.org/10.3390/futurepharmacol5030041 - 30 Jul 2025
Abstract
Theranostic materials, which combine therapeutic and diagnostic capabilities, represent a promising advancement in cancer treatment by improving both the precision and personalization of therapies. Recently, metal peroxides (MePOs) have attracted significant interest from researchers for their potential use in both cancer diagnosis and [...] Read more.
Theranostic materials, which combine therapeutic and diagnostic capabilities, represent a promising advancement in cancer treatment by improving both the precision and personalization of therapies. Recently, metal peroxides (MePOs) have attracted significant interest from researchers for their potential use in both cancer diagnosis and therapy. This review provides an overview of recent developments in the application of MePOs for innovative cancer treatment strategies. The unique properties of MePOs, such as oxygen generation, are highlighted for their potential to improve therapeutic outcomes, especially in hypoxic tumor microenvironments. Initially, methods for MePO synthesis are briefly discussed, including hydrolyzation–precipitation, reversed-phase microemulsion, and sonochemical techniques, emphasizing the role of surfactants in regulating the particle size and enhancing bioactivity. Next, we discuss the main therapeutic approaches where MePOs have shown promise. These applications include chemotherapy, photodynamic therapy (PDT), immunotherapy, and radiation therapy. Overall, we focus on integrating MePOs into theranostic platforms to enhance cancer treatment and enable diagnostic imaging for improved clinical outcomes. Finally, we discuss potential future research directions that could lead to clinical translation and the development of advanced medicines. Full article
Show Figures

Graphical abstract

24 pages, 946 KiB  
Review
Long-Term Adverse Events Following Early Breast Cancer Treatment with a Focus on the BRCA-Mutated Population
by Berta Obispo, Caroline Bailleux, Blanca Cantos, Pilar Zamora, Sachin R. Jhawar, Jajini Varghese, Lucia Cabal-Hierro, Paulo Luz, Luis Berrocal-Almanza and Xiaoqing Xu
Cancers 2025, 17(15), 2506; https://doi.org/10.3390/cancers17152506 - 30 Jul 2025
Viewed by 108
Abstract
Breast cancer (BC) is the most prevalent malignancy in women worldwide. Despite most cases being diagnosed in the early stages, patients typically require a multimodal treatment approach. This typically involves a combination of surgery, radiotherapy, systemic treatments (including chemotherapy or immunotherapy), targeted therapy, [...] Read more.
Breast cancer (BC) is the most prevalent malignancy in women worldwide. Despite most cases being diagnosed in the early stages, patients typically require a multimodal treatment approach. This typically involves a combination of surgery, radiotherapy, systemic treatments (including chemotherapy or immunotherapy), targeted therapy, and endocrine therapy, depending on the disease subtype and the risk of recurrence. Moreover, patients with BC and germline mutations in the breast cancer genes 1 or 2 (BRCA1/BRCA2), (gBRCAm), who are typically young women, often require more aggressive therapeutic interventions. These mutations present unique characteristics that necessitate a distinct treatment approach, potentially influencing the side effect profiles of patients with BC. Regardless of the clear benefit observed with these treatments in terms of reduced recurrence and mortality rates, long-term, treatment-related adverse events occur that negatively affect the health-related quality of life (HRQoL) of BC survivors. Thus, long-term adverse events need to be factored into the treatment decision algorithm of patients with early BC (eBC). Physical, functional, emotional, and psychosocial adverse events can occur and represent a significant concern and a challenge for clinicians, patients, and their families. This review article provides an overview of the various long-term adverse events that patients with eBC may experience, including their associated risk factors, as well as management and prevention strategies. We also explore the evidence of the long-term impact of treatment on the HRQoL of patients with gBRCAm. By providing a comprehensive overview of current evidence and recommendations regarding patients’ HRQoL, we aim to equip clinicians with scientific and clinical knowledge and provide guidance to optimize care and improve long-term outcomes. Full article
Show Figures

Figure 1

36 pages, 5612 KiB  
Review
The Multifaceted Role of p53 in Cancer Molecular Biology: Insights for Precision Diagnosis and Therapeutic Breakthroughs
by Bolong Xu, Ayitila Maimaitijiang, Dawuti Nuerbiyamu, Zhengding Su and Wenfang Li
Biomolecules 2025, 15(8), 1088; https://doi.org/10.3390/biom15081088 - 27 Jul 2025
Viewed by 300
Abstract
The protein p53, often referred to as the “guardian of the genome,” is essential for preserving cellular balance and preventing cancerous transformations. As one of the most commonly altered genes in human cancers, its impaired function is associated with tumor initiation, development, and [...] Read more.
The protein p53, often referred to as the “guardian of the genome,” is essential for preserving cellular balance and preventing cancerous transformations. As one of the most commonly altered genes in human cancers, its impaired function is associated with tumor initiation, development, and resistance to treatment. Exploring the diverse roles of p53, which include regulating the cell cycle, repairing DNA, inducing apoptosis, reprogramming metabolism, and modulating immunity, provides valuable insights into cancer mechanisms and potential treatments. This review integrates recent findings on p53′s dual nature, functioning as both a tumor suppressor and an oncogenic promoter, depending on the context. Wild-type p53 suppresses tumors by inducing cell cycle arrest or apoptosis in response to genotoxic stress, while mutated variants often lose these functions or gain novel pro-oncogenic activities. Emerging evidence highlights p53′s involvement in non-canonical pathways, such as regulating tumor microenvironment interactions, metabolic flexibility, and immune evasion mechanisms. For instance, p53 modulates immune checkpoint expression and influences the efficacy of immunotherapies, including PD-1/PD-L1 blockade. Furthermore, advancements in precision diagnostics, such as liquid biopsy-based detection of p53 mutations and AI-driven bioinformatics tools, enable early cancer identification and stratification of patients likely to benefit from targeted therapies. Therapeutic strategies targeting p53 pathways are rapidly evolving. Small molecules restoring wild-type p53 activity or disrupting mutant p53 interactions, such as APR-246 and MDM2 inhibitors, show promise in clinical trials. Combination approaches integrating gene editing with synthetic lethal strategies aim to exploit p53-dependent vulnerabilities. Additionally, leveraging p53′s immunomodulatory effects through vaccine development or adjuvants may enhance immunotherapy responses. In conclusion, deciphering p53′s complex biology underscores its unparalleled potential as a biomarker and therapeutic target. Integrating multi-omics analyses, functional genomic screens, and real-world clinical data will accelerate the translation of p53-focused research into precision oncology breakthroughs, ultimately improving patient outcomes. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Cancer Treatment)
Show Figures

Figure 1

28 pages, 1210 KiB  
Review
Metformin Beyond Diabetes: A Precision Gerotherapeutic and Immunometabolic Adjuvant for Aging and Cancer
by Abdul Rehman, Shakta Mani Satyam, Mohamed El-Tanani, Sainath Prabhakar, Rashmi Kumari, Prakashchandra Shetty, Sara S. N. Mohammed, Zaina Nafees and Basma Alomar
Cancers 2025, 17(15), 2466; https://doi.org/10.3390/cancers17152466 - 25 Jul 2025
Viewed by 207
Abstract
Metformin, a long-established antidiabetic agent, is undergoing a renaissance as a prototype gerotherapeutic and immunometabolic oncology adjuvant. Mechanistic advances reveal that metformin modulates an integrated network of metabolic, immunological, microbiome-mediated, and epigenetic pathways that impact the hallmarks of aging and cancer biology. Clinical [...] Read more.
Metformin, a long-established antidiabetic agent, is undergoing a renaissance as a prototype gerotherapeutic and immunometabolic oncology adjuvant. Mechanistic advances reveal that metformin modulates an integrated network of metabolic, immunological, microbiome-mediated, and epigenetic pathways that impact the hallmarks of aging and cancer biology. Clinical data now demonstrate its ability to reduce cancer incidence, enhance immunotherapy outcomes, delay multimorbidity, and reverse biological age markers. Landmark trials such as UKPDS, CAMERA, and the ongoing TAME study illustrate its broad clinical impact on metabolic health, cardiovascular risk, and age-related disease trajectories. In oncology, trials such as MA.32 and METTEN evaluate its influence on progression-free survival and tumor response, highlighting its evolving role in cancer therapy. This review critically synthesizes the molecular underpinnings of metformin’s polypharmacology, examines results from pivotal clinical trials, and compares its effectiveness with emerging gerotherapeutics and senolytics. We explore future directions, including optimized dosing, biomarker-driven personalization, rational combination therapies, and regulatory pathways, to expand indications for aging and oncology. Metformin stands poised to play a pivotal role in precision strategies that target the shared roots of aging and cancer, offering scalable global benefits across health systems. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

20 pages, 3005 KiB  
Review
EUS-Guided Pancreaticobiliary Ablation: Is It Ready for Prime Time?
by Nina Quirk, Rohan Ahuja and Nirav Thosani
Immuno 2025, 5(3), 30; https://doi.org/10.3390/immuno5030030 - 25 Jul 2025
Viewed by 201
Abstract
Despite advances in surgery, chemotherapy, and radiation treatments for pancreatic ductal adenocarcinoma (PDAC), 5-year survival rates remain at nearly 11%. Cholangiocarcinoma, while not as severe, also possesses similar survival rates. Fewer than 20% of patients are surgical candidates at time of diagnosis; therefore, [...] Read more.
Despite advances in surgery, chemotherapy, and radiation treatments for pancreatic ductal adenocarcinoma (PDAC), 5-year survival rates remain at nearly 11%. Cholangiocarcinoma, while not as severe, also possesses similar survival rates. Fewer than 20% of patients are surgical candidates at time of diagnosis; therefore, it is imperative that alternative therapies are effective for non-surgical patients. There are several thermal ablative techniques, including radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), microwave ablation (MWA), alcohol ablation, stereotactic body radiotherapy (SBRT), cryoablation, irreversible electroporation (IRE), biliary intraluminal brachytherapy, and biliary photodynamic therapy (PDT). Emerging literature in animal models and human patients has demonstrated that endoscopic ultrasound (EUS)-guided RFA (EUS-RFA) prevents tumor progression through coagulative necrosis, protein denaturation, and activation of anticancer immunity in local and distant tumor tissue (abscopal effect). RFA treatment has been shown to not only reduce tumor-associated immunosuppressive cells but also increase functional T cells in distant tumor cells not treated with RFA. The remarkable ability to reduce tumor progression and promote tumor microenvironment (TME) remodeling makes RFA a very promising non-surgical therapy technique that has the potential to reduce mortality in this patient population. EUS-RFA offers superior precision and safety compared to other ablation techniques for pancreatic and biliary cancers, due to real-time imaging capabilities and minimally invasive nature. Future research should focus on optimizing RFA protocols, exploring combination therapies with chemotherapy or immunotherapy, and expanding its use in patients with metastatic disease. This review article will explore the current data and underlying pathophysiology of EUS-RFA while also highlighting the role of ablative therapies as a whole in immune activation response. Full article
Show Figures

Figure 1

20 pages, 777 KiB  
Review
Immune Checkpoint Inhibitors (ICI) in Urological Cancers: A New Modern Era, but Not Generally Applied
by Marcin Sokołowski, Anna Sokołowska, Magdalena Chrząszcz and Aleksandra Butrym
Int. J. Mol. Sci. 2025, 26(15), 7194; https://doi.org/10.3390/ijms26157194 - 25 Jul 2025
Viewed by 187
Abstract
The modern era of systemic treatment of urological cancers is definitely marked by checkpoint inhibitors. Over the past 30 years, checkpoint inhibitors have changed the oncological world, especially in chemoresistant malignancies. Multiple investigations focused on immunotherapy in urological cancers have carved new paradigms [...] Read more.
The modern era of systemic treatment of urological cancers is definitely marked by checkpoint inhibitors. Over the past 30 years, checkpoint inhibitors have changed the oncological world, especially in chemoresistant malignancies. Multiple investigations focused on immunotherapy in urological cancers have carved new paradigms and changed clinical guidelines. However, some clinical trials have been blind alleys for systemic therapy. After a scrutinized review of electronic databases, we want to present the natural history and courses of clinical trials in urological malignancies. All of them contribute to expanding the knowledge and experience of clinicians, and some of them improve the prognosis and prolong the overall survival of oncological patients. In conclusion, checkpoint inhibitors open a new modern era in some urological cancers, but not overall. Future perspectives are focused on combination with targeted therapy and could be a new way forward in the systemic treatment of urological cancers. Full article
(This article belongs to the Special Issue Programmed Cell Death and Oxidative Stress: 3rd Edition)
Show Figures

Figure 1

34 pages, 2332 KiB  
Review
Treatment of KRAS-Mutated Pancreatic Cancer: New Hope for the Patients?
by Kamila Krupa, Marta Fudalej, Emilia Włoszek, Hanna Miski, Anna M. Badowska-Kozakiewicz, Dominika Mękal, Michał P. Budzik, Aleksandra Czerw and Andrzej Deptała
Cancers 2025, 17(15), 2453; https://doi.org/10.3390/cancers17152453 - 24 Jul 2025
Viewed by 680
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), ranks among the most lethal malignancies, with a 5-year survival rate of under 10%. The most prevalent KRAS mutations occur in three hotspot residues: glycine-12 (G12), glycine-13 (G13), and glutamine-61 (Q61), leading to the constant activation [...] Read more.
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), ranks among the most lethal malignancies, with a 5-year survival rate of under 10%. The most prevalent KRAS mutations occur in three hotspot residues: glycine-12 (G12), glycine-13 (G13), and glutamine-61 (Q61), leading to the constant activation of the Ras pathway, making them the primary focus in oncologic drug development. Selective KRAS G12C inhibitors (e.g., sotorasib, adagrasib) have demonstrated moderate efficacy in clinical trials; however, this mutation is infrequent in PDAC. Emerging therapies targeting KRAS G12D and G12V mutations, such as MRTX1133, PROTACs, and active-state inhibitors, show promise in preclinical studies. Pan-RAS inhibitors like ADT-007, RMC-9805, and RMC-6236 compounds provide broader coverage of mutations. Their efficacy and safety are currently being investigated in several clinical trials. A major challenge is the development of resistance mechanisms, including secondary mutations and pathway reactivation. Combination therapies targeting the RAS/MAPK axis, SHP2, mTOR, or SOS1 are under clinical investigation. Immunotherapy alone has demonstrated limited effectiveness, attributed to an immunosuppressive tumor microenvironment, although synergistic effects are noted when paired with KRAS-targeted agents. Furthermore, KRAS mutations reprogram cancer metabolism, enhancing glycolysis, macropinocytosis, and autophagy, which are being explored therapeutically. RNA interference technologies have also shown potential in silencing mutant KRAS and reducing tumorigenicity. Future strategies should emphasize the combination of targeted therapies with metabolic or immunomodulatory agents to overcome resistance and enhance survival in KRAS-mutated PDAC. Full article
Show Figures

Figure 1

20 pages, 12367 KiB  
Article
Chemosensitizer Effects of Cisplatin- and 5-Fluorouracil-Treated Hepatocellular Carcinomas by Lidocaine
by Teng-Wei Chen, Hsiu-Lung Fan, Shu-Ting Liu and Shih-Ming Huang
Int. J. Mol. Sci. 2025, 26(15), 7137; https://doi.org/10.3390/ijms26157137 - 24 Jul 2025
Viewed by 212
Abstract
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This [...] Read more.
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This collateral damage to healthy cells, along with the potential for cancer cells to develop resistance, presents significant challenges for conventional chemotherapy in liver cancer patients. Hepatic artery infusion of chemotherapy (HAIC) generally leads to reduced toxicity and fewer side effects. The process of catheter insertion is usually performed under local anesthesia, with lidocaine being the preferred choice to combine with various chemotherapeutics in HCC treatment. In our study, we explored the effects of repurposing lidocaine in combination with cisplatin or 5-fluorouracil (5-FU) on two HCC cell lines, HepG2 and Hep3B. Our cytotoxicity analysis revealed that lidocaine functions as a chemosensitizer for cisplatin and 5-FU in both HepG2 and Hep3B cells. Specifically, we observed an increase in the subG1 population and a reduction in cytosolic reactive oxygen species in cisplatin- or 5-FU-treated HepG2 and Hep3B cells. Interestingly, lidocaine selectively decreased the reduced/oxidized glutathione ratio in cisplatin- or 5-FU-treated HepG2 cells but not in Hep3B cells. Furthermore, lidocaine induced endoplasmic reticulum stress, apoptosis, mitochondrial membrane depolarization, lipid peroxidation, and autophagy while suppressing cellular proliferation HepG2 and Hep3B cells. In conclusion, our study demonstrates the synergistic potential of combining lidocaine with cisplatin or 5-FU for the treatment of HCC, indicating that lidocaine may serve as an effective chemosensitizer. These findings highlight a new clinical advantage of using repurposing lidocaine as a chemosensitizer in the current HAIC procedure, suggesting that this combination warrants further exploration through rigorous clinical trials. In the future, we can better optimize therapeutic regimens, potentially leading to improved patient outcomes in HCCs. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: Third Edition)
Show Figures

Figure 1

34 pages, 1871 KiB  
Review
Docetaxel Resistance in Breast Cancer: Current Insights and Future Directions
by Fátima Postigo-Corrales, Asunción Beltrán-Videla, Antonio David Lázaro-Sánchez, Ana María Hurtado, Pablo Conesa-Zamora, Ana Belén Arroyo and Ginés Luengo-Gil
Int. J. Mol. Sci. 2025, 26(15), 7119; https://doi.org/10.3390/ijms26157119 - 23 Jul 2025
Viewed by 248
Abstract
Docetaxel is a chemotherapeutic agent widely used for breast cancer treatment; however, its efficacy is often limited by drug resistance and associated toxicity. This review examines the molecular mechanisms of docetaxel resistance in breast cancer and discusses research advances and future directions for [...] Read more.
Docetaxel is a chemotherapeutic agent widely used for breast cancer treatment; however, its efficacy is often limited by drug resistance and associated toxicity. This review examines the molecular mechanisms of docetaxel resistance in breast cancer and discusses research advances and future directions for overcoming this challenge. Key resistance mechanisms include alterations in drug targets (microtubules), increased drug efflux, suppression of apoptosis, activation of survival signalling pathways, epithelial-to-mesenchymal transition (EMT), and cancer stem cell enrichment. An evolutionary perspective distinguishes between intrinsic and acquired resistance, emphasising the need for adaptive therapeutic strategies. Recent advances in genomic profiling, non-coding RNA research, novel drug combinations, and biomarker-guided therapies have also been reviewed. Emerging approaches, such as targeting the tumour microenvironment, harnessing immunotherapy, and implementing adaptive dosing schedules, have been discussed. This review emphasises the understanding of resistance as a multifactorial phenomenon that requires multipronged interventions. Research has aimed to identify predictive biomarkers, develop targeted agents to reverse resistance, and design rational combination strategies to improve patient outcomes. Progress in deciphering and targeting docetaxel resistance mechanisms holds promise for enhancing treatment responses and extending survival in patients with breast cancer. Full article
(This article belongs to the Special Issue Molecular Research and Cellular Biology of Breast Cancer)
Show Figures

Figure 1

22 pages, 1549 KiB  
Review
Nanotechnology-Based Delivery of CRISPR/Cas9 for Cancer Treatment: A Comprehensive Review
by Mohd Ahmar Rauf, Afifa Rao, Siva Sankari Sivasoorian and Arun K. Iyer
Cells 2025, 14(15), 1136; https://doi.org/10.3390/cells14151136 - 23 Jul 2025
Viewed by 550
Abstract
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9)-mediated genome editing has emerged as a transformative tool in medicine, offering significant potential for cancer therapy because of its capacity to precisely target and alter the genetic modifications associated with the disease. However, a [...] Read more.
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9)-mediated genome editing has emerged as a transformative tool in medicine, offering significant potential for cancer therapy because of its capacity to precisely target and alter the genetic modifications associated with the disease. However, a major challenge for its clinical translation is the safe and efficient in vivo delivery of CRISPR/Cas9 components to target cells. Nanotechnology is a promising solution to this problem. Nanocarriers, owing to their tunable physicochemical properties, can encapsulate and protect CRISPR/Cas9 components, enabling targeted delivery and enhanced cellular uptake. This review provides a comprehensive examination of the synergistic potential of CRISPR/Cas9 and nanotechnology in cancer therapy and explores their integrated therapeutic applications in gene editing and immunotherapy. A critical aspect of in vivo CRISPR/Cas9 application is to achieve effective localization at the tumor site while minimizing off-target effects. Nanocarriers can be engineered to overcome biological barriers, thereby augmenting tumor-specific delivery and facilitating intracellular uptake. Furthermore, their design allows for controlled release of the therapeutic payload, ensuring sustained efficacy and reduced systemic toxicity. The optimization of nanocarrier attributes, including size, shape, surface charge, and composition, is crucial for improving the cellular internalization, endosomal escape, and nuclear localization of CRISPR/Cas9. Moreover, surface functionalization with targeting ligands can enhance the specificity of cancer cells, leading to improved gene-editing accuracy. This review thoroughly discusses the challenges associated with in vivo CRISPR/Cas9 delivery and the innovative nanotechnological strategies employed to overcome them, highlighting their combined potential for advancing cancer treatment for clinical application. Full article
Show Figures

Figure 1

15 pages, 3627 KiB  
Article
Epigenetic Treatment Alters Immune-Related Gene Signatures to Increase the Sensitivity of Anti PD-L1 Drugs
by Chonji Fukumoto, Pritam Sadhukhan, Masahiro Shibata, Muhammed T. Ugurlu, Rachel Goldberg, David Sidransky, Luigi Marchionni, Fenna C. M. Sillé and Mohammad Obaidul Hoque
Cancers 2025, 17(15), 2431; https://doi.org/10.3390/cancers17152431 - 23 Jul 2025
Viewed by 212
Abstract
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is the seventh most prevalent cancer worldwide. Despite intensive treatments, the prognosis is unfavorable. Recently, immunotherapy has emerged as a novel therapeutic strategy, and several immune-checkpoint blockade blockers provide clinical benefits to patients. However, the [...] Read more.
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is the seventh most prevalent cancer worldwide. Despite intensive treatments, the prognosis is unfavorable. Recently, immunotherapy has emerged as a novel therapeutic strategy, and several immune-checkpoint blockade blockers provide clinical benefits to patients. However, the response rates of these antibodies are limited, and there is a pressing need to increase the efficacy of immunotherapy for HNSCC patients. Epigenetic treatment is emerging as a promising combination approach able to change immune-related gene signatures in tumors and potentially increase the efficacy of immunotherapy. In this study, we sought to elucidate further immune-related gene signatures altered through epigenetic treatment and explored whether epigenetic drugs can increase the efficacy of anti PD-L1 treatment in HNSCC. Methods: At first, we treated six HNSCC cell lines with 5-azacytidine and romidepsin and analyzed gene expression patterns by microarray and TaqMan arrays analysis. We then explored the therapeutic efficacy of epigenetic treatment with an anti PD-L1 antibody in a syngeneic mouse model. Results: Our microarray analysis revealed the differential expression of immune-related genes in cell lines treated with epigenetic drugs, as compared to untreated controls. Most importantly, these array analyses showed a significant change in the transcription of some immune related-and biologically relevant genes, such as HLA-DRA, HMOX1, IFI6, IL12A, IRF7, NFKB2, RPL3L, STAT1, STAT3, CSF1, CSF2, FAS, OASL, and PD-L1, after epigenetic treatment. Furthermore, the combination of epigenetic treatment with an anti PD-L1 antibody significantly suppressed tumor growth in a syngeneic mouse model. In vivo tumors treated with epigenetic drugs expressed higher STAT1, STAT3, and PD-L1 compared to untreated tumors. Increased PD-L1 expression is postulated to increase the efficacy of anti PD-L1 treatment. Conclusions: Our results highlight the importance of a combinational strategy employing both epigenetic and immunotherapy in HNSCC. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Graphical abstract

44 pages, 1704 KiB  
Review
Nanoparticles for Cancer Immunotherapy: Innovations and Challenges
by Mohannad M. Fallatah, Ibrahim Alradwan, Nojoud Alfayez, Alhassan H. Aodah, Mohammad Alkhrayef, Majed Majrashi and Yahya F. Jamous
Pharmaceuticals 2025, 18(8), 1086; https://doi.org/10.3390/ph18081086 - 22 Jul 2025
Viewed by 509
Abstract
Cancer treatment has undergone a paradigm shift following the introduction of novel cancer treatment approaches that involve the host’s immune system in fighting established tumors. This new concept aids the immune system in identifying, attacking, and killing the tumor cells. However, although some [...] Read more.
Cancer treatment has undergone a paradigm shift following the introduction of novel cancer treatment approaches that involve the host’s immune system in fighting established tumors. This new concept aids the immune system in identifying, attacking, and killing the tumor cells. However, although some encouraging results were observed clinically, this approach has its own limitations. For example, the benefits of certain anticancer drugs were only observed in some patients, off-target effects, immune evasion, and poor pharmacokinetics. Recently, several advancements have been made with the understanding and development of tumor-targeted drug delivery systems, which combine both effectiveness and patients’ safety during cancer treatment. In this review, we will focus on the latest progress in targeted drug delivery, particularly applying nanoparticles, liposomes, exosomes, and Wharton’s jelly-derived macrovesicles as immune cell enhancers, as well as overcoming therapeutic resistance. We also characterize major current problems, such as the biocompatibility and scalability of the delivered engineering systems, as well as the required regulations. Lastly, we will show some examples of effective approaches to resolve these issues for more efficient cancer therapy. The importance of this article lies in bridging two sides in a single framework perspective: the novel implementation of unique delivery systems and the latest advances in the field of cancer immunotherapy. Thus, this provides better insights for the future of cancer treatment. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Scheme 1

Back to TopTop