Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,070)

Search Parameters:
Keywords = combination difference map

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14290 KiB  
Article
Identifying Therapeutic Targets for Amyotrophic Lateral Sclerosis Through Modeling of Multi-Omics Data
by François Xavier Blaudin de Thé, Cornelius J. H. M. Klemann, Ward De Witte, Joanna Widomska, Philippe Delagrange, Clotilde Mannoury La Cour, Mélanie Fouesnard, Sahar Elouej, Keith Mayl, Nicolas Lévy, Johannes Krupp, Ross Jeggo, Philippe Moingeon and Geert Poelmans
Int. J. Mol. Sci. 2025, 26(15), 7087; https://doi.org/10.3390/ijms26157087 (registering DOI) - 23 Jul 2025
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily affects motor neurons, leading to loss of muscle control, and, ultimately, respiratory failure and death. Despite some advances in recent years, the underlying genetic and molecular mechanisms of ALS remain largely elusive. [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily affects motor neurons, leading to loss of muscle control, and, ultimately, respiratory failure and death. Despite some advances in recent years, the underlying genetic and molecular mechanisms of ALS remain largely elusive. In this respect, a better understanding of these mechanisms is needed to identify new and biologically relevant therapeutic targets that could be developed into treatments that are truly disease-modifying, in that they address the underlying causes rather than the symptoms of ALS. In this study, we used two approaches to model multi-omics data in order to map and elucidate the genetic and molecular mechanisms involved in ALS, i.e., the molecular landscape building approach and the Patrimony platform. These two methods are complementary because they rely upon different omics data sets, analytic methods, and scoring systems to identify and rank therapeutic target candidates. The orthogonal combination of the two modeling approaches led to significant convergences, as well as some complementarity, both for validating existing therapeutic targets and identifying novel targets. As for validating existing targets, we found that, out of 217 different targets that have been or are being investigated for drug development, 10 have high scores in both the landscape and Patrimony models, suggesting that they are highly relevant for ALS. Moreover, through both models, we identified or corroborated novel putative drug targets for ALS. A notable example of such a target is MATR3, a protein that has strong genetic, molecular, and functional links with ALS pathology. In conclusion, by using two distinct and highly complementary disease modeling approaches, this study enhances our understanding of ALS pathogenesis and provides a framework for prioritizing new therapeutic targets. Moreover, our findings underscore the potential of leveraging multi-omics analyses to improve target discovery and accelerate the development of effective treatments for ALS, and potentially other related complex human diseases. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 13413 KiB  
Article
Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios
by Shuai Wang, Shouyuan Bian, Zicheng Wang, Zijiao Yang, Chen Li, Xingyu Zhang, Di Shi and Hongbin Liu
Forests 2025, 16(8), 1209; https://doi.org/10.3390/f16081209 - 23 Jul 2025
Abstract
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated [...] Read more.
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated with deeper SOC stock dynamics. This study adopted a comprehensive methodology that integrates random forest modeling, equal-area soil profile analysis, and space-for-time substitution to predict depth-specific SOC stock dynamics under climate warming in Northeast China’s forest ecosystems. By combining these techniques, the approach effectively addresses existing research limitations and provides robust projections of soil carbon changes across various depth intervals. The analysis utilized 63 comprehensive soil profiles and 12 environmental predictors encompassing climatic, topographic, biological, and soil property variables. The model’s predictive accuracy was assessed using 10-fold cross-validation with four evaluation metrics: MAE, RMSE, R2, and LCCC, ensuring comprehensive performance evaluation. Validation results demonstrated the model’s robust predictive capability across all soil layers, achieving high accuracy with minimized MAE and RMSE values while maintaining elevated R2 and LCCC scores. Three-dimensional spatial projections revealed distinct SOC distribution patterns, with higher stocks concentrated in central regions and lower stocks prevalent in northern areas. Under simulated warming conditions (1.5 °C, 2 °C, and 4 °C increases), both topsoil (0–30 cm) and deep-layer (100 cm) SOC stocks exhibited consistent declining trends, with the most pronounced reductions observed under the 4 °C warming scenario. Additionally, the study identified mean annual temperature (MAT) and normalized difference vegetation index (NDVI) as dominant environmental drivers controlling three-dimensional SOC spatial variability. These findings underscore the importance of depth-resolved SOC stock assessments and suggest that precise three-dimensional mapping of SOC distribution under various climate change projections can inform more effective land management strategies, ultimately enhancing regional soil carbon storage capacity in forest ecosystems. Full article
(This article belongs to the Special Issue Carbon Dynamics of Forest Soils Under Climate Change)
Show Figures

Figure 1

24 pages, 18590 KiB  
Article
Soil Organic Matter (SOM) Mapping in Subtropical Coastal Mountainous Areas Using Multi-Temporal Remote Sensing and the FOI-XGB Model
by Hao Zhang, Xiaomei Li, Jinming Sha, Jiangning Ouyang and Zhipeng Fan
Remote Sens. 2025, 17(15), 2547; https://doi.org/10.3390/rs17152547 - 22 Jul 2025
Abstract
Accurate regional-scale mapping of soil organic matter (SOM) is crucial for land productivity management and global carbon pool monitoring. Current remote sensing inversion of SOM faces challenges, including the underutilization of temporal information and low feature selection efficiency. To address these limitations, this [...] Read more.
Accurate regional-scale mapping of soil organic matter (SOM) is crucial for land productivity management and global carbon pool monitoring. Current remote sensing inversion of SOM faces challenges, including the underutilization of temporal information and low feature selection efficiency. To address these limitations, this study developed an integrated framework combining multi-temporal Landsat imagery, field-measured SOM data, intelligent feature optimization, and machine learning. The framework employs two novel image-processing strategies: the Maximum Annual Bare-Soil Composite (MABSC) method to extract background spectral information and the Multi-temporal Feature Optimization Composite (MFOC) method to capture seasonal and environmental dynamics. These features, along with topographic covariates, were processed using an improved Feature-Optimized and Interpretable XGBoost (FOI-XGB) model for key variable selection and spatial mapping. Validation across two subtropical coastal mountainous regions at different scales in southeastern China demonstrated the framework’s effectiveness and robustness. Key findings include the following: (1) Both the MABSC-derived spectral bands and the MFOC-optimized indices significantly outperformed traditional single-season approaches. Their combined use achieved a moderate SOM inversion accuracy (R2 = 0.42–0.44). (2) The FOI-XGB model substantially outperformed traditional feature selection methods (Pearson, SHAP, and CorrSHAP), achieving significant regional R2 improvements ranging from 9.72% to 88.89%. (3) The optimal model integrating the MABSC-derived features, MFOC-optimized indices, and topographic covariates attained the highest accuracy (R2 up to 0.51). This represents major improvements compared with using topographic covariates alone (R2 increase of up to 160.11%) or the combined spectral features (MABSC + MFOC) alone (R2 increase of up to 15.91%). This study provides a robust, scalable, and practical technical solution for accurate SOM mapping in complex environments, with significant implications for sustainable land management and carbon monitoring. Full article
Show Figures

Figure 1

17 pages, 3708 KiB  
Article
YOLOv8-DBW: An Improved YOLOv8-Based Algorithm for Maize Leaf Diseases and Pests Detection
by Xiang Gan, Shukun Cao, Jin Wang, Yu Wang and Xu Hou
Sensors 2025, 25(15), 4529; https://doi.org/10.3390/s25154529 - 22 Jul 2025
Abstract
To solve the challenges of low detection accuracy of maize pests and diseases, complex detection models, and difficulty in deployment on mobile or embedded devices, an improved YOLOv8 algorithm was proposed. Based on the original YOLOv8n, the algorithm replaced the Conv module with [...] Read more.
To solve the challenges of low detection accuracy of maize pests and diseases, complex detection models, and difficulty in deployment on mobile or embedded devices, an improved YOLOv8 algorithm was proposed. Based on the original YOLOv8n, the algorithm replaced the Conv module with the DSConv module in the backbone network, which reduced the backbone network parameters and computational load and improved the detection accuracy at the same time. Additionally, BiFPN was introduced to construct a bidirectional feature pyramid structure, which realized efficient information flow and fusion between different scale features and enhanced the feature fusion ability of the model. At the same time, the Wise-IoU loss function was combined to optimize the training process, which improved the convergence speed and regression accuracy of the loss function. The experimental results showed that the precision, recall, and mAP0.5 of the improved algorithm were improved by 1.4, 1.1, and 1.5%, respectively, compared with YOLOv8n, and the model parameters and computational costs were reduced by 6.6 and 7.3%, respectively. The experimental results demonstrate the effectiveness and superiority of the improved YOLOv8 algorithm, which provides an efficient, accurate, and easy-to-deploy solution for maize leaf pest detection. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 2016 KiB  
Article
A Robust and Energy-Efficient Control Policy for Autonomous Vehicles with Auxiliary Tasks
by Yabin Xu, Chenglin Yang and Xiaoxi Gong
Electronics 2025, 14(15), 2919; https://doi.org/10.3390/electronics14152919 - 22 Jul 2025
Abstract
We present a lightweight autonomous driving method that uses a low-cost camera, a simple end-to-end convolutional neural network architecture, and smoother driving techniques to achieve energy-efficient vehicle control. Instead of directly constructing a mapping from raw sensory input to the action, our network [...] Read more.
We present a lightweight autonomous driving method that uses a low-cost camera, a simple end-to-end convolutional neural network architecture, and smoother driving techniques to achieve energy-efficient vehicle control. Instead of directly constructing a mapping from raw sensory input to the action, our network takes the frame-to-frame visual difference as one of the crucial inputs to produce control commands, including the steering angle and the speed value at each time step. This choice of input allows highlighting the most relevant parts on raw image pairs to decrease the unnecessary visual complexity caused by different road and weather conditions. Additionally, our network achieves the prediction of the vehicle’s upcoming control commands by incorporating a view synthesis component into the model. The view synthesis, as an auxiliary task, aims to infer a novel view for the future from the historical environment transformation cue. By combining both the current and upcoming control commands, our framework achieves driving smoothness, which is highly associated with energy efficiency. We perform experiments on benchmarks to evaluate the reliability under different driving conditions in terms of control accuracy. We deploy a mobile robot outdoors to evaluate the power consumption of different control policies. The quantitative results demonstrate that our method can achieve energy efficiency in the real world. Full article
(This article belongs to the Special Issue Simultaneous Localization and Mapping (SLAM) of Mobile Robots)
Show Figures

Figure 1

44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 24
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 3578 KiB  
Article
High-Precision Chip Detection Using YOLO-Based Methods
by Ruofei Liu and Junjiang Zhu
Algorithms 2025, 18(7), 448; https://doi.org/10.3390/a18070448 - 21 Jul 2025
Viewed by 42
Abstract
Machining chips are directly related to both the machining quality and tool condition. However, detecting chips from images in industrial settings poses challenges in terms of model accuracy and computational speed. We firstly present a novel framework called GM-YOLOv11-DNMS to track the chips, [...] Read more.
Machining chips are directly related to both the machining quality and tool condition. However, detecting chips from images in industrial settings poses challenges in terms of model accuracy and computational speed. We firstly present a novel framework called GM-YOLOv11-DNMS to track the chips, followed by a video-level post-processing algorithm for chip counting in videos. GM-YOLOv11-DNMS has two main improvements: (1) it replaces the CNN layers with a ghost module in YOLOv11n, significantly reducing the computational cost while maintaining the detection performance, and (2) it uses a new dynamic non-maximum suppression (DNMS) method, which dynamically adjusts the thresholds to improve the detection accuracy. The post-processing method uses a trigger signal from rising edges to improve chip counting in video streams. Experimental results show that the ghost module reduces the FLOPs from 6.48 G to 5.72 G compared to YOLOv11n, with a negligible accuracy loss, while the DNMS algorithm improves the debris detection precision across different YOLO versions. The proposed framework achieves precision, recall, and mAP@0.5 values of 97.04%, 96.38%, and 95.56%, respectively, in image-based detection tasks. In video-based experiments, the proposed video-level post-processing algorithm combined with GM-YOLOv11-DNMS achieves crack–debris counting accuracy of 90.14%. This lightweight and efficient approach is particularly effective in detecting small-scale objects within images and accurately analyzing dynamic debris in video sequences, providing a robust solution for automated debris monitoring in machine tool processing applications. Full article
(This article belongs to the Special Issue Machine Learning Models and Algorithms for Image Processing)
Show Figures

Figure 1

22 pages, 24747 KiB  
Article
A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China
by Luming Shen, Yangfan Xie, Yangjun Deng, Yujie Feng, Qing Zhou and Hongxia Xie
Appl. Sci. 2025, 15(14), 8060; https://doi.org/10.3390/app15148060 - 20 Jul 2025
Viewed by 212
Abstract
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty [...] Read more.
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty of this study lies in proposing a geographic positional encoding mechanism that embeds geographic location information into the feature representation of a Transformer model. The encoder structure is further modified to enhance spatial awareness, resulting in the development of the Geo-Positional Transformer (GPTransformer). Furthermore, this model is integrated with a 1D-CNN to form a dual-branch neural network called the Geo-Positional Transformer-CNN (GPTransCNN). This study collected 1490 topsoil samples (0–20 cm) from cultivated land in Longshan County to develop a predictive model for mapping the spatial distribution of SOM across the entire cultivated area. Different models were comprehensively evaluated through ten-fold cross-validation, ablation experiments, and uncertainty analysis. The results show that GPTransCNN has the best performance, with an R2 improvement of approximately 43% over the Transformer, 19% over the GPTransformer, and 15% over the 1D-CNN. This study demonstrates that by incorporating geographic positional information, GPTransCNN effectively combines the global modeling capabilities of the GPTransformer with the local feature extraction strengths of the 1D-CNN, which can improve the accuracy of SOM mapping in mountainous areas. This approach provides data support for sustainable soil management and decision-making in response to global climate change. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

9 pages, 1583 KiB  
Article
Snapshot Quantitative Phase Imaging with Acousto-Optic Chromatic Aberration Control
by Christos Alexandropoulos, Laura Rodríguez-Suñé and Martí Duocastella
Sensors 2025, 25(14), 4503; https://doi.org/10.3390/s25144503 - 20 Jul 2025
Viewed by 160
Abstract
The transport of intensity equation enables quantitative phase imaging from only two axially displaced intensity images, facilitating the characterization of low-contrast samples like cells and microorganisms. However, the rapid selection of the correct defocused planes, crucial for real-time phase imaging of dynamic events, [...] Read more.
The transport of intensity equation enables quantitative phase imaging from only two axially displaced intensity images, facilitating the characterization of low-contrast samples like cells and microorganisms. However, the rapid selection of the correct defocused planes, crucial for real-time phase imaging of dynamic events, remains challenging. Additionally, the different images are normally acquired sequentially, further limiting phase-reconstruction speed. Here, we report on a system that addresses these issues and enables user-tuned defocusing with snapshot phase retrieval. Our approach is based on combining multi-color pulsed illumination with acousto-optic defocusing for microsecond-scale chromatic aberration control. By illuminating each plane with a different color and using a color camera, the information to reconstruct a phase map can be gathered in a single acquisition. We detail the fundamentals of our method, characterize its performance, and demonstrate live phase imaging of a freely moving microorganism at speeds of 150 phase reconstructions per second, limited only by the camera’s frame rate. Full article
(This article belongs to the Special Issue Optical Imaging for Medical Applications)
Show Figures

Figure 1

15 pages, 1184 KiB  
Systematic Review
Physiological and Biomechanical Characteristics of Inline Speed Skating: A Systematic Scoping Review
by Zongze Wu, Filipa Cardoso, David B. Pyne, Márcio Fagundes Goethel and Ricardo J. Fernandes
Appl. Sci. 2025, 15(14), 7994; https://doi.org/10.3390/app15147994 - 17 Jul 2025
Viewed by 150
Abstract
The physiological and biomechanical characteristics of inline speed skating have not been systematically mapped nor research evidence synthesized. The aim was to identify and synthesize novel elements across studies, including participant characteristics, outcomes measures, experimental protocol, main outcomes and other relevant information, to [...] Read more.
The physiological and biomechanical characteristics of inline speed skating have not been systematically mapped nor research evidence synthesized. The aim was to identify and synthesize novel elements across studies, including participant characteristics, outcomes measures, experimental protocol, main outcomes and other relevant information, to inform evidence-based guidelines and recommendations. Following the PRISMA 2020 guidelines, a systematic search of databases was conducted to identify relevant studies. The extracted data were charted and synthesized to summarize the physiological and biomechanical aspects of inline speed skating. From 272 records, 22 studies met the defined criteria. Studies related to inline speed skating focused primarily on physiological variables (n = 14) and lower limb muscles function, with limited evidence on biomechanics of inline speed skating (n = 5) and the combination of biomechanics and physiology (n = 3). An overall unclear risk of bias was observed (59% of studies). Although studies have examined physiological and biomechanical variables, continuous physiological and biomechanical assessments of skaters performing different skills on both straight and curved tracks have not been conducted. Therefore, well-planned physiological and biomechanics studies are required to uncover underexplored areas in research and support the development of sport-specific studies. Full article
(This article belongs to the Special Issue Advances in the Biomechanics of Sports)
Show Figures

Figure 1

19 pages, 3338 KiB  
Article
Researching Stylistic Neutrality for Map Evaluation
by Rita Viliuviene and Sonata Vdovinskiene
ISPRS Int. J. Geo-Inf. 2025, 14(7), 278; https://doi.org/10.3390/ijgi14070278 - 16 Jul 2025
Viewed by 104
Abstract
Stylistic neutrality is the basis for the stylistic evaluation of maps. Furthermore, the stylistic neutrality of a map as a cartographic text may be related to objectivity. However, what constitutes stylistic neutrality is not clearly stated in the field of cartography. The problem [...] Read more.
Stylistic neutrality is the basis for the stylistic evaluation of maps. Furthermore, the stylistic neutrality of a map as a cartographic text may be related to objectivity. However, what constitutes stylistic neutrality is not clearly stated in the field of cartography. The problem is complicated by the fact that the stylistically neutral image is a hypothetical image. The aim of this research is to investigate stylistic neutrality by exploring the peculiarities of cartographic language functioning in different fields of social activity. The research combines descriptive analysis, stylistic analysis, cartographic and interpretative methods. Firstly, the research reveals the concept of cartographic stylistic neutrality, in line with the cartographic linguistic paradigm. Secondly, an analysis of the characteristics of cartographic language in different fields of social activity from the point of view of stylistic neutrality is carried out. Thirdly, an example is developed to illustrate stylistic cartographic neutrality. Stylistic neutrality is characterised by the stylistic features of cartographic language: clarity, accuracy, conciseness, calmness, abstractness, temperance, neutrality and moderateness. The style of cartographic production for inventory and research activities is closest to stylistic neutrality, while the style of reflective activity is the most expressive and acts as a source of concreteness for stylistic neutrality. Full article
Show Figures

Figure 1

22 pages, 8891 KiB  
Article
Mapping Soil Available Nitrogen Using Crop-Specific Growth Information and Remote Sensing
by Xinle Zhang, Yihan Ma, Shinai Ma, Chuan Qin, Yiang Wang, Huanjun Liu, Lu Chen and Xiaomeng Zhu
Agriculture 2025, 15(14), 1531; https://doi.org/10.3390/agriculture15141531 - 15 Jul 2025
Viewed by 318
Abstract
Soil available nitrogen (AN) is a critical nutrient for plant absorption and utilization. Accurately mapping its spatial distribution is essential for improving crop yields and advancing precision agriculture. In this study, 188 AN soil samples (0–20 cm) were collected at Heshan Farm, Nenjiang [...] Read more.
Soil available nitrogen (AN) is a critical nutrient for plant absorption and utilization. Accurately mapping its spatial distribution is essential for improving crop yields and advancing precision agriculture. In this study, 188 AN soil samples (0–20 cm) were collected at Heshan Farm, Nenjiang County, Heihe City, Heilongjiang Province, in 2023. The soil available nitrogen content ranged from 65.81 to 387.10 mg kg−1, with a mean value of 213.85 ± 61.16 mg kg−1. Sentinel-2 images and normalized vegetation index (NDVI) and enhanced vegetation index (EVI) time series data were acquired on the Google Earth Engine (GEE) platform in the study area during the bare soil period (April, May, and October) and the growth period (June–September). These remote sensing variables were combined with soil sample data, crop type information, and crop growth period data as predictive factors and input into a Random Forest (RF) model optimized using the Optuna hyperparameter tuning algorithm. The accuracy of different strategies was evaluated using 5-fold cross-validation. The research results indicate that (1) the introduction of growth information at different growth periods of soybean and maize has different effects on the accuracy of soil AN mapping. In soybean plantations, the introduction of EVI data during the pod setting period increased the mapping accuracy R2 by 0.024–0.088 compared to other growth periods. In maize plantations, the introduction of EVI data during the grouting period increased R2 by 0.004–0.033 compared to other growth periods, which is closely related to the nitrogen absorption intensity and spectral response characteristics during the reproductive growth period of crops. (2) Combining the crop types and their optimal period growth information could improve the mapping accuracy, compared with only using the bare soil period image (R2 = 0.597)—the R2 increased by 0.035, the root mean square error (RMSE) decreased by 0.504%, and the mapping accuracy of R2 could be up to 0.632. (3) The mapping accuracy of the bare soil period image differed significantly among different months, with a higher mapping accuracy for the spring data than the fall, the R2 value improved by 0.106 and 0.100 compared with that of the fall, and the month of April was the optimal window period of the bare soil period in the present study area. The study shows that when mapping the soil AN content in arable land, different crop types, data collection time, and crop growth differences should be considered comprehensively, and the combination of specific crop types and their optimal period growth information has a greater potential to improve the accuracy of mapping soil AN content. This method not only opens up a new technological path to improve the accuracy of remote sensing mapping of soil attributes but also lays a solid foundation for the research and development of precision agriculture and sustainability. Full article
Show Figures

Figure 1

15 pages, 3246 KiB  
Article
Enhanced Parallel Convolution Architecture YOLO Photovoltaic Panel Detection Model for Remote Sensing Images
by Jinsong Li, Xiaokai Meng, Shuai Wang, Zhumao Lu, Hua Yu, Zeng Qu and Jiayun Wang
Sustainability 2025, 17(14), 6476; https://doi.org/10.3390/su17146476 - 15 Jul 2025
Viewed by 179
Abstract
Object detection technology enables the automatic identification of photovoltaic (PV) panel locations and conditions, significantly enhancing operational efficiency for maintenance teams while reducing the time and cost associated with manual inspections. Challenges arise due to the low resolution of remote sensing images combined [...] Read more.
Object detection technology enables the automatic identification of photovoltaic (PV) panel locations and conditions, significantly enhancing operational efficiency for maintenance teams while reducing the time and cost associated with manual inspections. Challenges arise due to the low resolution of remote sensing images combined with small-sized targets—PV panels intertwined with complex urban or natural backgrounds. To address this, a parallel architecture model based on YOLOv5 was designed, substituting traditional residual connections with parallel convolution structures to enhance feature extraction capabilities and information transmission efficiency. Drawing inspiration from the bottleneck design concept, a primary feature extraction module framework was constructed to optimize the model’s deep learning capacity. The improved model achieved a 4.3% increase in mAP, a 0.07 rise in F1 score, a 6.55% enhancement in recall rate, and a 6.2% improvement in precision. Additionally, the study validated the model’s performance and examined the impact of different loss functions on it, explored learning rate adjustment strategies under various scenarios, and analyzed how individual factors affect learning rate decay during its initial stages. This research notably optimizes detection accuracy and efficiency, holding promise for application in large-scale intelligent PV power station maintenance systems and providing reliable technical support for clean energy infrastructure management. Full article
Show Figures

Figure 1

28 pages, 7404 KiB  
Article
SR-YOLO: Spatial-to-Depth Enhanced Multi-Scale Attention Network for Small Target Detection in UAV Aerial Imagery
by Shasha Zhao, He Chen, Di Zhang, Yiyao Tao, Xiangnan Feng and Dengyin Zhang
Remote Sens. 2025, 17(14), 2441; https://doi.org/10.3390/rs17142441 - 14 Jul 2025
Viewed by 269
Abstract
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering [...] Read more.
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering traditional detection algorithms largely ineffective for such imagery. This work proposes a small target detection algorithm, SR-YOLO. It is specifically tailored to address these challenges in UAV-captured aerial images. First, the Space-to-Depth layer and Receptive Field Attention Convolution are combined, and the SR-Conv module is designed to replace the Conv module within the original backbone network. This hybrid module extracts more fine-grained information about small target features by converting image spatial information into depth information and the attention of the network to targets of different scales. Second, a small target detection layer and a bidirectional feature pyramid network mechanism are introduced to enhance the neck network, thereby strengthening the feature extraction and fusion capabilities for small targets. Finally, the model’s detection performance for small targets is improved by utilizing the Normalized Wasserstein Distance loss function to optimize the Complete Intersection over Union loss function. Empirical results demonstrate that the SR-YOLO algorithm significantly enhances the precision of small target detection in UAV aerial images. Ablation experiments and comparative experiments are conducted on the VisDrone2019 and RSOD datasets. Compared to the baseline algorithm YOLOv8s, our SR-YOLO algorithm has improved mAP@0.5 by 6.3% and 3.5% and mAP@0.5:0.95 by 3.8% and 2.3% on the datasets VisDrone2019 and RSOD, respectively. It also achieves superior detection results compared to other mainstream target detection methods. Full article
Show Figures

Figure 1

21 pages, 7297 KiB  
Article
FGS-YOLOv8s-seg: A Lightweight and Efficient Instance Segmentation Model for Detecting Tomato Maturity Levels in Greenhouse Environments
by Dongfang Song, Ping Liu, Yanjun Zhu, Tianyuan Li and Kun Zhang
Agronomy 2025, 15(7), 1687; https://doi.org/10.3390/agronomy15071687 - 12 Jul 2025
Viewed by 285
Abstract
In a greenhouse environment, the application of artificial intelligence technology for selective tomato harvesting still faces numerous challenges, including varying lighting, background interference, and indistinct fruit surface features. This study proposes an improved instance segmentation model called FGS-YOLOv8s-seg, which achieves accurate detection and [...] Read more.
In a greenhouse environment, the application of artificial intelligence technology for selective tomato harvesting still faces numerous challenges, including varying lighting, background interference, and indistinct fruit surface features. This study proposes an improved instance segmentation model called FGS-YOLOv8s-seg, which achieves accurate detection and maturity grading of tomatoes in greenhouse environments. The model incorporates a novel SegNext_Attention mechanism at the end of the backbone, while simultaneously replacing Bottleneck structures in the neck layer with FasterNet blocks and integrating Gaussian Context Transformer modules to form a lightweight C2f_FasterNet_GCT structure. Experiments show that this model performs significantly better than mainstream segmentation models in core indicators such as precision (86.9%), recall (76.3%), average precision (mAP@0.5 84.8%), F1-score (81.3%), and GFLOPs (35.6 M). Compared with the YOLOv8s-seg baseline model, these metrics show improvements of 2.6%, 3.8%, 5.1%, 3.3%, and 6.8 M, respectively. Ablation experiments demonstrate that the improved architecture contributes significantly to performance gains, with combined improvements yielding optimal results. The analysis of detection performance videos under different cultivation patterns demonstrates the generalizability of the improved model in complex environments, achieving an optimal balance between detection accuracy (86.9%) and inference speed (53.2 fps). This study provides a reliable technical solution for the selective harvesting of greenhouse tomatoes. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop