Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = column–aspect ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 5238 KB  
Article
Leveraging Sentinel-2 Data and Machine Learning for Drought Detection in India: The Process of Ground Truth Construction and a Case Study
by Shubham Subhankar Sharma, Jit Mukherjee and Fabio Dell’Acqua
Remote Sens. 2025, 17(18), 3159; https://doi.org/10.3390/rs17183159 - 11 Sep 2025
Viewed by 388
Abstract
Droughts significantly impact agriculture, water resources, and ecosystems. Their timely detection is essential for implementing effective mitigation strategies. This study explores the use of multispectral Sentinel-2 remote sensing indices and machine learning techniques to detect drought conditions in three distinct regions of India, [...] Read more.
Droughts significantly impact agriculture, water resources, and ecosystems. Their timely detection is essential for implementing effective mitigation strategies. This study explores the use of multispectral Sentinel-2 remote sensing indices and machine learning techniques to detect drought conditions in three distinct regions of India, such as Jodhpur, Amravati, and Thanjavur, during the Rabi season (October–April). Twelve remote sensing indices were studied to assess different aspects of vegetation health, soil moisture, and water stress, and their possible joint use and influence as indicators of regional drought events. Reference data used to define drought conditions in each region were primarily sourced from official government drought declarations and regional and national news publications, which provide seasonal maps of drought conditions across the country. Based on this information, a district vs. year (3 × 10) ground truth is created, indicating the presence or absence of drought (Drought/No Drought) for each region across the ten-year period. Using this ground truth table, we extended the remote sensing dataset by adding a binary drought label for each observation: 1 for “Drought” and 0 for “No Drought”. The dataset is organized by year (2016–2025) in a two-dimensional format, with indices as columns and observations as rows. Each observation represents a single measurement of the remote sensing indices. This enriched dataset serves as the foundation for training and evaluating machine learning models aimed at classifying drought conditions based on spectral information. The resultant remote sensing dataset was used to predict drought events through various machine learning models, including Random Forest, XGBoost, Bagging Classifier, and Gradient Boosting. Among the models, XGBoost achieved the highest accuracy (84.80%), followed closely by the Bagging Classifier (83.98%) and Random Forest (82.98%). In terms of precision, Bagging Classifier and Random Forest performed comparably (82.31% and 81.45%, respectively), while XGBoost achieved a precision of 81.28%. We applied a seasonal majority voting strategy, assigning a final drought label for each region and Rabi season based on the majority of predicted monthly labels. Using this method, XGBoost and Bagging Classifier achieved 96.67% accuracy, precision, and recall, while Random Forest and Gradient Boosting reached 90% and 83.33%, respectively, across all metrics. Shapley Additive Explanation (SHAP) analysis revealed that Normalized Multi-band Drought Index (NMDI) and Day of Season (DOS) consistently emerged as the most influential features in determining model predictions. This finding is supported by the Borda Count and Weighted Sum analysis, which ranked NMDI, and DOS as the top feature across all models. Additionally, Red-edge Chlorophyll Index (RECI), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI), and Ratio Drought Index (RDI) were identified as important features contributing to model performance. These features help reveal the underlying spatiotemporal dynamics of drought indicators, offering interpretable insights into model decisions. To evaluate the impact of feature selection, we further conducted a feature ablation study. We trained each model using different combinations of top features: Top 1, Top 2, Top 3, Top 4, and Top 5. The performance of each model was assessed based on accuracy, precision, and recall. XGBoost demonstrated the best overall performance, especially when using the Top 5 features. Full article
Show Figures

Figure 1

29 pages, 4433 KB  
Article
Influence of Boundary Conditions and Heating Modes on the Onset of Columnar Convection in Rotating Spherical Shells
by William Seeley, Francesca Coke, Radostin D. Simitev and Robert J. Teed
Fluids 2025, 10(9), 237; https://doi.org/10.3390/fluids10090237 - 5 Sep 2025
Viewed by 393
Abstract
We investigate the linear onset of thermal convection in rotating spherical shells with a focus on the influence of mechanical boundary conditions and thermal driving modes. Using a spectral method, we determine critical Rayleigh numbers, azimuthal wavenumbers, and oscillation frequencies over a wide [...] Read more.
We investigate the linear onset of thermal convection in rotating spherical shells with a focus on the influence of mechanical boundary conditions and thermal driving modes. Using a spectral method, we determine critical Rayleigh numbers, azimuthal wavenumbers, and oscillation frequencies over a wide range of Prandtl numbers and shell aspect ratios at moderate Ekman numbers. We show that the preferred boundary condition for convective onset depends systematically on both aspect ratio and Prandtl number: for sufficiently thick shells or for large Pr, the Ekman boundary layer at the outer boundary becomes destabilising, so that no-slip boundaries yield a lower Rac than stress-free boundaries. Comparing differential and internal heating, we find that internal heating generally raises Rac, shifts the onset to larger wavenumbers and frequencies, and relocates the critical column away from the tangent cylinder. Mixed boundary conditions with no-slip on the inner boundary behave similarly to purely stress-free boundaries, confirming the dominant influence of the outer surface. These results demonstrate that boundary conditions and heating mechanisms play a central role in controlling the onset of convection and should be carefully considered in models of planetary and stellar interiors. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

15 pages, 4876 KB  
Article
Energy Absorption Characteristics of CFRP–Aluminum Foam Composite Structure Under High-Velocity Impact: Focusing on Varying Aspect Ratios and Relative Densities
by Jie Ren, Shujie Liu, Jiuhe Wang and Changfang Zhao
Polymers 2025, 17(15), 2162; https://doi.org/10.3390/polym17152162 - 7 Aug 2025
Viewed by 575
Abstract
This study systematically investigates the high-velocity impact response and energy absorption characteristics of carbon fiber-reinforced plastic (CFRP)—aluminum foam (AlF) hybrid composite structures, aiming to address the growing demand for lightweight yet high-performance energy-absorbing materials in aerospace and protective engineering applications. Particular emphasis is [...] Read more.
This study systematically investigates the high-velocity impact response and energy absorption characteristics of carbon fiber-reinforced plastic (CFRP)—aluminum foam (AlF) hybrid composite structures, aiming to address the growing demand for lightweight yet high-performance energy-absorbing materials in aerospace and protective engineering applications. Particular emphasis is placed on elucidating the influence of key geometric and material parameters, including the aspect ratio of the columns and the relative density of the AlF core. Experimental characterization was first performed using a split Hopkinson pressure bar (SHPB) apparatus to evaluate the dynamic compressive behavior of AlF specimens with four different relative densities (i.e., 0.163, 0.245, 0.374, and 0.437). A finite element (FE) model was then developed and rigorously validated against the experimental data, demonstrating excellent agreement in terms of deformation modes and force–displacement responses. Extensive parametric studies based on the validated FE framework revealed that the proposed CFRP-AlF composite structure achieves a balance between specific energy absorption (SEA) and peak crushing force, showing a significant improvement over conventional CFRP or AlF. The confinement effect of CFRP enables AlF to undergo progressive collapse along designated orientations, thereby endowing the CFRP-AlF composite structure with superior impact resistance. These findings provide critical insight for the design of next-generation lightweight protective structures subjected to extreme dynamic loading conditions. Full article
Show Figures

Figure 1

19 pages, 7940 KB  
Article
High-Salinity Fluid Downslope Flow on Regolith Layer Examined by Laboratory Experiment: Implications for Recurring Slope Lineae on Martian Surfaces
by Yoshiki Tabuchi, Arata Kioka, Takeshi Tsuji and Yasuhiro Yamada
Fluids 2025, 10(7), 183; https://doi.org/10.3390/fluids10070183 - 12 Jul 2025
Viewed by 576
Abstract
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material [...] Read more.
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material column to investigate how they vary with the granular material column, liquid and its flow rate, and inclination. While pure water produced low aspect ratios (<1.0) on the Martian regolith simulant column, high-salinity fluid (CaCl2(aq)) traces exhibited significantly higher aspect ratios (>4.0), suggesting that pure water alone is insufficient to explain RSL formulation. Furthermore, the aspect ratios of high-salinity fluid traces on Martian regolith simulants were among the highest observed across all studied granular materials with similar particle sizes, aligning closely with actual RSL observed on Martian slopes. The results further suggest that variable ARs of actual RSL at the given slope can partly be explained by variable flow rates of high-salinity flow as well as salinity (i.e., viscosity) of flow. The results can be attributed to the unique granular properties of Martian regolith, characterized by the lowest permeability and Beavers–Joseph slip coefficient among the studied granular materials. This distinctive microstructure surface promotes surface flow over Darcy flow within the regolith column, leading to a narrow and long-distance feature with high aspect ratios observed in Martian RSL. Thus, our findings support that high-salinity flows are the primary driver behind RSL formation on Mars. Our study suggests the presence of salts on the Martian surface and paves the way for further investigation into RSL formulation processes. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

29 pages, 17587 KB  
Article
Research on the Seismic Performance of Precast RCS Composite Joints Considering the Floor Slab Effect
by Yingchu Zhao, Jie Jia and Ziteng Li
Appl. Sci. 2025, 15(12), 6669; https://doi.org/10.3390/app15126669 - 13 Jun 2025
Cited by 1 | Viewed by 471
Abstract
Under the impetus of achieving global sustainable development goals, the civil construction industry is accelerating its transition towards high-quality, green, and low-carbon practices. Prefabricated, modular building technology has become a key tool due to its advantages in energy conservation, emission reduction, and shortened [...] Read more.
Under the impetus of achieving global sustainable development goals, the civil construction industry is accelerating its transition towards high-quality, green, and low-carbon practices. Prefabricated, modular building technology has become a key tool due to its advantages in energy conservation, emission reduction, and shortened construction periods. However, existing research on the seismic performance of prefabricated, modular, reinforced concrete column–beam (RCS) composite structures often focuses on the construction form of beam–column joints, paying less attention to the impact of floor slabs on the seismic performance of joints during earthquakes. This may make joints a weak link in structural systems’ seismic performance. To address this issue, this paper designs a prefabricated, modular RCS composite joint considering the effect of floor slabs and uses the finite element software ABAQUS 2023 to perform a quasi-static analysis of the joint. The reliability of the method is verified through comparisons with the experimental data. This study examines various aspects, including the joint design and the material’s constitutive relationship settings, focusing on the influence of parameters, such as the axial compression ratio and floor slab concrete strength, on the joint seismic performance. It concludes that the seismic performance of the prefabricated, modular RCS composite joints considering the effect of floor slabs is significantly improved. Considering the composite effect of the slabs, the yield loads in the positive and negative directions for node FJD-0 increased by 78.9% and 70.0%, respectively, compared to that of the slab-free node RCSJ3. The ultimate bearing capacities improved by 13.2% and 9.98%, respectively, and the energy dissipation capacity increased by 23%. Additionally, the variation in the axial load ratio has multiple effects on the seismic performance of the joints. Increasing the slab thickness significantly enhances the seismic performance of the joints under positive loading. The bolt pre-tensioning force has a crucial impact on improving the bearing capacity and overall stiffness of the joints. The reinforcement ratio of the slabs has a notable effect on the seismic performance of the joints under negative loading, while the concrete strength of the slabs has a relatively minor impact on the seismic performance of the joints. Therefore, the reasonable design of these parameters can optimize the seismic performance of joints, providing a theoretical basis and recommendations for engineering application and optimization. Full article
Show Figures

Figure 1

14 pages, 4059 KB  
Article
Optimization of Slotted Steel Plate Shear Walls Based on Adaptive Genetic Algorithm
by Jianian He, Lu Wang, Jiajun Hu, Zhiming He and Shizhe Chen
Appl. Sci. 2025, 15(11), 6088; https://doi.org/10.3390/app15116088 - 28 May 2025
Cited by 1 | Viewed by 591
Abstract
This study develops an enhanced coding strategy with adaptive parameter adjustment mechanisms to address the premature convergence issue inherent in conventional genetic algorithms (GAs). An improved adaptive genetic algorithm (IAGA) is proposed for optimizing the slit pattern configurations of 16 steel-frame-slotted steel plate [...] Read more.
This study develops an enhanced coding strategy with adaptive parameter adjustment mechanisms to address the premature convergence issue inherent in conventional genetic algorithms (GAs). An improved adaptive genetic algorithm (IAGA) is proposed for optimizing the slit pattern configurations of 16 steel-frame-slotted steel plate shear wall (SSPSW) systems. The methodology incorporates a real-time probability modulation of the crossover and mutation operations based on population diversity metrics. ABAQUS finite element software and PYTHON interactive analysis were systematically used to evaluate the mechanical performance of the optimized configurations, focusing on achieving an optimal ductility–stiffness balance under cyclic loading conditions. The numerical results demonstrate that the IAGA achieves faster convergence than standard GAs. A higher aspect ratio of the inter-slot column (l/b) or a smaller aspect ratio of the slot (b/t) leads to better ductility and lower stiffness. It is recommended that the configuration with connections on two sides of an SSPSW frame be adopted. Full article
Show Figures

Figure 1

21 pages, 7078 KB  
Article
Study on the Axial Compressive Behavior of Steel Fiber Reinforced Concrete Confined with High-Strength Rectangular Spiral Stirrup
by Huajing Zhao, Weitong Liu, Penghui Yang and Can Song
Materials 2025, 18(3), 669; https://doi.org/10.3390/ma18030669 - 3 Feb 2025
Viewed by 864
Abstract
Monotonic axial compression tests were carried out on 16 steel fiber-reinforced concrete (SFRC) columns confined by rectangular spiral stirrups. The impacts of stirrup spacing, stirrup strength, concrete strength, and cross-sectional aspect ratio on the peak load, ductility, and failure mode of these columns [...] Read more.
Monotonic axial compression tests were carried out on 16 steel fiber-reinforced concrete (SFRC) columns confined by rectangular spiral stirrups. The impacts of stirrup spacing, stirrup strength, concrete strength, and cross-sectional aspect ratio on the peak load, ductility, and failure mode of these columns were analyzed. The test results demonstrate that steel fibers significantly mitigate the spalling of the concrete column’s protective layer through their bridging effect. Small spacing and high-strength spiral stirrups effectively confine the core concrete, enhancing the bearing capacity and ductility of concrete columns. Concrete strength exhibits a positive correlation with the confinement effect. However, as concrete strength increases, the rate of improvement in the confinement effect decreases. At peak compressive stress, the high-strength stirrup may not reach its yield state. Based on the test results, a method for calculating stirrup stress under the peak stress of confined concrete is proposed. A “coupling restraint coefficient” is proposed, and a constitutive model for HRSS confined steel fiber reinforced concrete is developed, considering the coupled effect of effective confinement forces in different directions. Comparative analysis shows that the constitutive model established in this paper agrees well with the experimental results and demonstrates good applicability. Full article
Show Figures

Figure 1

34 pages, 20091 KB  
Article
Finite Element Method Analysis of Seismic Response of Confined Masonry Walls with Openings Built Using Polyurethane Glue
by Nemanja Krtinić, Marko Marinković and Matija Gams
Buildings 2025, 15(3), 424; https://doi.org/10.3390/buildings15030424 - 28 Jan 2025
Viewed by 1220
Abstract
The seismic response of confined masonry (CM) walls, built from innovative hollow clay blocks featuring large thermal insulation cavities and bonded with polyurethane glue instead of thin-layer mortar, was investigated. A 3D micro-model was subsequently developed in Abaqus and validated against results from [...] Read more.
The seismic response of confined masonry (CM) walls, built from innovative hollow clay blocks featuring large thermal insulation cavities and bonded with polyurethane glue instead of thin-layer mortar, was investigated. A 3D micro-model was subsequently developed in Abaqus and validated against results from cyclic shear tests on full-scale CM wall specimens. Once validated, the model was utilized in an extensive parametric study to investigate the effects of openings on the walls. This parametric study considered the size of the opening, its position, the aspect ratio of the walls, and different sizes of tie-columns. The results showed that the size and placement of openings substantially and negatively affected seismic response, and that the detrimental effects can be alleviated by placing strong tie-columns next to the openings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 6580 KB  
Article
Evaluation of Almond Shell Activated Carbon for Dye (Methylene Blue and Malachite Green) Removal by Experimental and Simulation Studies
by Adrián Rial, Catarina Helena Pimentel, Diego Gómez-Díaz, María Sonia Freire and Julia González-Álvarez
Materials 2024, 17(24), 6077; https://doi.org/10.3390/ma17246077 - 12 Dec 2024
Cited by 2 | Viewed by 1083
Abstract
The present work analyzes the behavior of an activated carbon fabricated from almond shells for the removal of cationic dyes (methylene blue, MB, and malachite green, MG) by adsorption from aqueous solutions. The carbonized precursor was activated with KOH at a 1:2 ( [...] Read more.
The present work analyzes the behavior of an activated carbon fabricated from almond shells for the removal of cationic dyes (methylene blue, MB, and malachite green, MG) by adsorption from aqueous solutions. The carbonized precursor was activated with KOH at a 1:2 (w/w) ratio with the objective of increasing both the surface area and the pore volume. Both non-activated and activated carbon were characterized in different aspects of interest in dye adsorption studies (surface structure, point of zero charge, specific surface area, and pore size distribution). The effect of the dye’s initial concentration and adsorbent dosage on dye removal efficiency and carbon adsorption capacity was studied. Adsorption kinetics were analyzed under different experimental conditions, and different models were assayed to determine the adsorption mechanism. Dye adsorption in the adsorbent surface could be considered the rate-limiting step. Different adsorption equilibrium models were evaluated to fit the experimental data. This adsorbent allowed us to reach high Langmuir adsorption capacity for both dyes (MB: 341 mg·g−1, MG: 364 mg·g−1 at 25 °C and 0.5 g·L−1). Moreover, kinetic and equilibrium adsorption data have been used to simulate breakthrough curves in a packed-bed column using different conditions (bed length, liquid flowrate, and dye initial concentration). The simulation results showed that almond shell activated carbon is a suitable adsorbent for methylene blue and malachite green removal from wastewater. Full article
Show Figures

Figure 1

22 pages, 6337 KB  
Article
Experimental Investigation on the Effectiveness of EB-CFRP Confinement of Elliptical Concrete Columns
by Zine El Abidine Benzeguir, Omar Chaallal, Ahmed Godat and Rami A. Hawileh
Symmetry 2024, 16(12), 1595; https://doi.org/10.3390/sym16121595 - 29 Nov 2024
Cited by 1 | Viewed by 864
Abstract
This paper presents the results of an experimental study involving 20 tests performed on elliptical concrete columns confined with externally bonded carbon fiber-reinforced polymer (EB-CFRP) laminates. The study aimed to evaluate the effects of elliptical aspect ratio (A/B) as well as confinement rigidity [...] Read more.
This paper presents the results of an experimental study involving 20 tests performed on elliptical concrete columns confined with externally bonded carbon fiber-reinforced polymer (EB-CFRP) laminates. The study aimed to evaluate the effects of elliptical aspect ratio (A/B) as well as confinement rigidity (number of EB-FRP layers) on confinement effectiveness. The experimental program consisted of one series of control concrete columns (unstrengthened) and three additional series, each one strengthened with one, two and three layers of EB-CFRP sheets, respectively. Furthermore, each series considered five elliptical aspect ratios (A/B) ranging from 1.0 to 1.6. Following compressive concentric tests until failure, the results were analyzed to characterize the confinement level with an increasing number of EB-CFRP layers as a function of the elliptical aspect ratio. The results show considerable enhancements in compressive strength and in the ductility of the confined columns. Furthermore, this improvement is amplified as the number of EB-CFRP layers increases, indicating a proportional relationship between the compressive strength and the number of CFRP layers. It is found that the ultimate strength of EB-CFRP-confined columns with three layers reached up to 130% compared to the control specimens. However, increasing the elliptical aspect ratio reduced the compressive strength and ductility of confined columns. This study investigated the relation between the CFRP hoop and axial strains and the elliptical aspect ratios. Moreover, through comparison, the results reveal that the prediction models proposed by the Canadian standards S806-12 and S6-19 do not capture the negative effect of the elliptical aspect ratio in confined concrete columns. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Structural Engineering and Structural Mechanics)
Show Figures

Figure 1

15 pages, 12494 KB  
Article
Development of High-Aspect-Ratio Soft Magnetic Microarrays for Magneto-Mechanical Actuation via Field-Induced Injection Molding
by Da Seul Shin, Jin Wook Park, Chang Woo Gal, Jina Kim, Woo Seok Yang, Seon Yeong Yang, Min Jik Kim, Ho Jae Kwak, Sang Min Park and Jong Hyun Kim
Polymers 2024, 16(21), 3003; https://doi.org/10.3390/polym16213003 - 25 Oct 2024
Cited by 1 | Viewed by 1443
Abstract
Magnetorheological elastomers (MREs) are in demand in the field of high-tech microindustries and nanoindustries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined [...] Read more.
Magnetorheological elastomers (MREs) are in demand in the field of high-tech microindustries and nanoindustries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined advantages of excellent flexibility and precise controllability in a magnetic system. Here, we present the development of magnetically programmable soft magnetic microarray actuators through field-induced injection molding using MREs, which consist of styrene-ethylene/butylene styrene (SEBS) elastomer and carbonyl iron powder (CIP). The ratio of the CIP/SEBS matrix was designed to maximize the CIP fraction based on a critical solids loading. Further, as part of the design of the magnetization distribution in micropillar arrays, the magnetorheological response of the molten composites was analyzed using the static and dynamic viscosity results for both the on and off magnetic states, which reflected the particle dipole interaction and subsequent particle alignment during the field-induced injection molding process. To develop a high-aspect-ratio soft magnetic microarray, X-ray lithography was applied to prepare the sacrificial molds with a height-to-width ratio of 10. The alignment of the CIP was designed to achieve a parallel magnetic direction along the micropillar columns, and consequently, the micropillar arrays successfully achieved the uniform and large bending actuation of up to approximately 81° with an applied magnetic field. This study suggests that the injection molding process offers a promising manufacturing approach to build a programmable soft magnetic microarray actuator. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Figure 1

12 pages, 2389 KB  
Article
Experimental Performance Study on Axial Compressive Load-Bearing Capacity of Steel Slag Micropowder Ecotype UHPC of Short Columns Steel Pipe
by Shangqi Guo, Xianyuan Tang, Chenzhuo Feng, Binbing He and Bai Yang
Appl. Sci. 2024, 14(21), 9742; https://doi.org/10.3390/app14219742 - 24 Oct 2024
Viewed by 1230
Abstract
In order to study the axial compression performance of steel pipe concrete short columns filled with steel slag micronized ultra-high-performance concrete (UHPC), this paper designs 27 steel pipe UHPC short columns for axial compression test and compares and analyzes the axial compression performance [...] Read more.
In order to study the axial compression performance of steel pipe concrete short columns filled with steel slag micronized ultra-high-performance concrete (UHPC), this paper designs 27 steel pipe UHPC short columns for axial compression test and compares and analyzes the axial compression performance of the specimens in terms of the damage mode, the deformation curve, and the coefficient of strength enhancement, which is aimed at investigating the differences in the actual load-bearing performance of steel pipe UHPC short columns through changes in the aspect ratio, concrete type, and steel content rate, and so on. The purpose of this paper is to compare and analyze the axial compressive performance of the specimens in terms of damage mode and strength enhancement factor in order to investigate the difference in the actual bearing capacity performance of steel pipe UHPC short columns through the changes in length-to-diameter ratio, concrete type, and steel content. The test results show that the axial compressive performance of steel slag powder steel pipe UHPC short columns is greatly affected by the L/D ratio and steel content; the specimen bearing capacity increases with the increase in the wall thickness of the steel pipe and decreases slightly with the increase in the L/D ratio, and the steel fibers can effectively improve the deformation of the concrete so as to enhance the composite effect with the steel pipe; the contribution of the core UHPC to improve the value of bearing capacity accounts for a higher percentage when UHPC with 1% steel fiber dosage and 20% coarse aggregate dosage gave the best uplift with no change in the type of steel pipe. In this paper, the axial compression test bearing capacity results of steel slag micro powder steel pipe UHPC short column are compared with the calculated bearing capacity results of domestic and international specifications and analyzed from the perspectives of perimeter compression strength, steel fiber mixing of core concrete, and the relevant parameter design suggestions for high-strength steel pipe concrete specimens are put forward. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

35 pages, 21777 KB  
Article
Cyclic Performance and Environmental Impact of Precast Demountable RCS Joints
by Wei Li, Yang Yang, Zhengyi Kong, Wei Huang, Yaping Wang and Haijing Wang
Buildings 2024, 14(10), 3071; https://doi.org/10.3390/buildings14103071 - 26 Sep 2024
Cited by 1 | Viewed by 1461
Abstract
To facilitate the disassembly and recycling of structural components, this study proposes a novel demountable reinforced-concrete column–steel beam (RCS) joint. Numerical simulations were conducted to analyze the performance of this new RCS joint using finite element software ABAQUS 2021. Simultaneously, to expand the [...] Read more.
To facilitate the disassembly and recycling of structural components, this study proposes a novel demountable reinforced-concrete column–steel beam (RCS) joint. Numerical simulations were conducted to analyze the performance of this new RCS joint using finite element software ABAQUS 2021. Simultaneously, to expand the parametric analysis of the finite element model, further validating aspects such as concrete strength, the flange strength of the steel beam, the strength of the gusset plates, and the longitudinal reinforcement ratio were studied. The finite element analysis results demonstrate that the proposed demountable RCS joint exhibits superior bearing capacity and ductility compared to conventional cast-in-place joints. To further investigate the seismic behavior and influencing rules of this joint, analyses were carried out focusing on aspects such as hysteresis curves, skeleton curves, ductility, energy dissipation, residual deformations, and strength degradation. The findings reveal that gusset plate strengths, steel beam strength, beam-end connecting plate strength, longitudinal reinforcement ratio, and concrete strength have significant impacts on the strength and failure modes of the RCS joints. In addition, the life cycle analysis of four different material structures shows that the demountable RCS joints have the smallest carbon emission during the life cycle, which is conducive to the reuse of resources. Finally, the development of demountable RCS joints is proposed for China’s construction industry. Full article
(This article belongs to the Special Issue Building Structure Mechanical Properties and Behavior Analysis)
Show Figures

Figure 1

19 pages, 5495 KB  
Article
Enhancing Load-Carrying Capacity of Reinforced Concrete Columns with High Aspect Ratio Using Textile-Reinforced Mortar Systems
by Manisha Shewale, Alireza Bahrami, P. Murthi and R. Siva Chidambaram
Buildings 2024, 14(7), 2050; https://doi.org/10.3390/buildings14072050 - 4 Jul 2024
Cited by 3 | Viewed by 1834
Abstract
This research investigates the effectiveness of textile-reinforced mortar (TRM) systems for enhancing the load-carrying capacity of reinforced concrete columns (RCCs) with high aspect ratio. This study focuses on the use of the TRM systems as an alternative to fiber-reinforced polymer (FRP) systems, addressing [...] Read more.
This research investigates the effectiveness of textile-reinforced mortar (TRM) systems for enhancing the load-carrying capacity of reinforced concrete columns (RCCs) with high aspect ratio. This study focuses on the use of the TRM systems as an alternative to fiber-reinforced polymer (FRP) systems, addressing challenges such as high cost, poor performance at high temperatures, incompatibility with substrate materials, and inability to be applied to damp surfaces. It includes a detailed analysis of the TRM systems’ effectiveness through an experimental evaluation, with a particular focus on RCCs having high aspect ratio. The obtained results reveal a significant strength improvement, ranging from 50% to 129%, for RCCs with the aspect ratios decreasing from three to two, with the workmanship contributing to the observed strength enhancement. Achieving a consistent and uniform distribution of the mortar layer, seamlessly aligned with the column surfaces, proves crucial. The study also highlights the importance of the mortar layer thickness, particularly in cases of the reduced aspect ratios. An enhancement of the load-carrying capacity ranges from 3.65% to 8.53%, for the reduction in the aspect ratio from 5 to 4.16 and 3.24, respectively. The confined specimens display varying peak axial strains, exhibiting commendable elastic–plastic behavior with non-linear ascending curves. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 38019 KB  
Article
Seismic Performance of Cross-Shaped Partially Encased Steel–Concrete Composite Columns: Experimental and Numerical Investigations
by Qiuyu Xu, Yong Liu and Jingfeng Wang
Buildings 2024, 14(7), 1932; https://doi.org/10.3390/buildings14071932 - 25 Jun 2024
Cited by 6 | Viewed by 1448
Abstract
Special-shaped partially encased steel–concrete composite (PEC) columns could not only improve the aesthetic effect and room space use efficiency, but also exhibit good mechanical performance under static load when used in multi-story residential and office buildings. However, research on the seismic performance of [...] Read more.
Special-shaped partially encased steel–concrete composite (PEC) columns could not only improve the aesthetic effect and room space use efficiency, but also exhibit good mechanical performance under static load when used in multi-story residential and office buildings. However, research on the seismic performance of special-shaped PEC columns is insufficient and urgently needed. To investigate the seismic performance of cross-shaped partially encased steel–concrete composite (CPEC) columns, three CPEC columns were designed and tested under combined constant axial load and lateral cyclic load. The test results show that the CPEC columns had good load capacity and ductility, and that the columns failed because of concrete crushing and steel flange buckling after the yielding of the steel flange. The plump hysteresis loops indicated that the CPEC column also had good energy dissipation capacity. Due to the constraint of hydraulic jacks, increasing the load ratio would decrease the effective length, thereby increasing the load capacity of the CPEC column and decreasing the ductility. A finite element model was also established to simulate the response of the CPEC columns, and the simulated results agree well with the experimental results. Thereafter, an extensive parametric analysis was performed to study the influences of different parameters on the seismic performance of CPEC columns. For the CPEC column with an ideal hinged boundary condition at the top, its lateral load capacity gradually decreases with the growth of the load ratio and link spacing and increases with the rise of the steel yield strength, concrete compressive strength, flange and web thickness, and sectional aspect ratio. This research could provide a basis for future theoretical analyses and engineering application. Full article
(This article belongs to the Special Issue Novel Steel and Steel-Concrete Composite Structures)
Show Figures

Figure 1

Back to TopTop