Optimization of Slotted Steel Plate Shear Walls Based on Adaptive Genetic Algorithm
Abstract
1. Introduction
2. Design and Implementation of Adaptive Genetic Algorithm
2.1. Design of Adaptive Genetic Algorithm
2.2. Implementation of IAGA
3. Optimization Analysis of SSPSWs
3.1. Experimental Design
3.2. Modeling and Validation of the FE Model
3.3. Optimization Scheme
3.4. Optimization Results
4. Performance Analysis of SSPSWs
4.1. Indicator Calibration
4.2. Elastic Buckling Performance
4.3. Monotonic Loading Mechanical Performance
4.4. Ductility Performance
4.5. Energy Dissipation Performance
5. Conclusions
- (1)
- The improved adaptive genetic algorithm demonstrates superior computational efficiency and significantly reduces the susceptibility to local optima entrapment, particularly advantageous for structural optimization applications. This enhanced algorithm offers adaptable parameter customization to accommodate diverse engineering requirements.
- (2)
- For slotted steel plate shear walls, two-side connection configurations with a reduced plate thickness (0.75–1.25 mm range) prove more mechanically favorable than thicker alternatives. In frames with aspect ratios below 2:1, the embedded slotted steel plates should account for 30–40% of the total lateral stiffness, with a particular emphasis on maintaining this proportion through proper slot geometry optimization.
- (3)
- Notable disparities exist in the post-buckling behavior and load-transfer mechanisms between the two-side and four-side connection configurations. The two-side connection enables controlled yielding and plastic hinge formation at the slot terminals, effectively leveraging the slotted configuration’s inherent deformation characteristics. While this design introduces an intentional stiffness reduction (approximately 15–20% compared to solid walls), it achieves remarkable displacement performance enhancements: a 35–50% increase in the yield displacement and a 60–75% improvement in the ultimate displacement. Furthermore, the system achieves 2–3 times higher ductility coefficients and demonstrates 120–150% greater energy dissipation capacity compared to its conventional non-slotted counterparts, serving as reliable energy-dissipating components in seismic-resistant systems.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hitaka, T.; Matsui, C.; Sakai, J. Cyclic Tests on Steel and Concrete-filled Tube Frames with Slit Walls. Earthq. Eng. Struct. Dyn. 2007, 36, 707–727. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.; Meng, Z.; Shu, W. Application and Design Research on Steel Frame Buckling-Restrained Steel Plate Shear Wall Structure. Build. Struct. 2021, 51, 77–82. [Google Scholar] [CrossRef]
- Zhang, H.X.; Peng, Q.; Zhao, L.X. The Statement of Research Progress in Embedded Steel Plate Shear Wall. Appl. Mech. Mater. 2014, 638–640, 287–291. [Google Scholar] [CrossRef]
- Hitaka, T.; Matsui, C. Experimental Study on Steel Shear Wall with Slits. J. Struct. Eng. 2003, 129, 586–595. [Google Scholar] [CrossRef]
- Hitaka, T.; Matsui, C.; Tsuda, K.; Sadakane, Y.; Imamura, T.; Hatato, T. Elastic-plastic behavior of building steel frame incorporationg steel bearing wall with slits. J. Struct. Constr. Eng. (Trans. AIJ) 2000, 65, 153–160. [Google Scholar] [CrossRef]
- Su, L. The Structural Analysis and Experimental Study of Steel Sheer Wall with Slit. Ph.D. Thesis, Wuhan University of Technology, Wuhan, China, 2004. [Google Scholar]
- Wang, P.; He, L. Analysis of Shear Resistance of Steel Silt Shear Walls. Build. Struct. 2018, 48, 550–554. [Google Scholar] [CrossRef]
- Wang, H. The Analysis on The Behaviors of Steel Shear Wall with Slits. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2006. [Google Scholar]
- Wang, H.; Yu, A.; Hao, J. The Analysis on the Behaviors of Steel Shear Wall with Slits. Steel Struct. 2007, 22, 70–72+78. [Google Scholar] [CrossRef]
- He, L.; Chen, S.; Jiang, H. Study of a New Type of Steel Slit Shear Wall with Introduced Out-of-Plane Folding. Struct. Eng. Mech. 2020, 75, 229–237. [Google Scholar] [CrossRef]
- Cortes, G.; Liu, J. Analysis and Design of Steel Slit Panel Frames (SSPFs) for Seismic Areas. Eng. J. 2011, 48, 1–18. [Google Scholar] [CrossRef]
- Cortes, G.; Liu, J. Experimental Evaluation of Steel Slit Panel–Frames for Seismic Resistance. J. Constr. Steel Res. 2011, 67, 181–191. [Google Scholar] [CrossRef]
- Lu, J.; Qiao, X.; Liao, J.; Tang, Y. Experimental Study and Numerical Simulation on Steel Plate Shear Walls with Non-Uniform Spacing Slits. Int. J. Steel Struct. 2016, 16, 1373–1380. [Google Scholar] [CrossRef]
- Lu, J.; Yu, S.; Xia, J.; Qiao, X.; Tang, Y. Experimental Study on the Hysteretic Behavior of Steel Plate Shear Wall with Unequal Length Slits. J. Constr. Steel Res. 2018, 147, 477–487. [Google Scholar] [CrossRef]
- Wang, W.; Kong, J.; Zhang, Y.; Chu, G.; Chen, Y. Seismic Behavior of Self-Centering Modular Panel with Slit Steel Plate Shear Walls: Experimental Testing. J. Struct. Eng. 2018, 144, 04017179. [Google Scholar] [CrossRef]
- Hao, J.; Li, S.; Tian, W.; Wu, X. Seismic Performance of Coupled Steel Plate Shear Wall with Slits. J. Constr. Steel Res. 2023, 201, 107674. [Google Scholar] [CrossRef]
- Deng, R.; Ye, L.; Gao, Y.; Shi, Y.; Wang, Y. Behaviour of Cold-Formed Steel Framed Shear Walls with Slitted Sheathing under Lateral Loading. Thin-Walled Struct. 2023, 192, 111108. [Google Scholar] [CrossRef]
- Liang, W.; Wang, X.; Yang, B.; Xie, C.; Lu, W. Seismic Behavior of Self-Centering Concrete-Filled Square Steel Tubular Frame with Slit Steel Plate Shear Walls. J. Constr. Steel Res. 2023, 211, 108–212. [Google Scholar] [CrossRef]
- Zhao, R.R.; Chen, L.; Zhou, Y. Shear performance analysis of stiffened steel plate shear walls with slits. Ind. Constr. 2010, 40, 119–123. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, R.R.; Zhou, Y. Research on shear performance of stiffened steel shear wall with slits. In Proceedings of the International Symposium on Structural Engineering, Guangzhou, China, 18–20 December 2010; Volume I & II, pp. 82–86. [Google Scholar]
- Jacobsen, A.; Hitaka, T.; Nakashima, M. Online Test of Building Frame with Slit-Wall Dampers Capable of Condition Assessment. J. Constr. Steel Res. 2010, 66, 1320–1329. [Google Scholar] [CrossRef]
- Li, F.; Li, S.; Wu, G.; Wang, D. Experimental Investigation on Four Types of Steel Plate Shear Walls. Appl. Mech. Mater. 2012, 166–169, 657–663. [Google Scholar] [CrossRef]
- Khatamirad, M.; Shariatmadar, H. Experimental and Analytical Study of Steel Slit Shear Wall. Steel Compos. Struct. 2017, 24, 741–751. [Google Scholar] [CrossRef]
- Jin, S.; Yang, S.; Bai, J. Numerical and Experimental Investigation of the Full-Scale Buckling-Restrained Steel Plate Shear Wall with Inclined Slots. Thin-Walled Struct. 2019, 144, 106362. [Google Scholar] [CrossRef]
- Tan, P.; Lin, Y.; Zhou, F. Mechanical Performance of Steel Plate Shear Wall with Diamond Openings. J. Build. Struct. 2016, 37, 117–125. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, P.; Lin, Y.; Mercan, O.; Zhou, F.; Li, Y. Theoretical and Experimental Investigations of Steel Plate Shear Walls with Diamond Openings. Thin-Walled Struct. 2023, 189, 110838. [Google Scholar] [CrossRef]
- Zhang, Y.; Pang, Z.; Wu, B.; Wang, Y. Experimental study on prefabricated self-centeringsteel frames with slit steel plate shear walls. Eng. Mech. 2020, 37, 168–178. [Google Scholar] [CrossRef]
- Jin, S.; Du, H.; Bai, J. Seismic Performance Assessment of Steel Frame Structures Equipped with Buckling-Restrained Slotted Steel Plate Shear Walls. J. Constr. Steel Res. 2021, 182, 106699. [Google Scholar] [CrossRef]
- Lu, J.; Tokinaga, S. Analysis of Cluster Formations on Planer Cells Based on Genetic Programming. Comput. Math. Organ. Theory 2013, 19, 426–445. [Google Scholar] [CrossRef]
- Ali, J.; Saeed, M.; Tabassam, M.F.; Iqbal, S. Controlled Showering Optimization Algorithm: An Intelligent Tool for Decision Making in Global Optimization. Comput. Math. Organ. Theory 2019, 25, 132–164. [Google Scholar] [CrossRef]
- Srinivas, M.; Patnaik, L. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. IEEE Trans. Syst. Man Cybern. 1994, 24, 656–667. [Google Scholar] [CrossRef]
No. | Beam Length (mm) | Plate Thickness (mm) | Frame Stiffness (N/m) | Optimized Stiffness (N/mm) |
---|---|---|---|---|
SPSW-TF (FF) | 2400 | 12 | 89,767 | 99,742 |
SPSW-TB12 (FB12) | 1200 | 12 | 97,016 | 107,795 |
SPSW-TB36 (FB36) | 3600 | 12 | 82,679 | 91,865 |
SPSW-TB48 (FB48) | 4800 | 12 | 77,131 | 85,701 |
SPSW-TT8 (FT8) | 2400 | 8 | 89,767 | 99,742 |
SPSW-TT10 (FT10) | 2400 | 10 | 89,767 | 99,742 |
SPSW-TT14 (FT14) | 2400 | 14 | 89,767 | 99,742 |
Frame Configuration | No. | Variable Parameters | Slot Quantity, n | Inter-Slot Column Height, l | Inter-Slot Column Width, b | Slot Width, d | Plate Thickness, t | Plate Width, B | l/b | b/t |
B-J | SPSW-TB12 | aspect ratio of frame | 5 | 1416.84 | 119.23 | 15.91 | 12 | 794.93 | 11.88 | 9.94 |
SPSW-TF | 18 | 1527.70 | 81.41 | 27.79 | 12 | 2047.01 | 18.77 | 6.79 | ||
SPSW-TB36 | 28 | 1434.35 | 62.99 | 9.31 | 12 | 2087.39 | 22.77 | 5.25 | ||
SPSW-TB48 | 24 | 1319.31 | 59.90 | 5.29 | 12 | 1624.46 | 22.03 | 4.99 | ||
SPSW-TT8 | plate thickness | 15 | 1394.35 | 91.94 | 18.65 | 8 | 1750.79 | 15.17 | 11.49 | |
SPSW-TT10 | 18 | 1383.32 | 79.25 | 22.29 | 10 | 1906.97 | 17.46 | 7.93 | ||
SPSW-TF | 18 | 1527.70 | 81.41 | 27.79 | 12 | 2047.01 | 18.77 | 6.79 | ||
SPSW-TT14 | 21 | 1595.71 | 77.77 | 5.07 | 14 | 1817.41 | 20.52 | 5.56 | ||
Q-J | SPSW-FB12 | aspect ratio of frame | 12 | 1337.54 | 41.97 | 54.53 | 12 | 1200 | 31.87 | 3.50 |
SPSW-FF | 22 | 1468.48 | 41.05 | 66.18 | 12 | 2400 | 35.77 | 3.42 | ||
SPSW-FB36 | 43 | 1477.43 | 22.60 | 60.59 | 12 | 3600 | 65.37 | 1.88 | ||
SPSW-FB48 | 25 | 1502.02 | 21.47 | 169.67 | 12 | 4800 | 69.96 | 1.79 | ||
SPSW-FT8 | plate thickness | 21 | 1598.45 | 43.25 | 68.98 | 8 | 2400 | 36.96 | 5.41 | |
SPSW-FT10 | 20 | 1545.95 | 43.13 | 74.71 | 10 | 2400 | 35.84 | 4.31 | ||
SPSW-FF | 22 | 1468.48 | 41.05 | 66.18 | 12 | 2400 | 35.77 | 3.42 | ||
SPSW-FT14 | 16 | 1339.97 | 37.65 | 109.99 | 14 | 2400 | 35.59 | 2.69 |
Frame Configuration | No. | Buckling Load (N) | Buckling Displacment (mm) | Frame Configuration | No. | Buckling Load (N) | Buckling Displacement (mm) |
---|---|---|---|---|---|---|---|
B-J | SPSW-TF | 1,753,150 | 17.648 | Q-J | SPSW-FF | 1,688,240 | 10.489 |
SPSW-TB12 | 4,247,120 | 39.689 | SPSW-FB12 | 1,347,010 | 7.576 | ||
SPSW-TB36 | 2,020,080 | 22.069 | SPSW-FB36 | 932,071 | 6.411 | ||
SPSW-TB48 | 2,659,400 | 31.152 | SPSW-FB48 | 478,802 | 3.655 | ||
SPSW-TT8 | 2,332,960 | 22.643 | SPSW-FT8 | 493,331 | 3.669 | ||
SPSW-TT10 | 1,337,540 | 13.487 | SPSW-FT10 | 1,185,110 | 8.017 | ||
SPSW-TT14 | 2,811,690 | 28.27 | SPSW-FT14 | 2,194,360 | 11.916 |
Frame Configuration | No. | Initial Stiffness (kN/mm) | Yield Displacement (mm) | Yield Load (kN) | Ultimate Displacement (mm) | Ultimate Load (kN) | Ductility Coefficient |
---|---|---|---|---|---|---|---|
—— | SPSW | 641.25 | 12.57 | 6095.36 | 43.29 | 6901.26 | 3.44 |
B-J | SPSW-TF | 99.34 | 38.03 | 2180.39 | 312.83 | 2791.57 | 8.22 |
SPSW-TB36 | 91.53 | 41.11 | 2150.25 | 343.95 | 2761.54 | 8.37 | |
Q-J | SPSW-FF | 160.95 | 27.46 | 2568.48 | 258.89 | 3229.30 | 9.43 |
SPSW-FT8 | 134.58 | 29.21 | 2387.38 | 278.33 | 2917.72 | 9.53 | |
SPSW-FT10 | 147.82 | 29.41 | 2438.88 | 263.76 | 3104.54 | 8.97 | |
SPSW-FB36 | 145.38 | 29.31 | 2663.98 | 250.14 | 3587.77 | 8.53 |
Story Drift (%) | 0.25 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | |
---|---|---|---|---|---|---|---|---|
SPSW | Equivalent Viscous Damping Ratio (%) | 0.01 | 8.04 | 30.17 | 30.62 | 30.09 | - | - |
Energy Consumption (kJ) | 0.02 | 35.54 | 283.15 | 367.46 | 488.47 | - | - | |
SPSW-TF | Equivalent Viscous Damping Ratio (%) | 0.00 | 0.00 | 6.80 | 17.19 | 25.48 | 30.69 | 35.81 |
Energy Consumption (kJ) | 0.00 | 0.01 | 19.68 | 85.62 | 188.25 | 293.66 | 439.91 | |
SPSW-TB36 | Equivalent Viscous Damping Ratio (%) | 0.00 | 0.01 | 4.35 | 15.18 | 23.50 | 29.26 | 34.01 |
Energy Consumption (kJ) | 0.00 | 0.01 | 11.33 | 71.85 | 165.72 | 277.31 | 410.87 | |
SPSW-FF | Equivalent Viscous Damping Ratio (%) | 0.17 | 2.34 | 11.87 | 21.15 | 27.34 | 30.71 | 34.37 |
Energy Consumption (kJ) | 0.06 | 2.77 | 44.23 | 132.03 | 247.53 | 352.96 | 488.22 | |
SPSW-FT8 | Equivalent Viscous Damping Ratio (%) | 0.21 | 2.32 | 9.26 | 18.86 | 26.40 | 30.80 | 34.28 |
Energy Consumption (kJ) | 0.05 | 2.27 | 28.08 | 100.86 | 212.07 | 325.04 | 444.42 | |
SPSW-FT10 | Equivalent Viscous Damping Ratio (%) | 0.40 | 4.95 | 9.61 | 18.77 | 25.66 | 30.77 | 33.70 |
Energy Consumption (kJ) | 0.11 | 2.43 | 30.62 | 104.35 | 210.70 | 343.16 | 451.31 | |
SPSW-FB36 | Equivalent Viscous Damping Ratio (%) | 0.10 | 1.72 | 10.41 | 20.63 | 26.11 | 29.54 | 32.93 |
Energy Consumption (kJ) | 0.03 | 1.93 | 39.51 | 130.73 | 229.82 | 334.17 | 458.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Wang, L.; Hu, J.; He, Z.; Chen, S. Optimization of Slotted Steel Plate Shear Walls Based on Adaptive Genetic Algorithm. Appl. Sci. 2025, 15, 6088. https://doi.org/10.3390/app15116088
He J, Wang L, Hu J, He Z, Chen S. Optimization of Slotted Steel Plate Shear Walls Based on Adaptive Genetic Algorithm. Applied Sciences. 2025; 15(11):6088. https://doi.org/10.3390/app15116088
Chicago/Turabian StyleHe, Jianian, Lu Wang, Jiajun Hu, Zhiming He, and Shizhe Chen. 2025. "Optimization of Slotted Steel Plate Shear Walls Based on Adaptive Genetic Algorithm" Applied Sciences 15, no. 11: 6088. https://doi.org/10.3390/app15116088
APA StyleHe, J., Wang, L., Hu, J., He, Z., & Chen, S. (2025). Optimization of Slotted Steel Plate Shear Walls Based on Adaptive Genetic Algorithm. Applied Sciences, 15(11), 6088. https://doi.org/10.3390/app15116088