Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,289)

Search Parameters:
Keywords = color quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 53964 KiB  
Article
UNet–Transformer Hybrid Architecture for Enhanced Underwater Image Processing and Restoration
by Jie Ji and Jiaju Man
Mathematics 2025, 13(15), 2535; https://doi.org/10.3390/math13152535 (registering DOI) - 6 Aug 2025
Abstract
Underwater image enhancement is crucial for fields like marine exploration, underwater photography, and environmental monitoring, as underwater images often suffer from reduced visibility, color distortion, and contrast loss due to light absorption and scattering. Despite recent progress, existing methods struggle to generalize across [...] Read more.
Underwater image enhancement is crucial for fields like marine exploration, underwater photography, and environmental monitoring, as underwater images often suffer from reduced visibility, color distortion, and contrast loss due to light absorption and scattering. Despite recent progress, existing methods struggle to generalize across diverse underwater conditions, such as varying turbidity levels and lighting. This paper proposes a novel hybrid UNet–Transformer architecture based on MaxViT blocks, which effectively combines local feature extraction with global contextual modeling to address challenges including low contrast, color distortion, and detail degradation. Extensive experiments on two benchmark datasets, UIEB and EUVP, demonstrate the superior performance of our method. On UIEB, our model achieves a PSNR of 22.91, SSIM of 0.9020, and CCF of 37.93—surpassing prior methods such as URSCT-SESR and PhISH-Net. On EUVP, it attains a PSNR of 26.12 and PCQI of 1.1203, outperforming several state-of-the-art baselines in both visual fidelity and perceptual quality. These results validate the effectiveness and robustness of our approach under complex underwater degradation, offering a reliable solution for real-world underwater image enhancement tasks. Full article
22 pages, 1215 KiB  
Article
Gas Atmosphere Innovation Applied to Prolong the Shelf Life of ‘Regina’ Sweet Cherries
by Rodrigo Neira-Ojeda, Sebastián Rodriguez, Cristian Hernández-Adasme, Violeta Muñoz, Dakary Delgadillo, Bo Sun, Xiao Yang and Victor Hugo Escalona
Plants 2025, 14(15), 2440; https://doi.org/10.3390/plants14152440 - 6 Aug 2025
Abstract
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing [...] Read more.
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing internal browning. Fruits were harvested in two different maturity stages (Light and Dark Mahogany skin color) and stored in CA of 15% CO2 + 10% O2; 10% CO2 + 10% O2; 10% CO2 + 5% O2; 5% CO2 + 5% O2 and MA of 4 to 5% CO2 + 16 to 17% O2 for 30 and 40 days at 0 °C and 90% RH, followed by a marketing period. After the storage, both maturity stages significantly reduced internal browning, decay, and visual quality losses in CA with 10–15% CO2 and 10% O2. In addition, it preserved luminosity, total soluble solids (TSSs), titratable acidity (TA), and bioactive compounds such as anthocyanins and phenols. This treatment also maintained the visual appearance of the sweet cherries, favoring their market acceptance. At the same time, the light red fruits showed a better general quality compared to darker color after the storage. In conclusion, a controlled atmosphere with optimized CO2 and O2 concentrations, together with harvesting with a Light Mahogany external color, represents an effective strategy to extend the shelf life of Regina sweet cherries up to 40 days plus the marketing period, maintaining their physical and sensory quality for export markets. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

19 pages, 1756 KiB  
Article
Addition of β-Cyclodextrin or Gelatin Ιmproves Organoleptic and Physicochemical Attributes of Aronia Juice
by Kalliopi Gkoutzina, Ioannis Mourtzinos and Dimitrios Gerasopoulos
Beverages 2025, 11(4), 115; https://doi.org/10.3390/beverages11040115 - 6 Aug 2025
Abstract
Aronia juice is well-known for its high nutritional and biological value, due to its polyphenol content, which has a powerful antioxidant effect. However, the high polyphenol content of aronia juice is associated with an astringent flavor, which diminishes consumer acceptance. To improve the [...] Read more.
Aronia juice is well-known for its high nutritional and biological value, due to its polyphenol content, which has a powerful antioxidant effect. However, the high polyphenol content of aronia juice is associated with an astringent flavor, which diminishes consumer acceptance. To improve the flavor of aronia juice, β-cyclodextrin (0–2% w/v) or gelatin (0–0.4 mg/L) were added before pasteurization. The juice samples were first examined organoleptically, and monitored for total phenolic compounds, antioxidant capacity, total flavonoids, total monomeric anthocyanins, polymeric color, pH, total soluble solids, and color. The organoleptic test demonstrated that both β-cyclodextrin and gelatin juice aroma reduced astringency and increased sweetness, whereas β-cyclodextrin also reduced juice aroma. β-cyclodextrin significantly increased polymeric color and total soluble solids (p < 0.05), whereas antioxidant activity, total flavonoids, and monomeric anthocyanins remained unchanged compared to the unpasteurized control. In contrast, the addition of gelatin dramatically reduced total phenolic compounds, antioxidant capacity, and total flavonoids, while enhancing polymeric color and maintaining monomeric anthocyanins with minor decreases relative to pre-pasteurization levels (p < 0.05). A consumer study was conducted with control juice and juices with 2% w/v β-cyclodextrin or 0.4 mg/L gelatin added. The results confirmed the change in flavor profile by masking or removing astringency and astringent aftertaste, as well as increasing sweetness, which significantly improved overall acceptability (p < 0.05). Full article
(This article belongs to the Section Quality, Nutrition, and Chemistry of Beverages)
Show Figures

Figure 1

13 pages, 1134 KiB  
Article
Biological and Physico-Chemical Properties of Lobosphaera sp. Packed in Metallized Polyethylene Terephthalate/Polyethylene (PETmet/PE)
by Valter F. R. Martins, Ana J. Alves, Fátima Poças, Manuela Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Phycology 2025, 5(3), 35; https://doi.org/10.3390/phycology5030035 - 6 Aug 2025
Abstract
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, [...] Read more.
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, the biomass absorbed moisture over time, reaching 0.779 ± 0.003 g/g dry weight (DW) after three months. This was accompanied by a decline in luminosity, chroma, and hue values. In contrast, samples stored under other conditions showed minimal changes, indicating that high humidity, combined with light exposure, compromises biomass stability. Packaging in metalized polyethylene terephthalate (PETmet/PE) effectively preserved the water content, color, and carotenoid levels during a two-month storage period. Bioactive compounds extracted via hydroethanolic ultrasound-assisted extraction yielded 15.48 ± 1.35% DW. Total phenolic content (TPC) of the extracts declined over time in both PETmet/PE and low-density polyethylene (LDPE) packaging, though the decrease was less pronounced in PETmet/PE. Antioxidant activity, assessed via the ABTS assay, remained stable, regardless of storage duration or packaging. Antimicrobial activity of the extract decreased over time but remained more effective against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes), with PETmet/PE packaging better preserving antimicrobial efficacy than LDPE. These findings underscore the importance of optimized storage conditions and packaging for maintaining the quality and bioactivity of Lobosphaera sp. biomass and its extracts. Full article
Show Figures

Figure 1

16 pages, 7134 KiB  
Article
The Impact of an Object’s Surface Material and Preparatory Actions on the Accuracy of Optical Coordinate Measurement
by Danuta Owczarek, Ksenia Ostrowska, Jerzy Sładek, Adam Gąska, Wiktor Harmatys, Krzysztof Tomczyk, Danijela Ignjatović and Marek Sieja
Materials 2025, 18(15), 3693; https://doi.org/10.3390/ma18153693 - 6 Aug 2025
Abstract
Optical coordinate measurement is a universal technique that aligns with the rapid development of industrial technologies and new materials. Nevertheless, can this technique be consistently effective when applied to the precise measurement of all types of materials? As shown in this article, an [...] Read more.
Optical coordinate measurement is a universal technique that aligns with the rapid development of industrial technologies and new materials. Nevertheless, can this technique be consistently effective when applied to the precise measurement of all types of materials? As shown in this article, an analysis of optical measurement systems reveals that some materials cause difficulties during the scanning process. This article details the matting process, resulting, as demonstrated, in lower measurement uncertainty values compared to the pre-matting state, and identifies materials for which applying a matting spray significantly improves the measurement quality. The authors propose a classification of materials into easy-to-scan and hard-to-scan groups, along with specific procedures to improve measurements, especially for the latter. Tests were conducted in an accredited Laboratory of Coordinate Metrology using an articulated arm with a laser probe. Measured objects included spheres made of ceramic, tungsten carbide (including a matte finish), aluminum oxide, titanium nitride-coated steel, and photopolymer resin, with reference diameters established by a high-precision Leitz PMM 12106 coordinate measuring machine. Diameters were determined from point clouds obtained via optical measurements using the best-fit method, both before and after matting. Color measurements using a spectrocolorimeter supplemented this study to assess the effect of matting on surface color. The results revealed correlations between the material type and measurement accuracy. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

16 pages, 931 KiB  
Article
Evaluation of the Effects of Drying Techniques on the Physical and Nutritional Characteristics of Cricket (Gryllus bimaculatus) Powder for Use as Animal Feedstuff
by Warin Puangsap, Padsakorn Pootthachaya, Mutyarsih Oryza, Anusorn Cherdthong, Vibuntita Chankitisakul, Bundit Tengjaroensakul, Pheeraphong Phaengphairee and Sawitree Wongtangtintharn
Insects 2025, 16(8), 814; https://doi.org/10.3390/insects16080814 - 6 Aug 2025
Abstract
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color [...] Read more.
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color parameters (L*, a*, and b*; p < 0.05), and particle size distribution at 850 µm and 250 µm (p = 0.04 and p = 0.02, respectively). Microwave–vacuum drying produced the lightest powder with a higher proportion of coarse particles, while sun drying resulted in a darker color and greater particle retention at 850 µm. Hot-air-oven drying yielded the lowest moisture content (1.99%) and the highest gross energy (6126.43 kcal/kg), with no significant differences observed in crude protein (p = 0.61), ether extract (p = 0.08), crude fiber (p = 0.14), ash (p = 0.22), or amino acid profiles (p > 0.05). These findings indicate that all drying methods preserved the nutritional value of cricket powder, and based on the overall results, hot-air-oven drying is the most suitable method for producing high-quality cricket meal with optimal physical properties and feed value, while also providing a practical balance between drying efficiency and cost. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

19 pages, 1579 KiB  
Article
Plasma-Treated Water Effect on Sporulating Bacillus cereus vs. Non-Sporulating Listeria monocytogenes Biofilm Cell Vitality
by Samantha Nestel, Robert Wagner, Mareike Meister, Thomas Weihe and Uta Schnabel
Appl. Microbiol. 2025, 5(3), 80; https://doi.org/10.3390/applmicrobiol5030080 - 5 Aug 2025
Abstract
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have [...] Read more.
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have compounding effects on the color, texture, flavor, and nutritional quality of the product or do not effectively reduce the pathogens that food can be exposed to. Some bacterial pathogens particularly possess traits and tactics that make them even more difficult to mitigate such as biofilm formation. Non-thermal plasma sanitation techniques, including plasma-treated water (PTW), have proven to be promising methods that significantly reduce pathogenic bacteria that food is exposed to. Published work reveals that PTW can effectively mitigate both gram-positive and gram-negative bacterial biofilms. This study presents a novel analysis of the differences in antimicrobial effects of PTW treatment between biofilm-forming gram-positive bacteria, commonly associated with foodborne illness, that are sporulating (Bacillus cereus) and non-sporulating (Listeria monocytogenes). After treatment with PTW, the results suggest the following hypotheses: (1) that the non-sporulating species experiences less membrane damage but a greater reduction in metabolic activity, leading to a possible viable but non-culturable (VBNC) state, and (2) that the sporulating species undergoes spore formation, which may subsequently convert into vegetative cells over time. PTW treatment on gram-positive bacterial biofilms that persist in food processing environments proves to be effective in reducing the proliferating abilities of the bacteria. However, the variance in PTW’s effects on metabolic activity and cell vitality between sporulating and non-sporulating species suggest that other survival tactics might be induced. This analysis further informs the application of PTW in food processing as an effective sanitation method. Full article
Show Figures

Graphical abstract

20 pages, 4580 KiB  
Article
Increased Oxygen Treatment in the Fermentation Process Improves the Taste and Liquor Color Qualities of Black Tea
by Xinfeng Jiang, Xin Lei, Chen Li, Lixian Wang, Xiaoling Wang and Heyuan Jiang
Foods 2025, 14(15), 2736; https://doi.org/10.3390/foods14152736 - 5 Aug 2025
Abstract
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation [...] Read more.
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation on the flavor attributes and chemical properties of Congou black tea. Fresh tea leaves (variety “Fuyun 6”) were subjected to four oxygen treatments: 0 h (CK), 1 h (TY-1h), 2 h (TY-2h), and 3 h (TY-3h), with oxygen supplied at 8.0 L/min. Sensory evaluation revealed that oxygen-treated samples exhibited tighter and deeper-colored leaves, a redder liquor, fuller taste, and a sweeter fragrance compared with CK. Chromatic analysis showed significant increases in redness (a*) and luminance (L*), alongside reduced yellowness (b*), indicating enhanced liquor color. Chemical analyses demonstrated elevated levels of TFs, TRs, and TBs in oxygen treatments, with TRs showing the most pronounced increase. Non-targeted metabolomics identified 2318 non-volatile and 761 volatile metabolites, highlighting upregulated flavonoids, phenolic acids, and lipids, and downregulated catechins and tannins, which collectively contributed to improved taste and aroma. Optimal results were achieved with 2–3 h of oxygen treatment, balancing pigment formation and sensory quality. These findings can provide a scientific basis for optimizing oxygen conditions in black tea fermentation to improve product quality. Full article
(This article belongs to the Collection Advances in Tea Chemistry)
Show Figures

Figure 1

29 pages, 1407 KiB  
Article
Symmetry-Driven Two-Population Collaborative Differential Evolution for Parallel Machine Scheduling in Lace Dyeing with Probabilistic Re-Dyeing Operations
by Jing Wang, Jingsheng Lian, Youpeng Deng, Lang Pan, Huan Xue, Yanming Chen, Debiao Li, Xixing Li and Deming Lei
Symmetry 2025, 17(8), 1243; https://doi.org/10.3390/sym17081243 - 5 Aug 2025
Abstract
In lace textile manufacturing, the dyeing process in parallel machine environments faces challenges from sequence-dependent setup times due to color family transitions, machine eligibility constraints based on weight capacities, and probabilistic re-dyeing operations arising from quality inspection failures, which often lead to increased [...] Read more.
In lace textile manufacturing, the dyeing process in parallel machine environments faces challenges from sequence-dependent setup times due to color family transitions, machine eligibility constraints based on weight capacities, and probabilistic re-dyeing operations arising from quality inspection failures, which often lead to increased tardiness. To tackle this multi-constrained problem, a stochastic integer programming model is formulated to minimize total estimated tardiness. A novel symmetry-driven two-population collaborative differential evolution (TCDE) algorithm is then proposed. It features two symmetrically complementary subpopulations that achieve a balance between global exploration and local exploitation. One subpopulation employs chaotic parameter adaptation through a logistic map for symmetrically enhanced exploration, while the other adjusts parameters based on population diversity and convergence speed to facilitate symmetry-aware exploitation. Moreover, it also incorporates a symmetrical collaborative mechanism that includes the periodic migration of top individuals between subpopulations, along with elite-set guidance, to enhance both population diversity and convergence efficiency. Extensive computational experiments were conducted on 21 small-scale (optimally validated via CVX) and 15 large-scale synthetic datasets, as well as 21 small-scale (similarly validated) and 20 large-scale industrial datasets. These experiments demonstrate that TCDE significantly outperforms state-of-the-art comparative methods. Ablation studies also further verify the critical role of its symmetry-based components, with computational results confirming its superiority in solving the considered problem. Full article
(This article belongs to the Special Issue Meta-Heuristics for Manufacturing Systems Optimization, 3rd Edition)
Show Figures

Figure 1

24 pages, 15241 KiB  
Article
Diffusion Model-Based Cartoon Style Transfer for Real-World 3D Scenes
by Yuhang Chen, Haoran Zhou, Jing Chen, Nai Yang, Jing Zhao and Yi Chao
ISPRS Int. J. Geo-Inf. 2025, 14(8), 303; https://doi.org/10.3390/ijgi14080303 - 4 Aug 2025
Abstract
Traditional map style transfer methods are mostly based on GAN, which are either overly artistic at the expense of conveying information, or insufficiently aesthetic by simply changing the color scheme of the map image. These methods often struggle to balance style transfer with [...] Read more.
Traditional map style transfer methods are mostly based on GAN, which are either overly artistic at the expense of conveying information, or insufficiently aesthetic by simply changing the color scheme of the map image. These methods often struggle to balance style transfer with semantic preservation and lack consistency in their transfer effects. In recent years, diffusion models have made significant progress in the field of image processing and have shown great potential in image-style transfer tasks. Inspired by these advances, this paper presents a method for transferring real-world 3D scenes to a cartoon style without the need for additional input condition guidance. The method combines pre-trained LDM with LoRA models to achieve stable and high-quality style infusion. By integrating DDIM Inversion, ControlNet, and MultiDiffusion strategies, it achieves the cartoon style transfer of real-world 3D scenes through initial noise control, detail redrawing, and global coordination. Qualitative and quantitative analyses, as well as user studies, indicate that our method effectively injects a cartoon style while preserving the semantic content of the real-world 3D scene, maintaining a high degree of consistency in style transfer. This paper offers a new perspective for map style transfer. Full article
Show Figures

Figure 1

15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 (registering DOI) - 4 Aug 2025
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

19 pages, 2441 KiB  
Article
Simulation and Statistical Validation Method for Evaluating Daylighting Performance in Hot Climates
by Nivin Sherif, Ahmed Yehia and Walaa S. E. Ismaeel
Urban Sci. 2025, 9(8), 303; https://doi.org/10.3390/urbansci9080303 - 4 Aug 2025
Abstract
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three [...] Read more.
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three critical variables: glazing type (clear, blue, and dark), Window-to-Wall Ratio (WWR) of 15%, 50%, 75%, and indoor wall finish (light, moderate, dark) colors. These were compared to the Leadership in Energy and Environmental Design (LEED) daylighting quality thresholds. The results revealed that clear glazing paired with high WWR (75%) achieved the highest Spatial Daylight Autonomy (sDA), reaching up to 92% in living spaces. However, this also led to elevated Annual Sunlight Exposure (ASE), with peak values of 53%, exceeding the LEED discomfort threshold of 10%. Blue and dark glazing types successfully reduced ASE to as low as 0–13%, yet often resulted in underlit spaces, especially in private rooms such as bedrooms and bathrooms, with sDA values falling below 20%. A 50% WWR emerged as the optimal balance, providing consistent daylight distribution while maintaining ASE within acceptable limits (≤33%). Similarly, moderate color wall finishes delivered the most balanced lighting performance, enhancing sDA by up to 30% while controlling reflective glare. Statistical analysis using Pearson correlation revealed a strong positive relationship between sDA and ASE (r = 0.84) in highly glazed, clear glass scenarios. Sensitivity analysis further indicated that low WWR configurations of 15% were highly influenced by glazing and finishing types, leading to variability in daylight metrics reaching ±40%. The study concludes that moderate glazing (blue), medium WWR (50%), and moderate color indoor finishes provide the most robust daylighting performance across diverse room types. These findings support an evidence-based approach to façade design, promoting visual comfort, daylight quality, and sustainable building practices. Full article
(This article belongs to the Topic Application of Smart Technologies in Buildings)
Show Figures

Figure 1

17 pages, 3360 KiB  
Article
Efficient and Selective Multiple Ion Chemosensor by Novel Near-Infrared Sensitive Symmetrical Squaraine Dye Probe
by Sushma Thapa, Kshitij RB Singh and Shyam S. Pandey
Chemosensors 2025, 13(8), 288; https://doi.org/10.3390/chemosensors13080288 - 4 Aug 2025
Abstract
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the [...] Read more.
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the solvent environment: It selectively detects Cu2+ in acetonitrile and Ag+ in an ethanol–water mixture. Upon binding with either ion, SQ-68 undergoes significant absorption changes in the NIR region, accompanied by visible color changes, enabling naked-eye detection. Spectroscopic studies confirm a 1:1 binding stoichiometry with both Cu2+ and Ag+, accompanied by hypochromism. The detection limits are 0.09 μM for Cu2+ and 0.38 μM for Ag+, supporting highly sensitive quantification. The sensor’s practical applicability was validated in real water samples (sea, lake, and tap water), with recovery rates ranging from 73–95% for Cu2+ to 59–99% for Ag+. These results establish SQ-68 as a reliable and efficient chemosensor for environmental monitoring and water quality assessment. Its dual-analyte capability, solvent-tunable selectivity, and visual detection features make it a promising tool for rapid and accurate detection of heavy metal ions in diverse aqueous environments. Full article
Show Figures

Figure 1

12 pages, 249 KiB  
Article
Optimization of Grist Composition for Mash Production from Unmalted Wheat and Wheat Malt of Red Winter Wheat with Hybrid Endosperm Type
by Kristina Habschied, Iztok Jože Košir, Miha Ocvirk, Krešimir Mastanjević and Vinko Krstanović
Beverages 2025, 11(4), 110; https://doi.org/10.3390/beverages11040110 - 4 Aug 2025
Viewed by 66
Abstract
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and [...] Read more.
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and as wheat malt. The quality of the starting wheats, the resulting malts and mashs with different added wheat proportions (100, 80, 60, 40, 20 and 0%) were examined. The obtained results show that the maximum shares of wheat/wheat malt in the infusion are significantly different between varieties of similar initial quality. However, they can differ considerably for the same variety when it is used as unmalted raw material and when it is used as wheat malt. Wheat malt can be added to the mixture in a significantly larger proportion compared to unmalted wheat. Furthermore, when an extended number of criteria (parameters) are applied, some varieties may be acceptable that otherwise would not be if the basic number of parameters were applied (total protein—TP, total soluble protein—TSP and viscosity—VIS) and vice versa. The inclusion of other parameters—filtration speed (FIL), saccharification time (SAC), color (COL), proportion of fine extract (EXT) and fermentability of pomace (FAL) (some of which have the character of so-called “cumulative parameters”)—complicates a clear classification into the aforementioned qualitative groups but also increases the number of varieties acceptable or conditionally acceptable for brewing. Full article
Show Figures

Graphical abstract

21 pages, 2189 KiB  
Article
Effects of Salicylic Acid Application Method and Concentration on the Growth and Ornamental Quality of Poinsettia (Euphorbia pulcherrima Willd.)
by Alessandro Esposito, Alessandro Miceli, Filippo Vetrano, Samantha Campo and Alessandra Moncada
Horticulturae 2025, 11(8), 904; https://doi.org/10.3390/horticulturae11080904 (registering DOI) - 4 Aug 2025
Viewed by 75
Abstract
In the context of increasing demand for sustainable floriculture, this study evaluated the effects of salicylic acid (SA) on phenotypic traits of poinsettia (Euphorbia pulcherrima Willd.). A factorial experiment was conducted in a commercial glasshouse using rooted poinsettia cuttings treated with three [...] Read more.
In the context of increasing demand for sustainable floriculture, this study evaluated the effects of salicylic acid (SA) on phenotypic traits of poinsettia (Euphorbia pulcherrima Willd.). A factorial experiment was conducted in a commercial glasshouse using rooted poinsettia cuttings treated with three SA concentrations (10−3, 10−4, 10−5 M) applied via foliar or root application. Morphological parameters, colorimetric traits (CIELAB), canopy development, and biomass accumulation were assessed throughout the cultivation cycle. SA had no significant influence on the plant height, leaf number, or biomass of stems, leaves, and roots. However, notable phenotypic changes were observed. Foliar applications, particularly at 10−5 M, induced visible changes in leaf and bract color, including reduced brightness, saturation, and red pigmentation, especially in newly developed tissues. Conversely, root applications had milder effects and were generally associated with a more stable bract color. The 10−4 M root treatment promoted greater bract surface and color saturation. Canopy expansion and dry matter accumulation were also influenced by SA in a dose- and method-dependent manner, with high-dose foliar treatments (10−3 M) exerting suppressive effects. These findings suggest that the application mode and concentration of SA are critical in modulating ornamental quality traits, with low-to-moderate doses—particularly via root application—offering promising strategies to enhance plant performance in sustainable poinsettia cultivation. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

Back to TopTop