The Impact of an Object’s Surface Material and Preparatory Actions on the Accuracy of Optical Coordinate Measurement
Abstract
1. Introduction
2. Materials and Methods
- −
- Ceramic sphere ϕ30.00050 mm;
- −
- Matte-finished tungsten carbide sphere ϕ29.99723 mm;
- −
- Tungsten carbide sphere ϕ25.00039 mm;
- −
- Aluminum oxide sphere ϕ24.99013 mm;
- −
- Titanium nitride-coated steel sphere ϕ24.98043 mm;
- −
- Photopolymer resin sphere ϕ29.99300 mm.
3. Results
3.1. Results of Determining the Diameters of Reference Spheres from Various Materials
3.1.1. Preliminary Tests
3.1.2. Results of the Diameters of Reference Spheres Measured Without Matting
3.1.3. Results of the Diameters of Reference Spheres Measured with Matting
- −
- The photopolymer resin sphere, for which the diameter value was definitely closer to the reference one (0.138 mm—deviation without matting, −0.023 mm—deviation with matting),
- −
- The aluminum oxide sphere, where matting enabled the acquisition of measurement data; nevertheless, they still differ significantly from the reference values (−0.256 mm—deviation with matting).
3.2. Results of Color Tests—Supplementary
4. Discussion
- −
- Matting the surface of the object being measured by applying the powder.(In the case of objects with more complex geometries or surface finishes, the authors recommend the use of a self-sublimating spray, as manual removal of permanent spray may be problematic in hard-to-reach areas. However, the sublimation time should be considered, and the product should be selected accordingly to match the anticipated measurement duration.)
- −
- Etching the surface layer of the measured object (less common).
- −
- Optimal selection of scanning parameters, including the problematic type of the surface: number of points, resolution, beam and intensity.
- −
- Point cloud filtration, e.g., using the least squares method, noise reduction, or model polygonization.
- −
- Manual reduction of the point cloud with elements originating from reflections.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Catalucci, S.; Thompson, A.; Eastwood, J.; Zhang, Z.M.; Branson, D.T., III; Leach, R.; Piano, S. Smart optical coordinate and surface metrology. Meas. Sci. Technol. 2023, 34, 012001. [Google Scholar] [CrossRef]
- Buhmann, M.; Roth, R.; Liebrich, T.; Frick, K.; Carelli, E.; Marxer, M. New positioning procedure for optical probes integrated on ultra-precision diamond turning machines. CIRP Ann. Manuf. Technol. 2020, 69, 473–476. [Google Scholar] [CrossRef]
- Abdelazeem, M.; Elamin, A.; Afifi, A.; El-Rabbany, A. Multi-sensor point cloud data fusion for precise 3D mapping. Egypt. J. Remote Sens. Space Sci. 2021, 24, 835–844. [Google Scholar] [CrossRef]
- Sładek, J. Coordinate Metrology—Accuracy of Systems and Measurements; Springe: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-48463-0. [Google Scholar]
- Geng, J. Structured-light 3D surface imaging: A tutorial. Adv. Opt. Photonics 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Market Research Future Page. Available online: https://www.marketresearchfuture.com/reports/optical-coordinate-measuring-machine-market-29305 (accessed on 17 July 2025).
- Humienny, Z. Geometrical Tolerances—Separate, Combined or Simultaneous? Appl. Sci. 2023, 13, 6106. [Google Scholar] [CrossRef]
- Harmatys, W.; Gąska, P.; Gąska, A.; Gruza, M.; Jedynak, M.; Kobiela, K.; Marxer, M. Applicability Assessment of Different Materials for Standards Ensuring Comparability of Optical and Tactile Coordinate Measurements. Materials 2022, 15, 4128. [Google Scholar] [CrossRef]
- Bernstein, J.; Weckenmann, A. Measurement uncertainty evaluation of optical multi-sensor measurements. Measurement 2012, 45, 2309–2320. [Google Scholar] [CrossRef]
- Carmignato, S.; Voltan, A.; Savio, E. Quantification of uncertainty contributors in coordinate measurements using video probes. In Proceedings of the 7th International Conference European Society for Precision Engineering and Nanotechnology 2007, Bremen, Germany, 20–24 May 2007. [Google Scholar]
- Forbes, A. Approximate models of CMM behaviour and point cloud uncertainties. Meas. Sens. 2021, 18, 100304. [Google Scholar] [CrossRef]
- Guerra, M.G.; Gregersen, S.K.S.; Frisvad, J.R.; De Chiffre, L.; Lavecchia, F.; Galantucci, L.M. Measurement of polymers with 3D optical scanners: Evaluation of the subsurface scattering effect through five miniature step gauges. Meas. Sci. Technol. 2019, 31, 015010. [Google Scholar] [CrossRef]
- Voisin, S.; Page, D.L.; Foufou, S.; Truchetet, F.; Abidi, M.A. Color influence on accuracy of 3D scanners based on structured light. Mach. Vis. Appl. Ind. Insp. XIV 2006, 6070, 72–80. [Google Scholar] [CrossRef]
- Zaimović-Uzunović, N.; Lemeš, S. Influences of Surface Parameters on Laser 3D Scanning. In Proceedings of the IMEKO Conference: International Symposium on Measurement and Quality Control 2010, Osaka, Japan, 5–9 September 2010. [Google Scholar]
- Owczarek, D.; Ostrowska, K.; Jedynak, M.; Krawczyk, M.; Gąska, A. Evaluation of the influence of the surface dulling process on the result of coordinate optical measurement. Meas. Sens. 2025, 38, 101778. [Google Scholar] [CrossRef]
- Ohtani, K.; Li, L.; Baba, M. Determining the surface shape of translucent objects by using a laser rangefinder. In Proceedings of the IEEE/SICE International Symposium on System Integration, SII 2013, Kobe, Japan, 15–17 December 2013; pp. 454–459. [Google Scholar]
- Carmignato, S.; De Chiffre, L.; Bosse, H.; Leach, R.K.; Balsamo, A.; Estler, W.T. Dimensional artefacts to achieve metrological traceability in advanced manufacturing. CIRP Ann. Manuf. Technol. 2020, 69, 693–716. [Google Scholar] [CrossRef]
- Liu, C.S.; Lin, J.J.; Chen, B.R. A novel 3D scanning technique for reflective metal surface based on HDR-like image from pseudo exposure image fusion method. Opt. Lasers Eng. 2023, 168, 107688. [Google Scholar] [CrossRef]
- Aubreton, O.; Bajard, A.; Verney, B.; Truchetet, F. Infrared system for 3D scanning of metallic surfaces. Mach. Vis. Appl. 2013, 24, 1513–1524. [Google Scholar] [CrossRef]
- Speck, H.; Landmann, M.; Ramm, R.; Heist, S.; Kühmstedt, P.; Notni, G. Analysis of the measurement accuracy of a thermal 3D sensor for transparent objects. Meas. Sens. 2025, 38, 101319. [Google Scholar] [CrossRef]
- Junger, C.; Speck, H.; Landmann, M.; Srokos, K.; Notni, G. TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation. Sensors 2023, 23, 8567. [Google Scholar] [CrossRef]
- Franke, J.; Koutecký, T.; Koutný, D. Comparison of Sublimation 3D Scanning Sprays in Terms of Their Effect on the Resulting 3D Scan, Thickness, and Sublimation Time. Materials 2023, 16, 6165. [Google Scholar] [CrossRef]
- Hruboš, D.; Koutecký, T.; Paloušek, D. An experimental study for determination of an application method and TiO2 powder to ensure the thinnest matte coating layer for 3D optical scanning. Measurement 2019, 136, 42–49. [Google Scholar] [CrossRef]
- Formlab Home Page. Available online: https://formlabs.com/store/materials/tough-2000-resin/?srsltid=AfmBOoroi4JOR_CTSKyGWrHp8ESSfK8QvC77GrrPSCDPmgWXauF3srNC (accessed on 31 October 2024).
- Harmatys, W.; Owczarek, D.; Kobiela, K.; Jarocha, A. Assessment of the accuracy of standards manufactured by SLA additive technology. Meas. Sens. 2025, 38, 101661. [Google Scholar] [CrossRef]
- Górski, F.; Wichniarek, R.; Kuczko, W.; Żukowska, M. Study on Properties of Automatically Designed 3D-Printed Customized Prosthetic Sockets. Materials 2023, 14, 5240. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Li, B. A Rapid Method to Achieve Aero-Engine Blade Form Detection. Sensors 2015, 15, 12782. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, D. Uncertainty Model in Optical Coordinate Measurement; Monograph Cracow University of Technology: Cracow, Poland, 2017; ISBN 978-83-7242-984-1. [Google Scholar]
- ISO 10360-8:2013; Geometrical Product Specifications (GPS)—Acceptance and Reverification Tests for coordinate Measuring Systems (CMS) Part 8: CMMs with Optical Distance Sensors. ISO: Geneva, Switzerland, 2013.
- ISO/CD TS 15530-2; Geometrical Product Specifications (GPS)—Coordinate Measuring Machines (CMM): Technique for Determining the Uncertainty of Measurement, Part 2: Evaluating Task-Specific Measurement Uncertainty by Multiple Measurement Strategies Using a Single Uncalibrated Workpiece. ISO: Geneva, Switzerland, 2016.
- ISO 2813:2014; Paints and Varnishes—Determination of Gloss Value at 20°, 60° and 85°. ISO: Geneva, Switzerland, 2014.
Sphere | Nominal Value, mm | Measured Value, mm | Uncertainty, mm | Difference, mm | |
---|---|---|---|---|---|
(a) Ceramic (AQ662) | 30.00050 | 30.012 | 0.057 | 0.012 | |
(b) Matte-finished tungsten carbide (136091) | 29.99723 | 29.940 | 0.055 | −0.057 | |
(c) Tungsten carbide (137518) | 25.00039 | 24.915 | 0.061 | −0.085 | |
(d) Aluminum oxide (D0953) | 24.99013 | not-measured | - | - | |
(e) Titanium nitride-coated steel (LMW_OPT_25) | 24.98043 | 24.921 | 0.045 | −0.059 | |
(f) Photopolymer resin | 29.99300 | 30.131 | 0.069 | 0.138 |
Sphere | Nominal Value, mm | Measured Value, mm | Uncertainty, mm | Difference, mm | |
---|---|---|---|---|---|
(a) Ceramic (AQ662) | 30.00050 | 30.072 | 0.034 | 0.072 | |
(b) Matte-finished tungsten carbide (136091) | 29.99723 | 29.936 | 0.039 | −0.061 | |
(c) Tungsten carbide (137518) | 25.00039 | 24.917 | 0.040 | −0.083 | |
(d) Aluminum oxide (D0953) | 24.99013 | 24.734 | 0.078 | −0.256 | |
(e) Titanium nitride-coated steel (LMW_OPT_25) | 24.98043 | 24.933 | 0.036 | −0.047 | |
(f) Photopolymer resin | 29.99300 | 29.970 | 0.049 | −0.023 |
Sphere | Code | Without Matting | Code | After Matting |
---|---|---|---|---|
Ceramic (AQ662) | #e6dfd3 | #e5e4d8 | ||
Matte-finished tungsten carbide (136091) | #7a6e7a | #cfd1d2 | ||
Tungsten carbide (137518) | #8a8453 | #a2a1ad | ||
Aluminum oxide (D0953) | #dacbb2 | #e3d8cf | ||
Titanium nitride-coated steel (LMW_OPT_25) | #dda959 | #cbb79d | ||
Photopolymer resin | #525762 | #b3b8bc |
Parameter | Easy-to-Scan | Hard-to-Scan | ||
---|---|---|---|---|
Material properties | Matte Gloss Range 0–10 GU * Reflectance Range 0–20% | Glossy, Transparent, Translucent, Varnished Gloss Range 70–100 GU * Reflectance Range 60–100% | ||
Color | Light color L (50–100) ** | Black color L (0–50) ** also red, green, depending on the system used | ||
Form | Simple free access to measured surfaces, e.g., basic geometric element | Complex, difficult access to measured surfaces, e.g., deep holes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owczarek, D.; Ostrowska, K.; Sładek, J.; Gąska, A.; Harmatys, W.; Tomczyk, K.; Ignjatović, D.; Sieja, M. The Impact of an Object’s Surface Material and Preparatory Actions on the Accuracy of Optical Coordinate Measurement. Materials 2025, 18, 3693. https://doi.org/10.3390/ma18153693
Owczarek D, Ostrowska K, Sładek J, Gąska A, Harmatys W, Tomczyk K, Ignjatović D, Sieja M. The Impact of an Object’s Surface Material and Preparatory Actions on the Accuracy of Optical Coordinate Measurement. Materials. 2025; 18(15):3693. https://doi.org/10.3390/ma18153693
Chicago/Turabian StyleOwczarek, Danuta, Ksenia Ostrowska, Jerzy Sładek, Adam Gąska, Wiktor Harmatys, Krzysztof Tomczyk, Danijela Ignjatović, and Marek Sieja. 2025. "The Impact of an Object’s Surface Material and Preparatory Actions on the Accuracy of Optical Coordinate Measurement" Materials 18, no. 15: 3693. https://doi.org/10.3390/ma18153693
APA StyleOwczarek, D., Ostrowska, K., Sładek, J., Gąska, A., Harmatys, W., Tomczyk, K., Ignjatović, D., & Sieja, M. (2025). The Impact of an Object’s Surface Material and Preparatory Actions on the Accuracy of Optical Coordinate Measurement. Materials, 18(15), 3693. https://doi.org/10.3390/ma18153693