Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (282)

Search Parameters:
Keywords = colloidal crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5706 KiB  
Article
In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs
by Hui Yang, Jian Zhang, Zhiwei Wang, Shichao Li, Qiang Wei, Yunteng He, Luyao Li, Jiachang Zhao, Caihong Xu and Zongbo Zhang
Gels 2025, 11(6), 405; https://doi.org/10.3390/gels11060405 - 29 May 2025
Viewed by 427
Abstract
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their [...] Read more.
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their short gelation time under high-temperature reservoir conditions (e.g., >120 °C) limits effective in-depth water shutoff and conformance control. To address this, we developed a hydrogel system via the in situ cross-linking of polyacrylamide (PAM) with phenolic resin (PR), reinforced by silica sol (SS) nanoparticles. We employed a variety of research methods, including bottle tests, viscosity and rheology measurements, scanning electron microscopy (SEM) scanning, density functional theory (DFT) calculations, differential scanning calorimetry (DSC) measurements, quartz crystal microbalance with dissipation (QCM-D) measurement, contact angle (CA) measurement, injectivity and temporary plugging performance evaluations, etc. The composite gel exhibits an exceptional gelation period of 72 h at 130 °C, surpassing conventional systems by more than 4.5 times in terms of duration. The gelation rate remains almost unchanged with the introduction of SS, due to the highly pre-dispersed silica nanoparticles that provide exceptional colloidal stability and the system’s pH changing slightly throughout the gelation process. DFT and SEM results reveal that synergistic interactions between organic (PAM-PR networks) and inorganic (SS) components create a stacked hybrid network, enhancing both mechanical strength and thermal stability. A core flooding experiment demonstrates that the gel system achieves 92.4% plugging efficiency. The tailored nanocomposite allows for the precise management of gelation kinetics and microstructure formation, effectively addressing water control and enhancing the plugging effect in high-temperature reservoirs. These findings advance the mechanistic understanding of organic–inorganic hybrid gel systems and provide a framework for developing next-generation EOR technologies under extreme reservoir conditions. Full article
Show Figures

Figure 1

25 pages, 5203 KiB  
Review
Oxide and Hydrogel Inverse Opals and Their Applications as Physical, Chemical and Biological Sensors
by Peter Hutchison, Peter Kingshott and Aimin Yu
Sensors 2025, 25(11), 3370; https://doi.org/10.3390/s25113370 - 27 May 2025
Viewed by 707
Abstract
Inverse opal (IO) structures based on photonic colloidal crystal (PCC) templates are types of materials that possess unique optical properties due to their ordered arrays. These materials have the ability to manipulate the propagation of light, producing unique reflection spectra and structural colours. [...] Read more.
Inverse opal (IO) structures based on photonic colloidal crystal (PCC) templates are types of materials that possess unique optical properties due to their ordered arrays. These materials have the ability to manipulate the propagation of light, producing unique reflection spectra and structural colours. Due to these properties, IOs have been used as optical sensors for various applications such as the detection of physical, chemical, and biological entities. This review begins with a brief introduction of PCCs, IOs and their preparation procedures. The recent advancements in the applications of IOs for sensing temperature, pH, humidity, chemical compounds (such as organic solvents and heavy metal ions), and biological entities (such as tumour cells, viruses and bacteria) are then discussed in detail. The review also explores strategies and techniques aimed at enhancing the sensitivity and lowering the limit of detection of IO-based sensors. Finally, it addresses the current challenges, existing limitations, and prospective future directions in the development and deployment of IO-based sensors. Full article
(This article belongs to the Special Issue New Sensors Based on Inorganic Material)
Show Figures

Figure 1

13 pages, 3492 KiB  
Article
Magnetic Field Control of Liquid Crystal-Enabled Colloid Electrophoresis
by Joel Torres-Andrés, Guillermo Cassinello, Francesc Sagués and Jordi Ignés-Mullol
Colloids Interfaces 2025, 9(3), 27; https://doi.org/10.3390/colloids9030027 - 6 May 2025
Viewed by 753
Abstract
Microswimmers are key for unveiling new physical phenomena underlying their propulsion, especially when driven inside complex fluids. Liquid crystals are anisotropic complex fluids that feature long-range orientational order. The propulsion of non-charged dielectric particles can be accomplished in these systems by breaking the [...] Read more.
Microswimmers are key for unveiling new physical phenomena underlying their propulsion, especially when driven inside complex fluids. Liquid crystals are anisotropic complex fluids that feature long-range orientational order. The propulsion of non-charged dielectric particles can be accomplished in these systems by breaking the particles’ fore-aft symmetry thanks to anisotropies in the conductivity and dielectric permittivity parameters of the liquid crystal. Under the application of an AC electric field, asymmetric osmotic flows are generated to propel non-spherical particles, whose direction of motion depends on the orientational order of the liquid crystal molecules around the inclusions. This means that, by controlling the LC orientation, one will be able to steer driven colloidal inclusions. In this experimental work, we show that a homogeneous magnetic field that is able to control the orientation of the liquid crystal molecules also allows us to determine the direction of motion of driven particles without significant changes in the propulsion mechanism. Additionally, we show that a radial configuration of the magnetic field lines can be used to generate topological defects in the liquid crystal orientational field that attract colloidal particles, leading to their clustering as rotating mills. The generated clusters were tested to study the collective motion of particles, suggesting the presence of particle–particle interactions. Full article
Show Figures

Graphical abstract

18 pages, 12080 KiB  
Article
Synergistic Regulation of Soil Salinity and Ion Transport in Arid Agroecosystems: A Field Study on Drip Irrigation and Subsurface Drainage in Xinjiang, China
by Qianqian Zhu, Hui Wang, Honghong Ma, Feng Ding, Wanli Xu, Xiaopeng Ma and Yanbo Fu
Water 2025, 17(9), 1388; https://doi.org/10.3390/w17091388 - 5 May 2025
Viewed by 579
Abstract
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating [...] Read more.
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating surface salinity, often leads to secondary salinization due to elevated water tables and inefficient leaching. Recent studies highlight the potential of integrating drip irrigation with subsurface drainage systems to address these challenges, yet the synergistic mechanisms governing ion transport dynamics, hydrochemical thresholds, and their interaction with crop physiology remain poorly understood. In this study, we analyzed the effects of spring irrigation during the non-fertile period, soil hydrochemistry variations, and salt ion dynamics across three arid agroecosystems in Xinjiang. By coupling drip irrigation with optimized subsurface drainage configurations (burial depths: 1.4–1.6 m; lateral spacing: 20–40 m), we reveal a layer-domain differentiation in salt migration, Cl and Na+ were leached to 40–60 cm depths, while SO42− formed a “stagnant salt layer” at 20–40 cm due to soil colloid adsorption. Post-irrigation hydrochemical shifts included a 40% decline in conductivity, emphasizing the risk of adsorbed ion retention. Subsurface drainage systems suppressed capillary-driven salinity resurgence, maintaining salinity at 8–12 g·kg−1 in root zones during critical growth stages. This study establishes a “surface suppression–middle blocking–deep leaching” three-dimensional salinity control model, providing actionable insights for mitigating secondary salinization in arid agroecosystems. Full article
(This article belongs to the Special Issue Advanced Technologies in Agricultural Water-Saving Irrigation)
Show Figures

Figure 1

15 pages, 2187 KiB  
Review
Sustainable Strategies for Wine Colloidal Stability: Innovations in Potassium Bitartrate Crystallization Control
by Yuhan Zhang
Crystals 2025, 15(5), 401; https://doi.org/10.3390/cryst15050401 - 25 Apr 2025
Viewed by 708
Abstract
Potassium bitartrate (KHT) crystallization, as the dominant factor compromising wine colloidal stability, necessitates advanced control strategies beyond conventional thermodynamic approaches. The formation of tartrate crystals is influenced by various factors, including temperature, pH, and the concentration of tartrate salts. Traditional methods of tartrate [...] Read more.
Potassium bitartrate (KHT) crystallization, as the dominant factor compromising wine colloidal stability, necessitates advanced control strategies beyond conventional thermodynamic approaches. The formation of tartrate crystals is influenced by various factors, including temperature, pH, and the concentration of tartrate salts. Traditional methods of tartrate stabilization, such as cold stabilization and ion-exchange resins, while effective, are associated with high energy consumption and significant environmental impact. In recent years, with the growing emphasis on green and sustainable development, researchers have begun exploring more environmentally friendly innovative technologies. This review examines the factors affecting tartrate crystallization and their implications for wine quality, detailing traditional stabilization techniques as well as newer methods involving protective colloids and stabilizers. Special attention is given to recent advancements in green technologies, such as plasma surface modification, the use of zeolites as wine processing aids, and the synergistic application of algal polysaccharides. Finally, the paper outlines future directions for tartrate stabilization technology, underscoring the importance of green and sustainable practices in the wine industry. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Figure 1

14 pages, 2615 KiB  
Article
Rheological Behavior of Ion-Doped Hydroxyapatite Slurries
by Zahid Abbas, Massimiliano Dapporto, Andreana Piancastelli, Davide Gardini, Anna Tampieri and Simone Sprio
J. Compos. Sci. 2025, 9(4), 181; https://doi.org/10.3390/jcs9040181 - 9 Apr 2025
Viewed by 685
Abstract
The present work investigates the rheological behavior of ceramic slurries made of hydroxyapatite powders doped with magnesium and strontium ions and selected as particularly relevant for biomedical applications. The incorporation of doping ions into the apatite crystal structure is a well-known way to [...] Read more.
The present work investigates the rheological behavior of ceramic slurries made of hydroxyapatite powders doped with magnesium and strontium ions and selected as particularly relevant for biomedical applications. The incorporation of doping ions into the apatite crystal structure is a well-known way to enhance the bioactivity of hydroxyapatite through compositional and structural changes, however, this also affects the rheological properties relevant to the fabrication of ceramic devices by forming techniques based on the manipulation of aqueous slurries. We analyzed the effect of different apatitic chemical compositions, powder content, and dispersant amount on the shear behavior and flowability of slurries, thus finding that the structural changes in hydroxyapatite induced by ion doping significantly affected the colloidal stability of the apatite powders and the viscoelasticity of the slurries. This leads to improved rheological behavior in the hydroxyapatite suspensions, which is suitable for the future development of ceramic slurries, particularly for achieving novel ceramic devices by extrusion-based techniques. Full article
Show Figures

Graphical abstract

11 pages, 2083 KiB  
Article
Unlocking the Potential of Na2Ti3O7-C Hollow Microspheres in Sodium-Ion Batteries via Template-Free Synthesis
by Yong-Gang Sun, Yu Hu, Li Dong, Ting-Ting Zhou, Xiang-Yu Qian, Fa-Jia Zhang, Jia-Qi Shen, Zhi-Yang Shan, Li-Ping Yang and Xi-Jie Lin
Nanomaterials 2025, 15(6), 423; https://doi.org/10.3390/nano15060423 - 10 Mar 2025
Viewed by 839
Abstract
Layered sodium trititanate (Na2Ti3O7) is a promising anode material for sodium-ion batteries due to its suitable charge/discharge plateaus, cost-effectiveness, and eco-friendliness. However, its slow Na+ diffusion kinetics, poor electron conductivity, and instability during cycling pose significant [...] Read more.
Layered sodium trititanate (Na2Ti3O7) is a promising anode material for sodium-ion batteries due to its suitable charge/discharge plateaus, cost-effectiveness, and eco-friendliness. However, its slow Na+ diffusion kinetics, poor electron conductivity, and instability during cycling pose significant challenges for practical applications. To address these issues, we developed a template-free method to synthesize Na2Ti3O7-C hollow microspheres. The synthesis began with polymerization-induced colloid aggregation to form a TiO2–urea–formaldehyde (TiO2-UF) precursor, which was then subjected to heat treatment to induce inward crystallization, creating hollow cavities within the microspheres. The hollow structure, combined with a conductive carbon matrix, significantly enhanced the cycling performance and rate capability of the material. When used as an anode, the Na2Ti3O7-C hollow microspheres exhibited a high reversible capacity of 188 mAh g1 at 0.2C and retained 169 mAh g1 after 500 cycles. Additionally, the material demonstrated excellent rate performance with capacities of 157, 133, 105, 77, 62, and 45 mAh g1 at current densities of 0.5, 1, 2, 5, 10, and 20C, respectively. This innovative approach provides a new strategy for developing high-performance sodium-ion battery anodes and has the potential to significantly advance the field of energy storage. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

16 pages, 7071 KiB  
Review
Doce de Leite Production: An Overview of the Different Industrial Production Technologies
by Caroline Barroso dos Anjos Pinto, Uwe Schwarzenbolz, Thomas Henle, Alan Frederick Wolfschoon-Pombo, Ítalo Tuler Perrone and Rodrigo Stephani
Dairy 2025, 6(2), 10; https://doi.org/10.3390/dairy6020010 - 21 Feb 2025
Cited by 1 | Viewed by 1397
Abstract
Doce de leite is a caramel-like confection, mainly produced in several Latin American countries, with increasing popularity worldwide. This overview outlines nine distinct industrial technologies for the production of doce de leite: (1) total batch manufacturing process; (2) batch manufacturing system with fractionated [...] Read more.
Doce de leite is a caramel-like confection, mainly produced in several Latin American countries, with increasing popularity worldwide. This overview outlines nine distinct industrial technologies for the production of doce de leite: (1) total batch manufacturing process; (2) batch manufacturing system with fractionated mix addition; (3) manufacturing with pre-concentration in a vacuum evaporator and finishing in an open pan; (4) manufacturing with pre-concentration in a vacuum evaporator, finishing in an open pan, and lactose micro-crystallization; (5) continuous flow manufacturing with total concentration in a vacuum evaporator and a viscosity control holding tank (hot well); (6) manufacturing with total concentration in a vacuum evaporator and sterilization in an autoclave system; (7) manufacturing with sucrose pre-caramelization and a total batch system; (8) manufacturing in colloidal mill without an evaporation process; and (9) manufacturing based of doce de leite bars with a sucrose crystallization stage. We conducted a literature review to gather data on the discussed processes and their principal characteristics, which may be pertinent to doce de leite manufacturers. The choice of a specific process will depend on the desired doce de leite characteristics, the type of doce de leite to be produced, and the manufacturing company’s requirements. When properly integrated, these technologies contribute to efficient and profitable production, yielding high-quality products with appropriate chemical, microbiological, and sensory characteristics at an industrial scale. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

28 pages, 7205 KiB  
Review
Physical and Chemical Preparation Techniques and Applications of Photonic Crystals: A Review
by Yifan Zhang, Lina Hu, Hengfei Zheng, Xiyue Cong, Sitian Fu, Qi Liu and Xiaoyi Chen
Crystals 2025, 15(2), 124; https://doi.org/10.3390/cryst15020124 - 24 Jan 2025
Cited by 2 | Viewed by 1523
Abstract
Photonic crystals, which are important functional materials, are formed by the periodic arrangement of materials with different dielectric constants that have photonic bandgaps and localization properties. Their preparation methods are primarily physical and chemical. Physical methods include mechanical drilling, layer-by-layer stacking, and precision [...] Read more.
Photonic crystals, which are important functional materials, are formed by the periodic arrangement of materials with different dielectric constants that have photonic bandgaps and localization properties. Their preparation methods are primarily physical and chemical. Physical methods include mechanical drilling, layer-by-layer stacking, and precision processing. Chemical methods primarily involve colloidal self-assembly methods. Various colloidal crystal self-assembly methods have been reported, each with its own advantages and disadvantages. Photonic crystals have important applications in many fields, such as optical communications, information technology, energy, biomedicine, and sensors, including high-performance optical fiber fabrication, photonic chip development, and solar cell efficiency enhancement. This paper reviews the latest progress in the preparation of photonic crystals using physical and self-assembly methods. Currently, the preparation and application of photonic crystals have made significant achievements; however, there are still challenges in terms of preparation accuracy, efficiency, cost, and application integration technology. With the future development of science and technology, breakthroughs are expected in novel structural development, preparation process optimization, and cross-field integration, which will continue to promote the progress of photonic crystals and social development. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

30 pages, 5215 KiB  
Review
SERS-Based Local Field Enhancement in Biosensing Applications
by Yangdong Xie, Jiling Xu, Danyang Shao, Yuxin Liu, Xuzhou Qu, Songtao Hu and Biao Dong
Molecules 2025, 30(1), 105; https://doi.org/10.3390/molecules30010105 - 30 Dec 2024
Cited by 5 | Viewed by 2117
Abstract
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the [...] Read more.
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures. This report delves into the advancements of the three latest types of SERS substrates: colloidal, chip-based, and tip-enhanced Raman spectroscopy. It explores the design principles, distinctive functionalities, and factors that influence SERS signal enhancement within various SERS-active nanomaterials. Furthermore, it provides an outlook on the future challenges and trends in the field. The insights presented are expected to aid researchers in the development and fabrication of SERS substrates that are not only more efficient but also more cost-effective. This progress is crucial for the multifunctionalization of SERS substrates and for their successful implementation in real-world applications. Full article
Show Figures

Figure 1

13 pages, 3082 KiB  
Article
Tungsten Diselenide Nanoparticles Produced via Femtosecond Ablation for SERS and Theranostics Applications
by Andrei Ushkov, Dmitriy Dyubo, Nadezhda Belozerova, Ivan Kazantsev, Dmitry Yakubovsky, Alexander Syuy, Gleb V. Tikhonowski, Daniil Tselikov, Ilya Martynov, Georgy Ermolaev, Dmitriy Grudinin, Alexander Melentev, Anton A. Popov, Alexander Chernov, Alexey D. Bolshakov, Andrey A. Vyshnevyy, Aleksey Arsenin, Andrei V. Kabashin, Gleb I. Tselikov and Valentyn Volkov
Nanomaterials 2025, 15(1), 4; https://doi.org/10.3390/nano15010004 - 24 Dec 2024
Cited by 4 | Viewed by 1318
Abstract
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles [...] Read more.
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level. The obtained nanoparticles absorb light stronger than the bulk crystal thanks to the local field enhancement, and they have a much higher photothermal conversion than conventional Si nanospheres. The highly mobile colloidal state of produced NPs makes them flexible for further application-dependent manipulations, which we demonstrated by creating substrates for SERS sensors. Full article
Show Figures

Figure 1

9 pages, 2206 KiB  
Article
Development of Model Representations of Materials with Ordered Distribution of Vacancies
by Ekaterina N. Muratova, Vyacheslav A. Moshnikov and Anton A. Zhilenkov
Crystals 2024, 14(12), 1095; https://doi.org/10.3390/cryst14121095 - 19 Dec 2024
Viewed by 660
Abstract
This paper presents an overview of research results on the physical and technological features of crystal formation with an ordered distribution of vacancies. It is noted that the composition and properties of complex chalcogenide phases are not always described by the traditional concepts [...] Read more.
This paper presents an overview of research results on the physical and technological features of crystal formation with an ordered distribution of vacancies. It is noted that the composition and properties of complex chalcogenide phases are not always described by the traditional concepts behind Kroeger’s theory. Model concepts are considered in which the carriers of properties in the crystalline state are not molecules, but an elementary crystalline element with a given arrangement of nodes with atoms and vacancies. It is established that the introduction of the term “quasi-element atom” of the zero group for a vacancy allows us to predict a number of compounds with an ordered distribution of vacancies. Examples of the analysis of peritectic multicomponent compounds and solid solutions based on them are given. Quasi-crystalline concepts are applicable to perovskite materials used in solar cells. It is shown that the photoluminescence of perovskite lead-cesium halides is determined by crystalline structural subunits i.e., the anionic octets. This is the reason for the improvement in the luminescent properties of colloidal quantum CsPbBr3 dots under radiation exposure conditions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3722 KiB  
Article
Regulation of TS-1 Zeolite with Small Particle Size by Colloidal Silicon Seed-Induced Synthesis and Application in Oxidative Desulfurization
by Tieqiang Ren, Yue Sun, Yujia Wang, Lulu Wang, Qian Yu, Lisheng Liang, Xianming Kong and Haiyan Wang
Materials 2024, 17(23), 5722; https://doi.org/10.3390/ma17235722 - 22 Nov 2024
Viewed by 862
Abstract
The dosages of colloidal silicon seeds in the seed-induced synthesis of TS-1 zeolites were investigated in detail. The characterization results revealed that the colloidal silicon seeds not only reduced the particle sizes but also promoted the incorporation of titanium atoms into the framework [...] Read more.
The dosages of colloidal silicon seeds in the seed-induced synthesis of TS-1 zeolites were investigated in detail. The characterization results revealed that the colloidal silicon seeds not only reduced the particle sizes but also promoted the incorporation of titanium atoms into the framework of TS-1 zeolites as prepared. SEM images and particle size distribution (PSD) confirmed that the particle sizes of TS-1 zeolite could be effectively reduced to about 150 nm. The lattice plane [2 1 0] and [0 2 0] of 7.0-Seed-TS-1 zeolite were well exposed, as observed by the HRTEM images. It is worth noting that the ratio of non-framework Ti atoms incorporated onto the surface of TS-1 zeolites increased slightly to 0.11% by XPS. By regulating the dosage of colloidal Si seeds and promoting rapid nucleation, the size of the crystals could be easily tuned, and then the resulting high external specific surface area and pore volume ensured the reactant accessibility to the active site. The TS-1 zeolites regulated by the 5.0~7.0% dosages of colloidal silicon seeds possessed high external specific surface areas (148.1 m2/g and 130.9 m2/g) and small particle sizes (about 150 nm). The oxidative desulfurization of 500 ppm DBT by 7.0-Seed-TS-1 zeolite could reach to 100%. Full article
Show Figures

Figure 1

12 pages, 5984 KiB  
Article
Experimental Investigations on Repair and Permeability Reduction for Single Sandstone Fracture Using a Mixed CaCO3 and Fe(OH)3 Precipitate
by Jinfeng Ju, Quansheng Li, Chenyu Wang and Yanan Fan
Appl. Sci. 2024, 14(22), 10617; https://doi.org/10.3390/app142210617 - 18 Nov 2024
Viewed by 748
Abstract
In China, groundwater loss caused by underground coal mining is becoming increasingly serious. The key to groundwater restoration is to repair mining-induced water-conducting fractures (WCFs) in the overlying strata. In this study, the adsorption–consolidation sealing characteristics of chemical precipitates were used to conduct [...] Read more.
In China, groundwater loss caused by underground coal mining is becoming increasingly serious. The key to groundwater restoration is to repair mining-induced water-conducting fractures (WCFs) in the overlying strata. In this study, the adsorption–consolidation sealing characteristics of chemical precipitates were used to conduct permeability reduction (PR) experiments, including adding mixed CaCO3 and Fe(OH)3 to a sandstone specimen with a single fracture at room temperature. An aqueous solution of Na2CO3 was used as the simulated groundwater, and a solution of mixed CaCl2 and FeCl2 was used as the repair reagent to simulate the water seepage conditions of a fractured rock mass. The two aqueous solutions were simultaneously injected into a single-fractured rock specimen at a constant flow rate. The experimental results show that the Fe(OH)3 colloid encapsulated CaCO3 crystals in a mixed precipitate, reducing the overall structural stability of the mixed precipitate and restricting repair and PR efficiency. However, the Fe(OH)3 precipitate had better PR efficiency in the initial stage of the experiment. Therefore, a better scheme was put forward to repair the WCF, utilizing a mixed Fe(OH)3 and CaCO3 precipitate with a molar ratio close to 1:4 in the early stage and a single CaCO3 precipitate in the later stage. Full article
Show Figures

Figure 1

17 pages, 3778 KiB  
Article
High-Performance Ammonia QCM Sensor Based on SnO2 Quantum Dots/Ti3C2Tx MXene Composites at Room Temperature
by Chong Li, Ran Tao, Jinqiao Hou, Huanming Wang, Chen Fu and Jingting Luo
Nanomaterials 2024, 14(22), 1835; https://doi.org/10.3390/nano14221835 - 16 Nov 2024
Cited by 2 | Viewed by 1649
Abstract
Ammonia (NH3) gas is prevalent in industrial production as a health hazardous gas. Consequently, it is essential to develop a straightforward, reliable, and stable NH3 sensor capable of operating at room temperature. This paper presents an innovative approach to modifying [...] Read more.
Ammonia (NH3) gas is prevalent in industrial production as a health hazardous gas. Consequently, it is essential to develop a straightforward, reliable, and stable NH3 sensor capable of operating at room temperature. This paper presents an innovative approach to modifying SnO2 colloidal quantum dots (CQDs) on the surface of Ti3C2Tx MXene to form a heterojunction, which introduces a significant number of adsorption sites and enhances the response of the sensor. Zero-dimensional (0D) SnO2 quantum dots and two-dimensional (2D) Ti3C2Tx MXene were prepared by solvothermal and in situ etching methods, respectively. The impact of the mass ratio between two materials on the performance was assessed. The sensor based on 12 wt% Ti3C2Tx MXene/SnO2 composites demonstrates excellent performance in terms of sensitivity and response/recovery speed. Upon exposure to 50 ppm NH3, the frequency shift in the sensor is −1140 Hz, which is 5.6 times larger than that of pure Ti3C2Tx MXene and 2.8 times higher than that of SnO2 CQDs. The response/recovery time of the sensor for 10 ppm NH3 was 36/54 s, respectively. The sensor exhibited a theoretical detection limit of 73 ppb and good repeatability. Furthermore, a stable sensing performance can be maintained after 30 days. The enhanced sensor performance can be attributed to the abundant active sites provided by the accumulation/depletion layer in the Ti3C2Tx/SnO2 heterojunction, which facilitates the adsorption of oxygen molecules. This work promotes the gas sensing application of MXenes and provides a way to improve gas sensing performance. Full article
Show Figures

Graphical abstract

Back to TopTop