Oxide and Hydrogel Inverse Opals and Their Applications as Physical, Chemical and Biological Sensors
Abstract
:1. Introduction
2. Inverse Opal Structures via Templating Photonic Colloidal Crystals
2.1. Methods for the Preparation of PCCs
2.2. Methods for the Preparation of Inverse Opal
2.3. Common Photonic Crystals for Sensing
3. Applications of HIO and PCCHs in Sensing
3.1. IO and PCC Hydrogels as Physically Responsive Sensors
3.1.1. Detection of Temperature
3.1.2. Detection of pH
3.1.3. Detection of Humidity
3.1.4. Detection of Mechanical Force
3.1.5. Detection of Environmental Pressure
3.2. IO and PCCH for Sensing Chemical Compounds
3.2.1. Detection of Alcohols
3.2.2. Detection of Volatile Organic Compounds and Organic Solvents
3.2.3. Organic Pollutants
3.2.4. Detection of Heavy Metal Ions
3.2.5. Detection of Gases
3.3. Applications of IO as Biosensors
3.3.1. Detection of Biomarkers
3.3.2. Detection of Tumour Cells
3.3.3. Detection of Carcinogenic Mycotoxin Ochratoxin A
3.3.4. Detection of the Influenza Virus Using IO
3.3.5. Detection of Amino Acids
3.3.6. Detection of Bacteria
3.3.7. Detection of Biomacromolecules
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Tang, W.; Chen, C. Hydrogel-Based Colloidal Photonic Crystal Devices for Glucose Sensing. Polymers 2020, 12, 625. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shang, L.; Cheng, Y.; Gu, Z. Spherical colloidal photonic crystals. Acc. Chem. Res. 2014, 47, 3632–3642. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, G.; Kong, H.; Yang, G.; Wei, G.; Zhou, X. Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 2023, 475, 214909. [Google Scholar] [CrossRef]
- Liao, J.; Ye, C.; Agrawal, P.; Gu, Z.; Zhang, Y.S. Colloidal Photonic Crystals for Biomedical Applications. Small Struct. 2021, 2, 2000110. [Google Scholar] [CrossRef]
- Armstrong, E.; O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures–fundamentals and applications from optics to energy storage. J. Mater. Chem. C 2015, 3, 6109–6143. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yi, G.-R. Colloidal Photonic Crystals for Sensor Applications. In Photonic Materials for Sensing, Biosensing and Display Devices; Springer: Cham, Switzerland, 2016; pp. 51–78. [Google Scholar]
- Furumi, S.; Fudouzi, H.; Sawada, T. Self-organized colloidal crystals for photonics and laser applications. Laser Photonics Rev. 2010, 4, 205–220. [Google Scholar] [CrossRef]
- Xia, Y.; Gates, B.; Li, Z.Y. Self-Assembly Approaches to Three-Dimensional Photonic Crystals. Adv. Mater. 2001, 13, 409–413. [Google Scholar] [CrossRef]
- Hoeven, J.; Shneidman, A.V.; Nicolas, N.J.; Aizenberg, J. Evaporation-Induced Self-Assembly of Metal Oxide Inverse Opals: From Synthesis to Applications. Acc. Chem. Res. 2022, 55, 1809–1820. [Google Scholar] [CrossRef]
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef]
- Zhang, H.; Bu, X.; Yip, S.; Liang, X.; Ho, J.C. Self-Assembly of Colloidal Particles for Fabrication of Structural Color Materials toward Advanced Intelligent Systems. Adv. Intell. Syst. 2019, 2, 1900085. [Google Scholar] [CrossRef]
- Cong, H.; Yu, B.; Tang, J.; Li, Z.; Liu, X. Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 2013, 42, 7774–7800. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Yang, S.; Talukder, E.; Huang, C.; Chen, K. Research and Application Progress of Inverse Opal Photonic Crystals in Photocatalysis. Inorganics 2023, 11, 337. [Google Scholar] [CrossRef]
- Aguirre, C.I.; Reguera, E.; Stein, A. Tunable Colors in Opals and Inverse Opal Photonic Crystals. Adv. Funct. Mater. 2010, 20, 2565–2578. [Google Scholar] [CrossRef]
- Xue, F.; Meng, Z.; Qi, F.; Xue, M.; Wang, F.; Chen, W.; Yan, Z. Two-dimensional inverse opal hydrogel for pH sensing. Analyst 2014, 139, 6192–6196. [Google Scholar] [CrossRef]
- Shin, J.; Braun, P.V.; Lee, W. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens. Actuators B Chem. 2010, 150, 183–190. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Zhu, C.; Xia, Y. Inverse Opal Scaffolds and Their Biomedical Applications. Adv. Mater. 2017, 29, 1701115. [Google Scholar] [CrossRef]
- Chen, J.; Peng, Q.; Peng, X.; Han, L.; Wang, X.; Wang, J.; Zeng, H. Recent Advances in Mechano-Responsive Hydrogels for Biomedical Applications. ACS Appl. Polym. Mater. 2020, 2, 1092–1107. [Google Scholar] [CrossRef]
- Ma, Y.; He, P.; Xie, W.; Zhang, Q.; Yin, W.; Pan, J.; Wang, M.; Zhao, X.; Pan, G. Dynamic Colloidal Photonic Crystal Hydrogels with Self-Recovery and Injectability. Research 2021, 2021, 9565402. [Google Scholar] [CrossRef]
- Hu, Z.; Lu, X.; Gao, J. Hydrogel Opals. Adv. Mater. 2001, 13, 1708–1712. [Google Scholar] [CrossRef]
- Matsubara, K.; Watanabe, M.; Takeoka, Y. A thermally adjustable multicolor photochromic hydrogel. Angew. Chem. Int. Ed. Engl. 2007, 46, 1688. [Google Scholar]
- Liu, F.; Zhang, S.; Jin, X.; Wang, W.; Tang, B. Thermal-Responsive Photonic Crystal with Function of Color Switch Based on Thermochromic System. ACS Appl. Mater. Interfaces 2019, 11, 39125–39131. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, Y.; Watanabe, M. Tunung Structural Colour Changes of Porous Thermosensitive Gels through Quantitative Adjustment of the Cross-Linker in Pre-gel Solutions. Langmuir 2003, 19, 9104. [Google Scholar] [CrossRef]
- Zhao, W.; Quan, M.; Cao, Z.; Zhang, Y.; Wen, J.; Pan, D.; Dong, Z.; Yang, Z.; Wang, D.; Cao, H.; et al. Visual multi-triggered sensor based on inverse opal hydrogel. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 93–99. [Google Scholar] [CrossRef]
- Yoon, S.; Park, H.; Lee, W. Fabrication of inverse opal photonic gel sensors on flexible substrates by transfer process. Lab Chip 2021, 21, 2997–3003. [Google Scholar] [CrossRef]
- Park, H.; Koh, Y.G.; Lee, W. Smartphone-based colorimetric analysis of structural colors from pH-responsive photonic gel. Sens. Actuators B Chem. 2021, 345, 130359. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, Y.; Chen, C.; Shen, J.; Bao, H.; Peng, L.; Yang, X.; Li, C. Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel. New J. Chem. 2012, 36, 845. [Google Scholar] [CrossRef]
- Tian, E.; Wang, J.; Zheng, Y.; Song, Y.; Jiang, L.; Zhu, D. Colorful humidity sensitive photonic crystal hydrogel. J. Mater. Chem. 2008, 18, 1053. [Google Scholar] [CrossRef]
- Sobhanimatin, M.B.; Pourmahdian, S.; Tehranchi, M.M. Fast inverse opal humidity sensor based on acrylamide/AMPS hydrogel. Mater. Today Commun. 2021, 26, 101997. [Google Scholar] [CrossRef]
- Kou, D.; Ma, W.; Zhang, S.; Lutkenhaus, J.S.; Tang, B. High-Performance and Multifunctional Colorimetric Humidity Sensors Based on Mesoporous Photonic Crystals and Nanogels. ACS Appl. Mater. Interfaces 2018, 10, 41645–41654. [Google Scholar] [CrossRef]
- Fudouzi, H.; Sawada, T. Photonic Rubber Sheets with Tunable Colour by Elastic Deformation. Langmuir 2006, 22, 1365–1368. [Google Scholar] [CrossRef]
- Ding, H.; Liu, C.; Gu, H.; Zhao, Y.; Wang, B.; Gu, Z. Responsive Colloidal Crystal for Spectrometer Grating. ACS Photonics 2014, 1, 121–126. [Google Scholar] [CrossRef]
- Escudero, P.; Yeste, J.; Pascual-Izarra, C.; Villa, R.; Alvarez, M. Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications. Sci. Rep. 2019, 9, 3259. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Lee, S.Y.; Ellerthorpe, L.; Feng, G.; Lin, G.; Wu, G.; Yin, J.; Yang, S. Elastoplastic Inverse Opals as Power-Free Mechanochromic Sensors for Force Recording. Adv. Funct. Mater. 2015, 25, 6041–6049. [Google Scholar] [CrossRef]
- Thungon, P.D.; Kakoti, A.; Ngashangva, L.; Goswami, P. Advances in developing rapid, reliable and portable detection systems for alcohol. Biosens. Bioelectron. 2017, 97, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Qi, Y.; Niu, W.; Ma, W.; Zhang, S. Bioinspired Colorimetric Double Inverse Opal Photonic Crystal Indicators for Ethanol Concentration Sensing in Fermentation Engineering. Langmuir 2024, 40, 11184–11195. [Google Scholar] [CrossRef]
- Rashidi, M.-R.; Ahmadi-Kandjani, S.; Chaghamirzaei, P.; Shirforoush Sattari, M.; Fathi, F. Investigation of optical images in inverse opal photonic crystal films for sensing applications; a non-destructive method. Opt. Mater. 2022, 125, 112072. [Google Scholar] [CrossRef]
- Liu, B.; Fan, J.; Liu, W.; Zhang, G.; Wu, Z. Controllable in situ generated carbon black hollow silica (C@h-SiO2) photonic crystal inks with highly saturated structural colors. Dye. Pigment. 2023, 208, 110810. [Google Scholar] [CrossRef]
- Qi, Y.; Kou, D.; Sun, Y.; Hu, T.; Yuan, H.; Zhou, C.; Li, C.; Lu, A.-H.; Wu, S.; Zhang, S. Portable colorimetric photonic indicator for ethanol concentration sensing. Chem. Eng. J. 2023, 457, 141184. [Google Scholar] [CrossRef]
- Kuo, W.K.; Weng, H.P.; Hsu, J.J.; Yu, H.H. Photonic Crystal-Based Sensors for Detecting Alcohol Concentration. Appl. Sci. 2016, 6, 67. [Google Scholar] [CrossRef]
- Endo, T.; Yanagida, Y.; Hatsuzawa, T. Colorimetric detection of volatile organic compounds using a colloidal crystal-based chemical sensor for environmental applications. Sens. Actuators B Chem. 2007, 125, 589–595. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, J.; Hu, R.; Li, P.; Gao, L.; Heng, L.; Tang, B.Z.; Jiang, L. A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal. Phys. Chem. Chem. Phys. 2015, 17, 9651–9658. [Google Scholar] [CrossRef] [PubMed]
- Schroden, R.C.; Al-Daous, M.; Blanford, C.F.; Stein, A. Optical Properties of Inverse Opal Photonic Crystals. Chem. Mater. 2002, 14, 3305–3315. [Google Scholar] [CrossRef]
- Lu, X.; Li, R.; Han, B.; Ma, H.; Hou, X.; Kang, Y.; Zhang, Y.; Wang, J.J. Fluorescence Sensing of Formaldehyde and Acetaldehyde Based on Responsive Inverse Opal Photonic Crystals: A Multiple-Application Detection Platform. ACS Appl. Mater. Interfaces 2021, 13, 13792–13801. [Google Scholar] [CrossRef]
- Kou, D.; Zhang, S.; Lutkenhaus, J.L.; Wang, L.; Tang, B.; Ma, W. Porous organic/inorganic hybrid one-dimensional photonic crystals for rapid visual detection of organic solvents. J. Mater. Chem. C 2018, 6, 2704–2711. [Google Scholar] [CrossRef]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef]
- Góngora-Echeverría, V.R.; Martin-Laurent, F.; Quintal-Franco, C.; Lorenzo-Flores, A.; Giácoman-Vallejos, G.; Ponce-Caballero, C. Dissipation and Adsorption of 2,4-D, Atrazine, Diazinon, and Glyphosate in an Agricultural Soil from Yucatan State, Mexico. Water Air Soil. Pollut. 2019, 230, 131. [Google Scholar] [CrossRef]
- Huang, C.; Cheng, Y.; Gao, Z.; Zhang, H.; Wei, J. Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring. Sens. Actuators B Chem. 2018, 273, 1705–1712. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef]
- Li, L.; Meng, T.; Zhang, W.; Su, Y.; Wei, J.; Shi, X.; Zhang, G. Selective and Colorimetric Detection of p-Nitrophenol Based on Inverse Opal Polymeric Photonic Crystals. Polymers 2020, 12, 83. [Google Scholar] [CrossRef]
- Tchieno, F.M.M.; Tonle, I.K. p-Nitrophenol determination and remediation: An overview. Rev. Anal. Chem. 2018, 37, 20170019. [Google Scholar] [CrossRef]
- Ye, B.F.; Zhao, Y.J.; Cheng, Y.; Li, T.T.; Xie, Z.Y.; Zhao, X.W.; Gu, Z.Z. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 2012, 4, 5998–6003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-L.; Jin, F.; Zheng, M.-L.; Duan, X.-M. Inverse opal hydrogel sensor for the detection of pH and mercury ions. RSC Adv. 2014, 4, 20567–20572. [Google Scholar] [CrossRef]
- As’adi Harab, S.; Bayat, F.; Ayazi, Z.; Chaghamirzaei, P. Synthesis of silica inverse opal and evaluation of its potential as an optical chemical sensor for detection of metal salts. Microchem. J. 2024, 201, 110741. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Sun, N. Porphyrin-infiltrated SiO2 inverse opal photonic crystal as fluorescence sensor for selective detection of trace mercury ion. Opt. Mater. 2021, 122, 111696. [Google Scholar] [CrossRef]
- Su, H.; Chen, H.; Wen, B.; Lu, L.; Zhang, D.; Wang, H. Chitosan-based fluorescent inverse opal particles for Cr(VI) sensing. npj Clean. Water 2023, 6, 70. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, L.; Zhou, R.; Li, P.; Liu, J.; Gao, L.; Heng, L.; Jiang, L. Fluoral-p infiltrated SiO2 inverse opal photonic crystals as fluorescent film sensors for detecting formaldehyde vapor. J. Mater. Chem. C 2016, 4, 9841–9847. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B Chem. 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Heo, N.Y.; Park, S.G.; Kim, D.; Lee, H.; Lee, W. Real-time monitoring of CO2 gas using inverse opal photonic gel containing Poly(2-(dimethylamino)ethylmethacrylate. Sens. Actuators B Chem. 2023, 377, 133041. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, Y.; Jin, R.; Wang, T.; Liu, F.; Wang, C.; Yan, X.; Sun, P.; Lu, G. Gas sensor based on cobalt-doped 3D inverse opal SnO2 for air quality monitoring. Sens. Actuators B Chem. 2022, 350, 130807. [Google Scholar] [CrossRef]
- Pereira, C.F.; Sales, M.G.F.; Frasco, M.F. A molecularly imprinted photonic polymer based on an inverse opal structure for sensing D-dimer at the point-of-care. Talanta 2022, 243, 123387. [Google Scholar] [CrossRef]
- Suthar, J.; Alvarez-Fernandez, A.; Taylor, A.; Fornerod, M.J.; Williams, G.R.; Guldin, S. Silica Inverse Opal Nanostructured Sensors for Enhanced Immunodetection of Extracellular Vesicles by Quartz Crystal Microbalance with Dissipation Monitoring. ACS Appl. Nano Mater. 2022, 5, 12951–12961. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Wang, Y.; Liu, Z.; Zhang, W.; Yi, K.; Zhang, X.; Zhang, X.; Jiang, C.; Yang, S.; Wang, F.; et al. Beehive-Inspired Macroporous SERS Probe for Cancer Detection through Capturing and Analyzing Exosomes in Plasma. ACS Appl. Mater. Interfaces 2020, 12, 5136–5146. [Google Scholar] [CrossRef]
- Odaka, H.; Hiemori, K.; Shimoda, A.; Akiyoshi, K.; Tateno, H. CD63-positive extracellular vesicles are potential diagnostic biomarkers of pancreatic ductal adenocarcinoma. BMC Gastroenterol. 2022, 22, 153. [Google Scholar] [CrossRef]
- Xu, H.; Dong, B.; Xiao, Q.; Sun, X.; Zhang, X.; Lyu, J.; Yang, Y.; Xu, L.; Bai, X.; Zhang, S.; et al. Three-Dimensional Inverse Opal Photonic Crystal Substrates toward Efficient Capture of Circulating Tumor Cells. ACS Appl. Mater. Interfaces 2017, 9, 30510–30518. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Yang, H.; Ma, B.; Lu, S.; Sun, D.; Yang, M.; Peng, K.; Zhang, S.; Liu, J.; Liu, P.; et al. A smartphone-based inverse opal hydrogel film aptasensor for mycotoxin detection by the naked eye. Microchem. J. 2023, 194, 109234. [Google Scholar] [CrossRef]
- Lee, W.S.; Kang, T.; Kim, S.H.; Jeong, J. An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors. Sensors 2018, 18, 307. [Google Scholar] [CrossRef]
- Liu, R.; Sheng, Z.; Huang, C.; Wang, D.; Li, F. Influenza D virus. Curr. Opin. Virol. 2020, 44, 154–161. [Google Scholar] [CrossRef]
- Li, H.; Han, B.; Ma, H.; Li, R.; Hou, X.; Zhang, Y.; Wang, J.J. A “turn-on” inverse opal photonic crystal fluorescent sensing film for detection of cysteine and its bioimaging of living cells. Mikrochim. Acta 2023, 190, 49. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Luan, C.; Liu, Y.; Chen, B.; Zhao, Y. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosens. Bioelectron. 2018, 100, 404–410. [Google Scholar] [CrossRef]
- Couturier, J.P.; Sutterlin, M.; Laschewsky, A.; Hettrich, C.; Wischerhoff, E. Responsive inverse opal hydrogels for the sensing of macromolecules. Angew. Chem. Int. Ed. Engl. 2015, 54, 6641–6644. [Google Scholar] [CrossRef] [PubMed]
Sensors | Range of Application | Advantages | Features | Operation Principles | Ref. |
---|---|---|---|---|---|
HIO with N-isopropylacrylamide (NIPA). | Temperature | Reversible hydration-dehydration | Visual colour change | Thermo-sensitive morphological changes | [23] Takeoka |
HIO with dimethylaminoethyl methacrylate (DMAEMA) and spiropyran-methacrylate (SPMA) | Temperature and pH | Dual Sensor | Visual colour change | Thermo-sensitive morphological changes | [24] Zhao |
Inverse opal photonic gel (IOPG) | pH | Large PBG shift—more than 100 nm from pH 2–7 | Visible colour change | Red shift occurred due to deprotonation of Acrylic acid (AA) | [25] Yoon |
HIO | Humidity | Large PBG shift—427–514 nm from 20–90% humidity. | Visible colour change | Swelling/ Deswelling | [29] Sobhanamatin |
PC Hydrogel with polydimethylsiloxane (PDMS) | Mechanical Force | Reversibly tuneable elastic-responsive PC hydrogel | Visible colour change | Morphological change due to stretching/change in lattice spacing | [31] Fudouzi |
Method/Sensor | Range of Application | Advantages | Features | Operation Principles | Ref. |
---|---|---|---|---|---|
Silica IO | Ethanol | Perfect linear relationship between optical intensity change peak and ethanol concentration | PBG change (45 nm) for conc. 0 to 100% | Refractive Index change | [37] Rashidi |
PCCH with polydimethylsiloxane (PDMS) | (VOCs) acetone, toluene, benzene | Reversibly tuneable structural colour | Visible colour change | Swelling/ Deswelling | [41] Endo |
Silica IO | Volatile organic solvents | Increased sensitivity due to TPEP | Silica IO filled with tetraphenylethene (TPEP) enhances PBG change | Refractive Index change | [42] Zhang |
Zirconia IO | Methanol | Strong visible colour change | Different pore sizes produced different colours | Refractive index change | [43] Schroden |
PCCH composed of silica nanoparticles polymerised within a polyacrylamide hydrogel | Detection of Hg2+ and Pb2+ | Method has the potential to detect a wide variety of metal ions. | Volume changes due to binding of aptamers to Hg2+ | HIO shrinkage producing a visible blue shift. | [53] Ye |
Method/Sensor | Range of Application | Advantages | Features | Operation Principles | Ref. |
---|---|---|---|---|---|
Molecular imprinted HIO poly (methyl methacrylate) | Detection of Biomarkers | Low LOD: 15.5 ng mL−1 | Does not rely upon the use of antibody labelling | Swelling of the HIO polymer/change in the RI | Pereira [62] |
Silica IO | Detection of biomarker CD63 extracellular vesicles (EVs) | Low LOD: 6.24 × 107 particles per mL | Functionalised with antibodies | Quartz crystal microbalance | Suthar [63] |
IOPC based microfluidic chip combined with Fe3O4@C6@silane nanoparticles | Detection of circulating tumour cells (CTCs) | High cell capture efficiency | Uses magnetically labelled CTCs | Antibody Anti-EpCAM was conjugated onto the interface of the IOPC | Xu [66] |
HIO film consisting of the polymer poly (ethylene glycol) diacrylate (PEGDA) | Detection of mycotoxin Ochratoxin A (OTA) | A portable smartphone was used to capture colour changes | Uses aptamers to selectively recognise OTAs | Swelling/ Deswelling | [67] Cui |
Silica IO | Detection of cysteine | Sensitive, selective, and fast response to cysteine | Can detect cysteine in human serum and living cells | Fluorescence colour change | [70] Li |
Poly (ethylene glycol) (PEG) HIO spherical particles | Detection of bacteria | Low LOD: captured bacteria conc. 100 colony forming units (CFU) mL−1 | Decorated aptamer probes within the PEG HIO | Fluorescence Intensity changes | [71] Xu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hutchison, P.; Kingshott, P.; Yu, A. Oxide and Hydrogel Inverse Opals and Their Applications as Physical, Chemical and Biological Sensors. Sensors 2025, 25, 3370. https://doi.org/10.3390/s25113370
Hutchison P, Kingshott P, Yu A. Oxide and Hydrogel Inverse Opals and Their Applications as Physical, Chemical and Biological Sensors. Sensors. 2025; 25(11):3370. https://doi.org/10.3390/s25113370
Chicago/Turabian StyleHutchison, Peter, Peter Kingshott, and Aimin Yu. 2025. "Oxide and Hydrogel Inverse Opals and Their Applications as Physical, Chemical and Biological Sensors" Sensors 25, no. 11: 3370. https://doi.org/10.3390/s25113370
APA StyleHutchison, P., Kingshott, P., & Yu, A. (2025). Oxide and Hydrogel Inverse Opals and Their Applications as Physical, Chemical and Biological Sensors. Sensors, 25(11), 3370. https://doi.org/10.3390/s25113370