Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Keywords = coastal marine sediments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3711 KiB  
Article
Human Health Risk and Bioaccessibility of Arsenic in Wadis and Marine Sediments in a Coastal Lagoon (Mar Menor, Spain)
by Salvadora Martínez López, Carmen Pérez Sirvent, María José Martínez Sánchez and María Ángeles Esteban Abad
Toxics 2025, 13(8), 647; https://doi.org/10.3390/toxics13080647 - 30 Jul 2025
Viewed by 198
Abstract
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics [...] Read more.
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics and the main stream originating in the adjacent mining area, with water and sediment samples taken. The study area is representative of other areas in the vicinity of the Mar Menor Lagoon, which is one of the largest and most biodiverse coastal lagoons in the Mediterranean Sea. The general characteristics of the soil and water were determined for this study, as was the concentration of As in the soil and water samples. A granulometric separation was carried out into four different fractions (<2 mm, <250 µm, <100 µm, and <65 µm). The mineralogical composition, total As content, and bioaccessible As content are analysed in each of these fractions. This provides data with which to calculate the danger of arsenic (As) to human health by ingestion and to contribute to As bioaccessibility studies and the role played by the mineralogical composition and particle size of soil ingestion. The conclusions rule out residential use of this environment, although they allow for eventual tourist use and traditional agricultural use of the surrounding soils. Full article
Show Figures

Figure 1

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 189
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

30 pages, 7008 KiB  
Article
Microfossil (Diatoms, Tintinnids, and Testate Amoebae) Assemblages in the Holocene Sediments of the Laptev Sea Shelf off the Yana River as a Proxy for Paleoenvironments
by Maria S. Obrezkova, Lidiya N. Vasilenko, Ira B. Tsoy, Xuefa Shi, Limin Hu, Yaroslav V. Kuzmin, Aleksandr N. Kolesnik, Alexandr V. Alatortsev, Anna A. Mariash, Evgeniy A. Lopatnikov, Irina A. Yurtseva, Darya S. Khmel and Anatolii S. Astakhov
Quaternary 2025, 8(3), 40; https://doi.org/10.3390/quat8030040 - 30 Jul 2025
Viewed by 232
Abstract
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; [...] Read more.
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; additionally, five species of marine tintinnids (planktonic ciliates) and 15 species of freshwater testate amoebae (testacean) were discovered for the first time in the sea sediments. Three assemblages of microfossils reflecting the phases of environmental changes during the Holocene transgression are distinguished in the studied sediments of core LV83-32. Assemblage 1 was formed under terrestrial conditions (assemblage of diatoms Eunotia-Pinnularia and testacean Difflugia-Cylindrifflugia-Centropyxis), assemblage 2 in the zone of mixing of sea and fresh waters (assemblages of diatoms Cyclotella striata-Aulacoseira, Thalassiosira hyperborea-Chaetoceros and T. hyperborea-Aulacoseira, testacean Cyclopyxis kahli, tintinnids Tintinnopsis fimbriata), and assemblage 3 reflects modern conditions in the inner shelf of the Laptev Sea under the strong influence of river runoff (assemblage of diatoms T. hyperborea-Aulacoseira-M. arctica and tintinnids Tintinnopsis ventricosoides). Changes in the natural environment in the coastal part of the Laptev Sea shelf during the Holocene, established by microfossil assemblages, are confirmed by geochemical data. Full article
Show Figures

Figure 1

8 pages, 7294 KiB  
Interesting Images
A Rocky Intertidal Desert at the Head of a Large Macrotidal Estuary in Quebec, Canada
by Ricardo A. Scrosati
Diversity 2025, 17(8), 535; https://doi.org/10.3390/d17080535 - 30 Jul 2025
Viewed by 249
Abstract
This article documents the widespread absence of sessile species in bedrock intertidal habitats at the head of the St. Lawrence Estuary, a large macrotidal estuary located in eastern Canada. Extensive observations revealed that no seaweeds or sessile invertebrates occurred anywhere (including cracks and [...] Read more.
This article documents the widespread absence of sessile species in bedrock intertidal habitats at the head of the St. Lawrence Estuary, a large macrotidal estuary located in eastern Canada. Extensive observations revealed that no seaweeds or sessile invertebrates occurred anywhere (including cracks and crevices) on substrate areas that become exposed to the air during low tides. Only one sessile species, a green filamentous alga, was found submerged in tidepools. The lack of truly marine sessile species is likely explained by the very low water salinity of this coast, while the absence of sessile freshwater species on intertidal substrates outside of tidepools likely responds to a combination of oligohaline conditions during high tides and daily exposures to the air during low tides, which freshwater species are typically not adapted to. Influences of winter ice scour and coastal suspended sediments are likely secondary. Experimental research could unravel the interactive effects of these abiotic stressors. Overall, this “intertidal desert” could be a useful model system to further explore the boundaries of life on our planet. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

21 pages, 8441 KiB  
Article
Upper Pleistocene Marine Levels of the Es Copinar–Es Estufadors (Formentera, Balearic Islands, West Mediterranean)
by Laura del Valle, Guillem X. Pons and Joan J. Fornós
Quaternary 2025, 8(3), 38; https://doi.org/10.3390/quat8030038 - 21 Jul 2025
Viewed by 408
Abstract
Late Pleistocene coastal deposits on the southeastern coast of Formentera (Es Ram–Es Estufadors) provide a high-resolution record of sea-level and climatic fluctuations associated with Marine Isotope Stage (MIS) 5. Three distinct beach levels (Sef-1, Sef-2, Sef-3) were identified, corresponding to substages MIS 5e, [...] Read more.
Late Pleistocene coastal deposits on the southeastern coast of Formentera (Es Ram–Es Estufadors) provide a high-resolution record of sea-level and climatic fluctuations associated with Marine Isotope Stage (MIS) 5. Three distinct beach levels (Sef-1, Sef-2, Sef-3) were identified, corresponding to substages MIS 5e, 5c, and possibly 5a, based on sedimentological features, fossil assemblages, and Optically Stimulated Luminescence (OSL) dating. The oldest beach level (Sef-1) is attributed to MIS 5e (ca. 128–116 ka) and is characterised by the widespread presence of thermophilic Senegalese fauna—including Thetystrombus latus, Conus ermineus, and Linatella caudata—which mark the onset of this interglacial phase and are associated with two peaks in relative sea-level highstand. A subsequent cooling event during MIS 5d is recorded by the development of thin palaeosols and the disappearance of these warm-water taxa. The second beach level (Sef-2) reflects renewed sea-level rise and warmer conditions during MIS 5c, with abundant macrofauna and red algae. The transition to MIS 5b (~97 ka) is marked by a significant sea-level drop (down to –60 m), cooler climate, and enhanced colluvial sedimentation linked to increased runoff and erosion. In total, 54 macrofaunal species were identified—16 from Sef-1 and 46 from Sef-2—highlighting ecological shifts across substages. These results improve our understanding of coastal response to sea-level oscillations and paleoenvironmental dynamics in the western Mediterranean during the Late Pleistocene. Full article
Show Figures

Figure 1

15 pages, 2654 KiB  
Article
Presence and Potential Effect of Microplastics Associated with Anthropic Activity in Two Benthic Fishes Serranus scriba and Lithognathus mormyrus
by Amanda Cohen-Sánchez, Juan Alejandro Sanz, Montserrat Compa, Maria Magdalena Quetglas-Llabrés, Maria del Mar Ribas-Taberner, Lorenzo Gil, Silvia Tejada, Samuel Pinya and Antoni Sureda
Fishes 2025, 10(7), 323; https://doi.org/10.3390/fishes10070323 - 3 Jul 2025
Viewed by 371
Abstract
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species— [...] Read more.
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species—Serranus scriba (more related to rocky bottoms) and Lithognathus mormyrus (more related to sandy bottoms)—in two areas of Mallorca Island (Western Mediterranean) with varying anthropic pressures with similar mixed rocky/sandy bottoms. A total of eight fish samples per species and per area (total n = 32), as well as three water samples (500 mL each) and three sediment samples per area, were collected and analyzed. The results showed that despite plastic presence in both areas, the area with higher tourism affluence was also the most polluted. Fourier transform infrared spectroscopy analysis confirmed that the majority of recovered polymers were polyethylene and polypropylene. The pattern of MPs presence was reflected in the biomarker analysis, which showed higher values of antioxidants, namely catalase (CAT) and superoxide dismutase (SOD); detoxification, namely glutathione s-transferase (GST); and inflammation, namely myeloperoxidase (MPO)—enzymes in the gastrointestinal tract of fish from the more polluted area. However, no statistical differences were found for malondialdehyde (MDA) as a marker of lipid peroxidation. As for differences between species, S. scriba presented a higher presence of MPs and measured biomarkers than in L. Mormyrus, suggesting higher exposure. In conclusion, these results showed that increased anthropic activity is associated with a higher presence of MPs which, in turn, induces an adaptative response in exposed fish. Moreover, species living in the same area could be differentially affected by MPs, which is probably associated with different behavioural and feeding habits. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Figure 1

15 pages, 1134 KiB  
Article
Cross-Shore Microplastic Accumulation on Sri Lanka’s West Coast One Year After the Catastrophic X-Press Pearl Pollution Event
by Paula Masiá Lillo, Susantha Udagedara, Ross Williamson and Daniel Gorman
Microplastics 2025, 4(3), 37; https://doi.org/10.3390/microplastics4030037 - 1 Jul 2025
Viewed by 738
Abstract
Understanding how marine debris accumulates within coastal ecosystems is a crucial aspect of predicting its long-term environmental and biological consequences. The release and subsequent dispersion of 50 billion microplastic pellets from the fire and subsequent sinking of the container ship X-Press Pearl along [...] Read more.
Understanding how marine debris accumulates within coastal ecosystems is a crucial aspect of predicting its long-term environmental and biological consequences. The release and subsequent dispersion of 50 billion microplastic pellets from the fire and subsequent sinking of the container ship X-Press Pearl along the western coast of Sri Lanka in 2021 provides an important case study. Here, we present a three-dimensional assessment of pellet accumulation (number density) along affected beaches and compare this with other common microplastic particles one year following the incident. Surveys confirmed that pellets were still widely present in the surface sediments of ocean beaches, with some locations returning average densities of 588 pellets m2 (very high according to the global Pellet Pollution Index [PPI]). Profiling deeper into beach sediments showed pellets were present to depths of 30 cm; however, most were restricted to the top 10 cm. Our observations of persistent pellet contamination of beaches along Sri Lanka’s west coast emphasize the need for continued monitoring of these types of events to assess the magnitude and persistence of risks to the environment, wildlife, and human well-being. Full article
Show Figures

Figure 1

38 pages, 11886 KiB  
Article
The Estimation of Suspended Solids Concentration from an Acoustic Doppler Current Profiler in a Tidally Dominated Continental Shelf Sea Setting and Its Use as a Numerical Modelling Validation Technique
by Shauna Creane, Michael O’Shea, Mark Coughlan and Jimmy Murphy
Water 2025, 17(12), 1788; https://doi.org/10.3390/w17121788 - 14 Jun 2025
Viewed by 405
Abstract
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment [...] Read more.
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment transport numerical modelling approaches allow engineers and scientists to investigate the physical interactions involved in these projects both in the near and far field. However, a lack of confidence in simulated sediment transport results is evident in many coastal and offshore studies, mainly due to limited access to validation datasets. This study addresses the need for cost-effective sediment validation datasets by investigating the applicability of four new suspended load validation techniques to a 2D model of the south-western Irish Sea. This involves integrating an estimated spatial time series of suspended solids concentration (SSCsolids) derived from acoustic Doppler current profiler (ADCP) acoustic backscatter with several in situ water sample-based SSCsolids datasets. Ultimately, a robust spatial time series of ADCP-based SSCsolids was successfully calculated in this offshore, tidally dominated setting, where the correlation coefficient between estimated SSCsolids and directly measured SSCsolids is 0.87. Three out of the four assessed validation techniques are deemed advantageous in developing an accurate 2D suspended sediment transport model given the assumptions of the depth-integrated approach. These recommended techniques include (i) the validation of 2D modelled suspended sediment concentration (SSCsediment) using water sample-based SSCsolids, (ii) the validation of the flood–ebb characteristics of 2D modelled suspended load transport and SSCsediment using ADCP-based datasets, and (iii) the validation of the 2D modelled peak SSCsediment over a spring–neap cycle using the ADCP-based SSCsolids. Overall, the multi-disciplinary method of collecting in situ metocean and sediment dynamic data via acoustic instruments (ADCPs) is a cost-effective in situ data collection method for future ORE developments and other engineering and scientific projects. Full article
Show Figures

Figure 1

23 pages, 1042 KiB  
Article
Spatial Dynamics and Ecological Risk Assessment of Microplastics in Littoral Sediments of the Sea of Marmara, Türkiye
by Esra Billur Balcıoğlu İlhan
J. Mar. Sci. Eng. 2025, 13(6), 1159; https://doi.org/10.3390/jmse13061159 - 12 Jun 2025
Viewed by 629
Abstract
Plastic and especially microplastic (MP) pollution has posed a serious threat to the marine environment for decades. Studies on MPs have started to gain momentum especially in the Sea of Marmara (SoM), which is an international waterway, under the pressure of intense maritime [...] Read more.
Plastic and especially microplastic (MP) pollution has posed a serious threat to the marine environment for decades. Studies on MPs have started to gain momentum especially in the Sea of Marmara (SoM), which is an international waterway, under the pressure of intense maritime traffic and exposure to domestic and industrial discharges. The aim of this study was to evaluate the MPs found in surface sediments collected from the coastal area of the SoM according to the locations and to reveal the extent of the existing pollution. This is the first study to examine MPs in both the surface sediments of the entire shorelines of the SoM, which have not been previously reported, and in the surface sediments of Çanakkale Strait. Accordingly, the highest MP abundance was detected at Yenice station (St 15) with 1286 items/kg, and the lowest MP abundance was detected at Turan Village station (St 14) with 199 items/kg. The most dominant shapes across all sampling stations and months were fiber (37%) and fragment (26%), while the most dominant color was blue (35%). According to the polymer characterization results, PE (polyethylene) was found to be the most dominant polymer type. Additionally, most stations were found to have “Moderate” and “High” pollution levels in terms of the contamination factor (CF), and regions were classified as “Moderate” and ‘High’ in terms of the pollution load index (PLI), with the St 15 station specifically exhibiting “Very High” pollution levels. Furthermore, hazard index (HI) and pollution risk index (PRI) values were also calculated regionally, revealing that regions have pollution levels classified as “High”, “Very High”, and even “Dangerous”. This study concluded that there are no areas with low pollution levels in SoM, and that the threat posed by MP pollution in this sea is increasing. Furthermore, this study found that stations with high MP pollution levels are located near river discharges and that rivers significantly contribute to MP pollution in the seas. The findings are of great importance in terms of the need to implement sustainable plans and measures to prevent pollution in the SoM and to take concrete steps to protect and ensure the sustainability of coastal ecosystems, particularly those under serious pollution threats. Full article
(This article belongs to the Special Issue Marine Pollution, Bioremediation and Ecosystem Restoration)
Show Figures

Figure 1

18 pages, 4783 KiB  
Article
Land Use Change and Mangrove Restoration Modulate Heavy Metal Accumulation in Tropical Coastal Sediments: A Nearly Decade-Long Study from Hainan, China
by Tingting Si, Penghua Qiu, Lei Li, Wenqian Zhou, Chuanzhao Chen, Qidong Shi, Meihuijuan Jiang and Yanli Yang
Land 2025, 14(6), 1259; https://doi.org/10.3390/land14061259 - 12 Jun 2025
Viewed by 831
Abstract
Mangrove forests, vital coastal ecosystems that provide critical biodiversity habitats and carbon sequestration services, face increasing heavy metal pollution that threatens their ecological functions through bioaccumulation and toxicity to marine organisms. However, existing studies lack dynamic insights into temporal and spatial variations of [...] Read more.
Mangrove forests, vital coastal ecosystems that provide critical biodiversity habitats and carbon sequestration services, face increasing heavy metal pollution that threatens their ecological functions through bioaccumulation and toxicity to marine organisms. However, existing studies lack dynamic insights into temporal and spatial variations of heavy metals in mangrove sediments. This study systematically analyzed two mangrove reserves in Hainan Island, China (Hainan Dongzhaigang National Nature Reserve [DZG] and Hainan Qinglan Provincial Nature Reserve [QL]), by collecting sediment samples in 2014 and 2022, analyzing metals (Cr, Cu, Zn, As, Cd, and Pb) via ICP-MS, and applying the geo-accumulation index, potential ecological risk index, Markov transition matrix, and statistical analyses. Results showed that DZG exhibited rising Cu and Zn levels but declining Cr, As, Cd, and Pb, with Cd showing the most significant decrease (66.83%). In contrast, QL saw only a 42.7% reduction in Cd, while other heavy metals increased. Spatial heterogeneity linked higher concentrations to anthropogenic hotspots, DZG’s southeast (industrial/aquaculture inputs), and QL’s northwest (urban/industrial discharges). Although ecological risks were generally low, Cd in QL reached a moderate risk level (ECd = 46.44, 40 ≤ Ei < 80). The large-scale pond-to-mangrove conversion significantly increased vegetation cover, which enhanced sedimentation rates and exerted a “dilution effect” on sediment heavy metals. These findings underscore anthropogenic activities as the dominant driver of heavy metal contamination. We recommend (1) stringent wastewater control near QL, (2) enhanced shipping regulation, and (3) the establishment of mangrove buffers in heavy metal accumulation zones to improve ecological status. Full article
Show Figures

Figure 1

18 pages, 5357 KiB  
Article
Multi-Scale Validation of Suspended Sediment Retrievals in Dynamic Estuaries: Integrating Geostationary and Low-Earth-Orbiting Optical Imagery for Hangzhou Bay
by Yi Dai, Jiangfei Wang, Bin Zhou, Wangbing Liu, Ben Wang, C. K. Shum, Xiaohong Yuan and Zhifeng Yu
Remote Sens. 2025, 17(12), 1975; https://doi.org/10.3390/rs17121975 - 6 Jun 2025
Viewed by 406
Abstract
Water color remote sensing is vital for the monitoring and quantification of marine suspended sediment dynamics and their distributions. Yet validations of these observables in coastal regions and deltaic estuaries, including the Hangzhou Bay in the East China Sea, remain challenging, primarily due [...] Read more.
Water color remote sensing is vital for the monitoring and quantification of marine suspended sediment dynamics and their distributions. Yet validations of these observables in coastal regions and deltaic estuaries, including the Hangzhou Bay in the East China Sea, remain challenging, primarily due to the pronounced complex oceanic dynamics that exhibit high spatiotemporal variability in the signals of the suspended sediment concentration (SSC) in the ocean. Here, we integrate satellite images from the sun-synchronous satellites, China’s Huanjing (Chinese for environmental, HJ)-1A/B (charged couple device) CCD (30 m), and from Korea’s Geostationary Ocean Color Imager GOCI (500 m) to the spatiotemporal scale effects to validate SSC remote sensing-retrieved data products. A multi-scale validation framework based on coefficient of variation (CV)-based zoning was developed, where high-resolution HJ CCD SSC data were resampled to the GOCI scale (500 m), and spatial variability was quantified using CV values within corresponding HJ CCD windows. Traditional validation, comparing in situ point measurements directly with GOCI pixel-averaged data, introduces significant uncertainties due to pixel heterogeneity. The results indicate that in regions with high spatial heterogeneity (CV > 0.10), using central pixel values significantly weakens correlations and increases errors, with performance declining further in highly heterogeneous areas (CV > 0.15), underscoring the critical role of spatial averaging in mitigating scale-related biases. This study enhances the quantitative assessment of uncertainties in validating medium-to-low-resolution water color products, providing a robust approach for high-dynamic oceanic environment estuaries and bays. Full article
(This article belongs to the Special Issue Remote Sensing Band Ratios for the Assessment of Water Quality)
Show Figures

Graphical abstract

18 pages, 7348 KiB  
Article
Augmenting Coral Growth on Breakwaters: A Shelter-Based Approach
by Almog Ben Natan, Natalie Chernihovsky and Nadav Shashar
Coasts 2025, 5(2), 18; https://doi.org/10.3390/coasts5020018 - 28 May 2025
Viewed by 508
Abstract
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically [...] Read more.
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically composed of hard units designed to block and divert wave and current energy, often fail to support diverse and abundant marine communities because of their impact on current and sediment transport, the introduction of invasive species, and the loss of natural habitats. Marine ecoengineering aims at increasing CDS ecological services and the development of marine organisms on them. In this study, carried out in a coral reef environment, we examined the relationship between coral colony protection levels and three factors related to their development, namely, coral fragment survival rate, larval settlement, and water motion (flow rate), across three distinct niches: Exposed, Semi-sheltered, and Sheltered. Coral survivability was assessed through fragment planting, while recruitment was monitored using ceramic settlement tiles. Water motion was measured in all defined niches using plaster of Paris Clod-Cards. Additionally, concrete barrier structures were placed in Exposed niches to test whether artificially added protective elements could enhance coral fragment survival. No differences were found in coral settlement between the niches. Flow rate patterns remained similar in Exposed and Sheltered niches due to vortex formation in the Sheltered zones. Survival analysis revealed variability between niches, with the addition of artificial shelter barriers leading to the highest coral fragment survival on the breakwater. This study contributes to the development of ways to enhance coral development with the goal of transforming artificial barriers into functional artificial reefs. Full article
Show Figures

Figure 1

18 pages, 3162 KiB  
Article
Modeling Desorption Rates and Background Concentrations of Heavy Metals Using a One-Dimensional Approach
by Wendy Tatiana Gonzalez Cano, Serguei Lonin and Kyoungrean Kim
Toxics 2025, 13(6), 421; https://doi.org/10.3390/toxics13060421 - 22 May 2025
Viewed by 547
Abstract
Harmful heavy metals (HHMs) in marine sediments pose significant ecological and human health risks. This research developed a novel one-dimensional mathematical model to investigate the desorption rates and background concentrations (Cbg) of HHMs in cohesive sediments of coastal environments, [...] Read more.
Harmful heavy metals (HHMs) in marine sediments pose significant ecological and human health risks. This research developed a novel one-dimensional mathematical model to investigate the desorption rates and background concentrations (Cbg) of HHMs in cohesive sediments of coastal environments, using Cartagena Bay (CB), Colombia, as a reference for estuarine systems. The model integrates mass balance and molecular diffusion equations incorporating porosity and tortuosity. Both the particulate and dissolved phases of HHMs were considered. Numerical experiments were conducted over 28 years with a daily time step, simulating four primary hydrodynamic processes: molecular diffusion, desorption, sedimentation, and turbulent water exchange. The spatiotemporal evolution of  Cbg provides valuable insights for sediment modeling, policy development, and advancing the understanding of HHM pollution in sediments. Results of the model align closely with empirical data from CB, demonstrating its applicability not only to local conditions but also to similar contaminated areas through a generalized approach. This model can be used as a reliable computational tool for managing coastal environments. Full article
Show Figures

Graphical abstract

24 pages, 6963 KiB  
Article
Geotechnical Properties of Carbonate Sands on the Coast of Ceará: Implications for Offshore Wind Foundations and Green Hydrogen Initiatives
by Matheus Vasconcelos do Nascimento, Victor Luiz da Silva Alves, Samuel Porfírio Pinheiro Barros, Rachel Guerreiro Basílio Costa Genzani, Claver Giovanni da Silveira Pinheiro and Alfran Sampaio Moura
Sustainability 2025, 17(10), 4726; https://doi.org/10.3390/su17104726 - 21 May 2025
Viewed by 496
Abstract
The coastal region of Ceará, Brazil, is expected to host offshore wind farms aimed at producing green hydrogen (GH2) through electrolysis. However, the viability and cost of these developments may be affected by the mechanical behaviour of the marine subsoil, which [...] Read more.
The coastal region of Ceará, Brazil, is expected to host offshore wind farms aimed at producing green hydrogen (GH2) through electrolysis. However, the viability and cost of these developments may be affected by the mechanical behaviour of the marine subsoil, which is largely composed of carbonate sands. These sediments are known for their complex and variable geotechnical properties, which can influence the foundation performance. This study investigates the geotechnical characteristics of carbonate sands in comparison with quartz sands to support the design of offshore wind turbine foundations. Field testing using the Ménard pressuremeter and laboratory analyses, including particle size distribution, microscopy, X-ray fluorescence, calcimetry, direct shear, and triaxial testing, were performed to determine the key strength and stiffness parameters. The results show substantial differences between carbonate and quartz sands, particularly in terms of the stiffness and friction angle, with notable variability even within the same material type. These findings highlight the need for site-specific characterisation in offshore foundation design. This study contributes data that can improve geotechnical risk assessments and assist in selecting appropriate foundation solutions under local conditions, supporting the planned offshore wind energy infrastructure essential to Ceará’s green hydrogen strategy. Full article
Show Figures

Figure 1

23 pages, 2087 KiB  
Review
Sources, Status, and Potential Risks of Microplastics in Marine Organisms of the Bohai Sea: A Systematic Review
by Jian Yang, Hongxia Li, Wei Ling, Yifei Li, Kangkang Zhang and Pu Zhang
Toxics 2025, 13(5), 400; https://doi.org/10.3390/toxics13050400 - 16 May 2025
Viewed by 661
Abstract
This study focused on microplastic pollution in the Bohai Sea, employing bibliometric analysis and meta-integration methods to systematically analyze its pollution characteristics and ecological risks. The results indicated that microplastics primarily originated from land-based inputs (62%) and marine activities (23%). Microplastic concentrations in [...] Read more.
This study focused on microplastic pollution in the Bohai Sea, employing bibliometric analysis and meta-integration methods to systematically analyze its pollution characteristics and ecological risks. The results indicated that microplastics primarily originated from land-based inputs (62%) and marine activities (23%). Microplastic concentrations in the Bohai Sea’s coastal areas were significantly higher than in deep waters, and the abundance of microplastics in aquaculture sediments was three to five times that in non-aquaculture areas. Bioaccumulation demonstrated a significant trophic magnification effect, with top predators containing much higher microplastic concentrations than plankton. The combined toxicity of microplastics and pollutants severely impacted key species, leading to a 92% decrease in Chinese shrimp populations and a significant reduction in benthic biodiversity. To address this issue, a “four-in-one” prevention and control system was proposed, encompassing source reduction, intelligent monitoring, targeted treatment, and regional collaboration, with measures including policy, technological innovation, and ecological restoration. This aims to provide scientific evidence for Bohai Sea ecological security management and offer a reference for microplastic management in globally semi-enclosed seas. Full article
Show Figures

Graphical abstract

Back to TopTop