Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (652)

Search Parameters:
Keywords = coastal degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1187 KB  
Article
Annual Variations and Influencing Factors of Zooplankton Community Structure in the Coastal Waters of Northern Shandong Peninsula, China
by Xiuxia Wang, Mingming Zhu, Bingqing Xu, Yanyan Yang, Xiaomin Zhang, Shaowen Li, Tiantian Wang, Fan Li, Guangxin Cui and Xiang Zheng
Biology 2025, 14(10), 1386; https://doi.org/10.3390/biology14101386 (registering DOI) - 11 Oct 2025
Abstract
The coastal waters of the northern Shandong Peninsula have abundant fishery resources, which serve as a critical transitional fishing ground for economic fish migrating into the Bohai Sea for spawning and departing for overwintering habitats. However, anthropogenic pressures such as garbage dumping have [...] Read more.
The coastal waters of the northern Shandong Peninsula have abundant fishery resources, which serve as a critical transitional fishing ground for economic fish migrating into the Bohai Sea for spawning and departing for overwintering habitats. However, anthropogenic pressures such as garbage dumping have led to severe degradation of local fishery resources and concomitant adverse effects on zooplankton communities. To assess these impacts, we analyzed the spatiotemporal distribution, community structure, dominant species, and diversity indices of zooplankton based on sampling data collected in spring from 2015 to 2018 in this region. A total of 24 zooplankton species and 11 larval classes were identified, with the highest species richness observed in 2016. Calanus sinicus and Centropages abdominalis were the primary dominant species, with C. sinicus consistently predominant across all four years. Notably, the dominant species exhibited marked annual variability. The abundance and biomass of zooplankton in the surveyed area exhibited significant annual variations, both showing a trend of first decreasing and then increasing. Peak abundance occurred in 2015 (594.36 ind/m3), while the lowest was recorded in 2017 (118.73 ind/m3). Spatially, abundance and biomass were heterogeneous, with coastal waters exhibiting higher concentrations than offshore areas. The overall low level of community diversity and its significant annual variations indicated that the zooplankton community structure in the surveyed sea area was unstable and showed a trend of degenerative succession. The community structure of zooplankton and larger-bodied dominant species showed stronger correlations with phytoplankton dynamics, whereas smaller-bodied species were more influenced by water temperature. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

19 pages, 4151 KB  
Article
Microbial Role in Straw Organic Matter Depolymerization to Dissolved Organic Nitrogen Under Nitrogen Fertilizer Reduction in Coastal Saline Paddy Soil
by Xianglin Dai, Jianping Sun, Hao Li, Zijing Zhao, Ruiping Ma, Yahui Liu, Nan Shan, Yutao Yao and Zhizhong Xue
Microorganisms 2025, 13(10), 2333; https://doi.org/10.3390/microorganisms13102333 - 10 Oct 2025
Viewed by 40
Abstract
This study examines the effects of reduced nitrogen (N) application on rice straw N depolymerization in coastal saline paddy soil to establish a scientific basis for optimizing N application strategies during straw incorporation in coastal paddy systems. A 360-day field straw bag burial [...] Read more.
This study examines the effects of reduced nitrogen (N) application on rice straw N depolymerization in coastal saline paddy soil to establish a scientific basis for optimizing N application strategies during straw incorporation in coastal paddy systems. A 360-day field straw bag burial experiment was conducted using four N application levels: N0 (control, without N fertilizer), N1 (225 kg N/ha), N2 (300 kg N/ha), and N3 (375 kg N/ha). The results indicated that applying 300 kg N/ha significantly (p < 0.05) increased dissolved organic N (DON) content, apr and chiA gene copies, and the activities of alkaline protease, chitinase, leucine aminopeptidase, and N-acetylglucosaminidase. In addition, the application of 300 kg N/ha enhanced the synergistic effects of alkaline protein- and chitin-degrading microbial communities. Pseudomonas, Brevundimonas, Sorangium, Cohnella, and Thermosporothrix were identified as keystone taxa predominant in straw N depolymerization. Straw N depolymerization occurred by two primary pathways: direct regulation of enzyme activity by straw properties of total carbon and electrical conductivity, and indirect influence on N hydrolase activity and DON production through modified microbial community structures. The findings suggest that an application rate of 300 kg N/ha is optimal for promoting straw N depolymerization in coastal saline paddy fields. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

34 pages, 2116 KB  
Review
Building Climate Resilient Fisheries and Aquaculture in Bangladesh: A Review of Impacts and Adaptation Strategies
by Mohammad Mahfujul Haque, Md. Naim Mahmud, A. K. Shakur Ahammad, Md. Mehedi Alam, Alif Layla Bablee, Neaz A. Hasan, Abul Bashar and Md. Mahmudul Hasan
Climate 2025, 13(10), 209; https://doi.org/10.3390/cli13100209 - 4 Oct 2025
Viewed by 792
Abstract
This study examines the impacts of climate change on fisheries and aquaculture in Bangladesh, one of the most climate-vulnerable countries in the world. The fisheries and aquaculture sectors contribute significantly to the national GDP and support the livelihoods of 12% of the total [...] Read more.
This study examines the impacts of climate change on fisheries and aquaculture in Bangladesh, one of the most climate-vulnerable countries in the world. The fisheries and aquaculture sectors contribute significantly to the national GDP and support the livelihoods of 12% of the total population. Using a Critical Literature Review (CLR) approach, peer-reviewed articles, government reports, and official datasets published between 2006 and 2025 were reviewed across databases such as Scopus, Web of Science, FAO, and the Bangladesh Department of Fisheries (DoF). The analysis identifies major climate drivers, including rising temperature, erratic rainfall, salinity intrusion, sea-level rise, floods, droughts, cyclones, and extreme events, and reviews their differentiated impacts on key components of the sector: inland capture fisheries, marine fisheries, and aquaculture systems. For inland capture fisheries, the review highlights habitat degradation, biodiversity loss, and disrupted fish migration and breeding cycles. In aquaculture, particularly in coastal systems, this study reviews the challenges posed by disease outbreaks, water quality deterioration, and disruptions in seed supply, affecting species such as carp, tilapia, pangasius, and shrimp. Coastal aquaculture is also particularly vulnerable to cyclones, tidal surges, and saline water intrusion, with documented economic losses from events such as Cyclones Yaas, Bulbul, Amphan, and Remal. The study synthesizes key findings related to climate-resilient aquaculture practices, monitoring frameworks, ecosystem-based approaches, and community-based adaptation strategies. It underscores the need for targeted interventions, especially in coastal areas facing increasing salinity levels and frequent storms. This study calls for collective action through policy interventions, research and development, and the promotion of climate-smart technologies to enhance resilience and sustain fisheries and aquaculture in the context of a rapidly changing climate. Full article
(This article belongs to the Collection Adaptation and Mitigation Practices and Frameworks)
Show Figures

Figure 1

12 pages, 1732 KB  
Data Descriptor
A Dataset of Environmental Toxins for Water Monitoring in Coastal Waters of Southern Centre, Vietnam: Case of Nha Trang Bay
by Hoang Xuan Ben, Tran Cong Thinh and Phan Minh-Thu
Data 2025, 10(10), 155; https://doi.org/10.3390/data10100155 - 29 Sep 2025
Viewed by 338
Abstract
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: [...] Read more.
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: surface samples at approximately 0.5–1.0 m below the water surface, and bottom samples 1.0 to 2.0 m above the seabed, depending on site-specific bathymetry. These samples were analyzed for key water quality parameters, including biological oxygen demand (BOD5), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and Chlorophyll-a (Chl-a). The data establish a valuable baseline for assessing both spatial and temporal patterns of water quality, and for calculating eutrophication index to evaluate potential environmental degradation. Importantly, it also demonstrates practical applications for environmental management. The dataset can support assessments of how seasonal tourism peaks contribute to nutrient enrichment, how aquaculture expansion affects dissolved oxygen dynamics, and how water quality trends evolve under increasing anthropogenic pressure. These applications make it a useful resource for evaluating pollution control efforts and for guiding sustainable development in coastal areas. By promoting open access, the dataset not only supports scientific research but also strengthens evidence-based management strategies to protect ecosystem health and socio-economic resilience in Nha Trang Bay. Full article
Show Figures

Figure 1

21 pages, 16110 KB  
Article
Integrating Sentinel-1/2 Imagery and Climate Reanalysis for Monthly Bare Soil Mapping and Wind Erosion Modeling in Shandong Province, China
by Aobo Liu and Yating Chen
Remote Sens. 2025, 17(19), 3298; https://doi.org/10.3390/rs17193298 - 25 Sep 2025
Viewed by 267
Abstract
Accurate identification of bare soil exposure and quantification of associated dust emissions are essential for understanding land degradation and air quality risks in intensively farmed regions. This study develops a monthly monitoring and modeling framework to quantify bare soil dynamics and wind erosion-induced [...] Read more.
Accurate identification of bare soil exposure and quantification of associated dust emissions are essential for understanding land degradation and air quality risks in intensively farmed regions. This study develops a monthly monitoring and modeling framework to quantify bare soil dynamics and wind erosion-induced particulate matter (PM) emissions across Shandong Province from 2017 to 2024. By integrating Sentinel-1/2 imagery, climate reanalysis, terrain and soil data, and employing a stacking ensemble classification model, we mapped bare soil areas at 10 m resolution with an overall accuracy of 93.1%. The results show distinct seasonal variation, with bare soil area peaking in winter and early spring, exceeding 25,000 km2 or 15% of the total area, which is far above the 6.4% estimated by land cover products. Simulations using the CLM5.0 dust module indicate that annual PM10 emissions from bare soil averaged (2.72 ± 1.09) × 105 tons across 2017–2024. Emissions were highest in March and lowest in summer months, with over 80% of the total emitted during winter and spring. A notable increase in emissions was observed after 2022, likely due to more frequent extreme wind events. Spatially, emissions were concentrated in coastal lowlands such as the Yellow River Delta and surrounding saline–alkali lands. Our approach explicitly advances traditional methods by generating monthly 10 m bare soil maps and linking satellite-derived dynamics with process-based dust emission modeling, providing a robust basis for targeted dust control and land management strategies. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

31 pages, 4719 KB  
Article
Preserving Coastal Heritage: A Review of Climate Adaptation Strategies on Ilha de Moçambique (Mozambique)
by Cristiana Valente Monteiro, Francesca Dal Cin, Luís Lage and Sérgio Barreiros Proença
Land 2025, 14(9), 1917; https://doi.org/10.3390/land14091917 - 20 Sep 2025
Viewed by 367
Abstract
Ilha de Moçambique is an island off the northern coast of Mozambique, covering an area of 1.5 km2. Recognized as a UNESCO World Heritage Site since 1991, the island is currently under threat due to the increasing frequency and intensity of [...] Read more.
Ilha de Moçambique is an island off the northern coast of Mozambique, covering an area of 1.5 km2. Recognized as a UNESCO World Heritage Site since 1991, the island is currently under threat due to the increasing frequency and intensity of extreme weather events caused by climate change. Cyclonic events and pluvial floods have led to the progressive degradation of buildings and are compromising the integrity of the site. Furthermore, the island’s economic and social vulnerability is also worsening. The article aims to critically review the strategic planning approaches adopted for climate adaptation on Ilha de Moçambique. The objective is to identify and assess the planning instruments implemented to protect coastal urban heritage in light of contemporary challenges. Methodologically, a literature review is conducted based on the analysis of a collection of plans dedicated to adapting to climate change and heritage preservation. The results reveal that current planning approaches remain fragmented and insufficient, reducing their practical impact. There is a notable absence of planning instruments specifically designed to integrate cultural heritage preservation with urban climate adaptation. In conclusion, although some initiatives are underway, significant gaps persist in the strategic planning framework, underscoring the urgent need for inclusive integrated and adaptive measures to safeguard the island’s urban heritage and community in the long term. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

30 pages, 16884 KB  
Article
Evaluating the Long-Term Effectiveness of Marsh Terracing for Conservation with Integrated Geospatial and Wetland Simulation Modeling
by Nick Carpenter, Laura Costadone and Thomas R. Allen
Water 2025, 17(18), 2769; https://doi.org/10.3390/w17182769 - 18 Sep 2025
Viewed by 516
Abstract
Coastal marshes provide essential ecosystem services, yet they are vulnerable to anthropogenic stressors and climate change, particularly sea level rise (SLR). Restoration approaches like marsh terracing have emerged as nature-based strategies to enhance resilience and reduce habitat loss. This study applies the Sea [...] Read more.
Coastal marshes provide essential ecosystem services, yet they are vulnerable to anthropogenic stressors and climate change, particularly sea level rise (SLR). Restoration approaches like marsh terracing have emerged as nature-based strategies to enhance resilience and reduce habitat loss. This study applies the Sea Level Affecting Marshes Model (SLAMM) to assess the potential of marsh terraces to mitigate future losses, while also examining the model’s limitations, including its assumptions and capacity to reflect complex marsh processes. A geospatial approach was used to generate 3D representations of terraces through morphostatic modeling within digital elevation models (DEMs). Under a no-restoration scenario, SLAMM projections show that all marshes analyzed are at risk of total loss by 2100. In contrast, scenarios including terracing demonstrate a delay in net marsh loss, extending the persistence of key marsh habitats by approximately a decade. Although marsh degradation remains likely under high SLR conditions, the results underscore the utility of marsh terraces in prolonging habitat stability. Additionally, the study demonstrates the feasibility of integrating restoration features like terraces into DEMs and wetland models. Despite SLAMM’s simplified erosion and accretion assumptions, the model yields important insights into restoration effectiveness and long-term marsh dynamics, informing more adaptive, forward-looking coastal management strategies. Full article
(This article belongs to the Special Issue New Insights into Sea Level Dynamics and Coastal Erosion)
Show Figures

Figure 1

18 pages, 1138 KB  
Article
Sorption–Biological Treatment of Coastal Substrates of the Barents Sea in Low Temperature Using the Rhodococcus erythropolis Strain HO-KS22
by Vladimir Myazin, Maria Korneykova, Nadezhda Fokina, Ekaterina Semenova, Tamara Babich and Milana Murzaeva
Microorganisms 2025, 13(9), 2181; https://doi.org/10.3390/microorganisms13092181 - 18 Sep 2025
Viewed by 439
Abstract
The efficiency of the sorption–biological method for treatment of oil-polluted coastal substrates (soil and sand) of the Barents Sea under low temperature (10 °C) using the active hydrocarbon-oxidizing bacterial strain Rhodococcus erythropolis HO-KS22 was assessed in the laboratory. The highest rate of hydrocarbon [...] Read more.
The efficiency of the sorption–biological method for treatment of oil-polluted coastal substrates (soil and sand) of the Barents Sea under low temperature (10 °C) using the active hydrocarbon-oxidizing bacterial strain Rhodococcus erythropolis HO-KS22 was assessed in the laboratory. The highest rate of hydrocarbon degradation was in sand polluted with a low-density oil emulsion and in soil polluted with a medium-density oil emulsion. Sorption–biological treatment increased the rate of hydrocarbon degradation in sand by 3–4 times during the first month and enhanced the overall efficiency by 20% over a three-month period. The use of sorbents (granular activated carbon, thermally activated vermiculite and peat) both in sand and soil prevents secondary pollution of coastal ecosystems, since it significantly reduces the hydrocarbons’ desorption and their leaching by water. Rhodococcus erythropolis HO-KS22, in combination with sorbents, can be applied during the biological remediation of coastal sandy substrates following the initial removal of emergency oil spills. However, for biological treatment of oil-polluted soils of the Barents Sea coast, further selection of active strains of hydrocarbon-oxidizing bacteria resistant to low pH values and temperatures typical for this region is necessary. The use of microbiological preparations without taking into account the soil and climatic factors of the region may be ineffective, which will increase the cost of remediation of the territory without significantly improving its condition. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 5277 KB  
Article
Habitat Features Influence Aquatic Macroinvertebrates in the Cruces Wetland, a Ramsar Site of Southern Chile
by Pablo Fierro, Ignacio Rodríguez-Jorquera, Carlos Lara, Stefan Woelfl, Jorge Machuca-Sepúlveda, Carlos Vega and Jorge Nimptsch
Land 2025, 14(9), 1890; https://doi.org/10.3390/land14091890 - 16 Sep 2025
Viewed by 372
Abstract
Coastal wetlands are highly threatened by human activities, leading to water quality degradation and biodiversity loss. This study assessed spatial variation in 27 water quality parameters, sediment organic matter, and macroinvertebrate assemblages across 12 sites in the estuarine Cruces River wetland (CRW Ramsar [...] Read more.
Coastal wetlands are highly threatened by human activities, leading to water quality degradation and biodiversity loss. This study assessed spatial variation in 27 water quality parameters, sediment organic matter, and macroinvertebrate assemblages across 12 sites in the estuarine Cruces River wetland (CRW Ramsar site, southern Chile) during summer 2019. Our analysis identified three areas of sampling stations in the wetland, categorized by trophic gradient and salinity: freshwater (n = 5), mixed (n = 3), and estuary (n = 4). Freshwater sites were characterized by low salinity, turbidity, and high nitrate concentrations. Estuarine sites were characterized by higher salinities and turbidity and low nitrates and total organic carbon (TOC) concentrations, and mixed sites had low salinities, high turbidities, high TOC, and low nitrates. Throughout the CRW, the richness and densities of different invertebrates were recorded. Freshwater stations had higher species richness, and estuary stations had higher abundance. Macroinvertebrates found in the lower reaches of the CRW included species characteristic of estuarine environments, whereas the upper stations were dominated by invertebrates inhabiting low-salinity environments. According to the ordination plot of distance-based redundancy analysis (dbRDA) and distance-based linear model (DistLM), our results indicate that macroinvertebrate assemblages differ significantly among areas of the CRW, primarily due to physicochemical variables (i.e., salinity, total carbon, and dissolved phosphorus). Total organic matter content in sediments was higher in freshwater sites and lower in estuarine sites. Our findings will be used to monitor the wetland and implement appropriate management measures for human activities, thereby protecting and conserving the estuarine Cruces River Ramsar wetland. Full article
(This article belongs to the Special Issue Wetland Biodiversity and Habitat Conservation)
Show Figures

Figure 1

40 pages, 7229 KB  
Article
Influence of Habitat on the Impact of Non-Native Fishes on Native Ichthyofauna in a Group of Lakes of the Lower Doce River, Espírito Santo, Southeastern Brazil
by Eduardo Hoffmam de Barros, Nuno Caiola, Renan Luxinger Betzel, Ronaldo Fernando Martins-Pinheiro and Luisa Maria Sarmento-Soares
Diversity 2025, 17(9), 650; https://doi.org/10.3390/d17090650 - 16 Sep 2025
Viewed by 605
Abstract
The Doce River basin is the largest river system in southeastern Brazil. Over the last century, the Doce River has been undergoing a serious process of degradation, culminating in a huge environmental disaster due to Fundão tailing dam bursting in Mariana (Minas Gerais) [...] Read more.
The Doce River basin is the largest river system in southeastern Brazil. Over the last century, the Doce River has been undergoing a serious process of degradation, culminating in a huge environmental disaster due to Fundão tailing dam bursting in Mariana (Minas Gerais) and causing severe damage to biodiversity and local human communities. Near its mouth, the Doce River harbors an extensive lake area, with over ninety lakes on coastal lowlands. These lakes are of fluvial origin and connected to each other and to the main Doce River by small tributary streams. In this area, one of the main sources of impact on the fish fauna is the presence of non-native fish species. We compared richness, taxonomic diversity, beta diversity, species composition and proportion of non-native species in lakes and streams, and related these variables to each other and to environmental variables. We used the indicator species index (IndVal) to identify species associated with each type of environment. We used multivariate analyses to test the influence of stream habitat on the fish fauna in streams and Generalized Linear Models (GLMs) to test the influence of distance to lakes on the proportion of non-native species in streams, and the influence of this proportion on total and native fish richness and diversity. The results showed that some non-native species originating from lentic environments have adapted to the lakes and are spread throughout the internal lake system. In streams, there are proportionally fewer non-native fish and their distribution is more fragmented, as some stretches do not provide the conditions for the establishment of some of these species, making them potential refuges for native ichthyofauna. As the streams move away from the lakes, the proportion of non-native species tends to decrease. In streams, the richness and diversity of native species are affected by the proportion of non-native species, but not in lakes. The native vegetation in the landscape showed no potential for reducing the invasion of non-native species. The depth and width of the streams are directly related to the proportion of non-native species within the streams and are structural characteristics that should be considered in strategies for the conservation of the fish fauna. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

24 pages, 3705 KB  
Article
Lifecycle Assessment of Seismic Resilience and Economic Losses for Continuous Girder Bridges in Chloride-Induced Corrosion
by Ganghui Peng, Guowen Yao, Hongyu Jia, Shixiong Zheng and Yun Yao
Buildings 2025, 15(18), 3315; https://doi.org/10.3390/buildings15183315 - 12 Sep 2025
Viewed by 315
Abstract
This study develops a computational framework for the simultaneous quantification of seismic resilience and economic losses in corrosion-affected coastal continuous girder bridges. The proposed model integrates adjustment factors to reflect delays in post-earthquake repairs and cost increments caused by progressive material degradation. Finite [...] Read more.
This study develops a computational framework for the simultaneous quantification of seismic resilience and economic losses in corrosion-affected coastal continuous girder bridges. The proposed model integrates adjustment factors to reflect delays in post-earthquake repairs and cost increments caused by progressive material degradation. Finite element methods and nonlinear dynamic time-history simulations were conducted on an existing coastal continuous girder bridge to validate the proposed model. The key innovation lies in a probability-weighted resilience index incorporating damage state occurrence probabilities, which overcomes the computational inefficiency of traditional recovery function approaches. Key findings demonstrate that chloride exposure duration exhibits a statistically significant positive association with earthquake-induced structural failure probabilities. Sensitivity analysis reveals two critical patterns: (1) a 0.3 g PGA increase causes a 11.4–18.2% reduction in the resilience index (RI), and (2) every ten-year extension of corrosion exposure decreases RI by 2.7–6.2%, confirming seismic intensity’s predominant role compared to material deterioration. The refined assessment approach reduces computational deviation to ±2.4%, relative to conventional recovery function methods. Economic analysis indicates that chloride-induced aging generates incremental indirect losses ranging from $58,000 to $108,000 per decade, illustrating compounding post-disaster socioeconomic consequences. This work systematically bridges corrosion-dependent structural vulnerabilities with long-term fiscal implications, providing decision-support tools for coastal continuous girder bridges’ maintenance planning. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 3473 KB  
Article
The Deterioration of Low-Cycle Fatigue Properties and the Fatigue Life Model of Reinforcing Steel Bars Subjected to Corrosion
by Fangjian Chen, Longzhen Hua and Jing Zhang
Buildings 2025, 15(18), 3313; https://doi.org/10.3390/buildings15183313 - 12 Sep 2025
Viewed by 449
Abstract
Thousands of coastal reinforced concrete structures using HRB400 bars have served for over three decades in China. Their reinforcement simultaneously endures chloride corrosion and seismic action, yet studies on performance degradation remain limited. This paper investigates the low-cycle fatigue (LCF) behavior of HRB400 [...] Read more.
Thousands of coastal reinforced concrete structures using HRB400 bars have served for over three decades in China. Their reinforcement simultaneously endures chloride corrosion and seismic action, yet studies on performance degradation remain limited. This paper investigates the low-cycle fatigue (LCF) behavior of HRB400 bars under various strain amplitudes, systematically analyzing corrosion morphology, cyclic stress–strain response, fatigue life, and underlying mechanisms. Corrosion is induced by an adjusted accelerated method that replicates field conditions. Observations reveal that corrosion pits act as primary crack initiation sites. Crack paths and fracture surfaces progressively follow the local pit geometry as strain and corrosion grow. The detrimental effect of corrosion on LCF life is more pronounced for smaller bars. At a γ of around 8%, 20 mm bars lose 60.7% of the half cycles to failure at ε = ±1.5%, but only 37.5% at ε = ±5.0%. Predictive corrosion-inclusive strain amplitude (εa)–fatigue life models are proposed, yielding R2 = 0.952 (16 mm) and 0.928 (20 mm). A unified LCF predictive model, calibrated on a database of 310 corroded/uncorroded bar tests, is established. The final model comprehensively considers the characteristics of rebars, seismic action, and corrosion damage, improving the conventional relationship between LCF life and seismic loading. This work contributes to the understanding of the fatigue behavior of HRB400 bars and provides support for time-dependent seismic reliability analysis of aging reinforced concrete structures in corrosive environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 6399 KB  
Article
Assessing the Performance of GNSS-IR for Sea Level Monitoring During Hurricane-Induced Storm Surges
by Runtao Zhang, Kai Liu, Xue Wang, Zhao Li, Tao Xie, Qusen Chen and Xin Chang
Remote Sens. 2025, 17(18), 3132; https://doi.org/10.3390/rs17183132 - 9 Sep 2025
Viewed by 612
Abstract
With the intensification of extreme climate change, hurricanes are becoming increasingly frequent, and coastal regions are often impacted by hurricane-induced storm surges. While GNSS-IR (Global Navigation Satellite System–Interferometric Reflectometry) has been widely used for sea level monitoring, its application in extreme weather events [...] Read more.
With the intensification of extreme climate change, hurricanes are becoming increasingly frequent, and coastal regions are often impacted by hurricane-induced storm surges. While GNSS-IR (Global Navigation Satellite System–Interferometric Reflectometry) has been widely used for sea level monitoring, its application in extreme weather events such as storm surges remains limited. This study focuses on GNSS-IR-based storm surge monitoring and investigates six hurricane events using data from two GNSS stations (CALC and FLCK) located in the Gulf of Mexico. The monitoring accuracy and effectiveness are systematically evaluated. Results indicate that GNSS-IR achieves a sea level accuracy of approximately 7 cm under non-storm surge conditions. Compared with the FLCK station, the CALC station has a wider field of water reflection and higher precision observation results. This further confirms that an open environment is a prerequisite for ensuring the accuracy of GNSS-IR measurements. However, accuracy degrades significantly during storm surges, reaching only a decimeter-level precision. Multi-GNSS observations notably improve temporal resolution, with valid observation periods covering 83% to 97% of the total time, compared with only 40% to 60% for single-system observations. Moreover, dynamic sea level variations are closely correlated with hurricane trajectories, which affects GNSS-IR measurement accuracy to some extent. The GPS L2 band is particularly sensitive, likely due to the complex surface-reflected condition caused by hurricanes. Despite reduced accuracy during storm surges, GNSS-IR remains capable of capturing dynamic sea level changes effectively, demonstrating its potential as a valuable supplement to the existing observation networks for extreme weather monitoring. Full article
(This article belongs to the Special Issue Advanced Multi-GNSS Positioning and Its Applications in Geoscience)
Show Figures

Graphical abstract

30 pages, 6641 KB  
Article
Cetacean Habitat Use and Occurrence in Fort-de-France Bay (Martinique)
by Coline Violo, Anatole Gros-Martial, Célia Ortolé, Marion Poupard, Morjane Safi and Benjamin de Montgolfier
Animals 2025, 15(18), 2640; https://doi.org/10.3390/ani15182640 - 9 Sep 2025
Viewed by 707
Abstract
While coastal species have been widely studied, active port areas in tropical island regions with intense maritime traffic remain critical, but habitats for cetaceans within the Caribbean have not been thoroughly studied. This study examines the spatial and temporal patterns of habitat use [...] Read more.
While coastal species have been widely studied, active port areas in tropical island regions with intense maritime traffic remain critical, but habitats for cetaceans within the Caribbean have not been thoroughly studied. This study examines the spatial and temporal patterns of habitat use and the characteristics of groups of six cetacean species in the Bay of Fort-de-France in Martinique, an area with heavy marine traffic. Data were collected from 2018 to 2022 through systematic boat-based surveys. We analyzed standardized observations of group occurrence, size, behavior, and depth preference across different subzones of the bay. Our results reveal that Stenella attenuata and Stenella longirostris are the most frequently observed species, exhibiting distinct seasonal patterns, while other species occur more sporadically. Group sizes and behavioral patterns vary significantly across zones and depths. Larger, more interactive groups are generally observed in shallow areas. Several species’ preference for nearshore waters highlights the ecological value of the bay and the potential risks posed by anthropogenic pressures, such as noise, collisions, and habitat degradation. Our findings underscore the importance of considering cetacean habitat use in port management strategies. This study provides essential baseline knowledge to support conservation efforts and the development of mitigation measures that reconcile economic activities with the protection of marine biodiversity. Full article
Show Figures

Figure 1

14 pages, 1761 KB  
Article
Applying a Hydrodynamic Model to Determine the Fate and Transport of Macroplastics Released Along the West Africa Coastal Area
by Laura Corbari, Fulvio Capodici, Giuseppe Ciraolo, Giulio Ceriola and Antonello Aiello
Water 2025, 17(18), 2658; https://doi.org/10.3390/w17182658 - 9 Sep 2025
Viewed by 760
Abstract
Marine plastic pollution has become a critical transboundary environmental issue, particularly affecting coastal regions with insufficient waste management infrastructure. This study applies a modified Lagrangian hydrodynamic model, TrackMPD v.1, to simulate the movement and accumulation of macroplastics in the West Africa Coastal Area. [...] Read more.
Marine plastic pollution has become a critical transboundary environmental issue, particularly affecting coastal regions with insufficient waste management infrastructure. This study applies a modified Lagrangian hydrodynamic model, TrackMPD v.1, to simulate the movement and accumulation of macroplastics in the West Africa Coastal Area. The research investigates three case studies: (1) the Liberia–Gulf of Guinea region, (2) the Mauritania–Gulf of Guinea coastal stretch, (3) the Cape Verde, Mauritania, and Senegal regions. Using both forward and backward simulations, macroplastics’ trajectories were tracked to identify key sources and accumulation hotspots. The findings highlight the cross-border nature of marine litter, with plastic debris transported far from its source due to ocean currents. The Gulf of Guinea emerges as a major accumulation zone, heavily impacted by plastic pollution originating from West African rivers. Interesting connections were found between velocities and directions of the plastic debris and some of the characteristics of the West African Monson climatic system (WAM) that dominates the area. Backward modelling reveals that macroplastics beached in Cape Verde largely originate from the Arguin Basin (Mauritania), an area influenced by fishing activities and offshore oil and gas operations. Results are visualized through point tracking, density, and beaching maps, providing insights into plastic distribution and accumulation patterns. The study underscores the need for regional cooperation and integrated monitoring approaches, including remote sensing and in situ surveys, to enhance mitigation strategies. Future work will explore 3D simulations, incorporating degradation processes, biofouling, and sinking dynamics to improve the representation of plastic behaviour in marine environments. This research is conducted within the Global Development Assistance (GDA) Agile Information Development (AID) Marine Environment and Blue Economy initiative, funded by the European Space Agency (ESA) in collaboration with the Asian. Development Bank and the World Bank. The outcomes provide actionable insights for policymakers, researchers, and environmental managers aiming to combat marine plastic pollution and safeguard marine biodiversity. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Back to TopTop