Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = coal mining wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2460 KiB  
Article
Continuous Chamber Gangue Storage for Sustainable Mining in Coal Mines: Principles, Methods, and Environmental Benefits
by Jinhai Liu, Yuanhang Wang, Jiajie Li, Desire Ntokoma, Zhengxing Yu, Sitao Zhu and Michael Hitch
Sustainability 2025, 17(15), 6865; https://doi.org/10.3390/su17156865 - 28 Jul 2025
Viewed by 275
Abstract
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution [...] Read more.
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution for coal mines. The principles of this approach emphasize minimizing disturbance to overlying strata, enabling uninterrupted mining operations, and reducing both production costs and environmental risks. By storing the surface or underground gangue in continuous chambers, the proposed method ensures the roof stability, maximizes the waste storage, and prevents the interaction between mining and waste management processes. Detailed storage sequences and excavation methods are discussed, including continuous and jump-back excavation strategies tailored to varying roof conditions. The process flows for both underground and ground-based chamber storage are described, highlighting the integration of gangue crushing, paste preparation, and pipeline transport for efficient underground storage. In a case study with annual storage of 500,000 t gangue, the annual economic benefit reached CNY 1,111,425,000. This technology not only addresses the urgent need for sustainable coal gangue management, but also aligns with the goals of resource conservation, ecological protection, and the advancement of green mining practices in the coal industry. Full article
Show Figures

Figure 1

31 pages, 8031 KiB  
Article
Study on the Mechanical Properties of Coal Gangue Materials Used in Coal Mine Underground Assembled Pavement
by Jiang Xiao, Yulin Wang, Tongxiaoyu Wang, Yujiang Liu, Yihui Wang and Boyuan Zhang
Appl. Sci. 2025, 15(15), 8180; https://doi.org/10.3390/app15158180 - 23 Jul 2025
Viewed by 192
Abstract
To address the limitations of traditional hardened concrete road surfaces in coal mine tunnels, which are prone to damage and entail high maintenance costs, this study proposes using modular concrete blocks composed of fly ash and coal gangue as an alternative to conventional [...] Read more.
To address the limitations of traditional hardened concrete road surfaces in coal mine tunnels, which are prone to damage and entail high maintenance costs, this study proposes using modular concrete blocks composed of fly ash and coal gangue as an alternative to conventional materials. These blocks offer advantages including ease of construction and rapid, straightforward maintenance, while also facilitating the reuse of substantial quantities of solid waste, thereby mitigating resource wastage and environmental pollution. Initially, the mineral composition of the raw materials was analyzed, confirming that although the physical and chemical properties of Liangshui Well coal gangue are slightly inferior to those of natural crushed stone, they still meet the criteria for use as concrete aggregate. For concrete blocks incorporating 20% fly ash, the steam curing process was optimized with a recommended static curing period of 16–24 h, a temperature ramp-up rate of 20 °C/h, and a constant temperature of 50 °C maintained for 24 h to ensure optimal performance. Orthogonal experimental analysis revealed that fly ash content exerted the greatest influence on the compressive strength of concrete, followed by the additional water content, whereas the aggregate particle size had a comparatively minor effect. The optimal mix proportion was identified as 20% fly ash content, a maximum aggregate size of 20 mm, and an additional water content of 70%. Performance testing indicated that the fabricated blocks exhibited a compressive strength of 32.1 MPa and a tensile strength of 2.93 MPa, with strong resistance to hydrolysis and sulfate attack, rendering them suitable for deployment in weakly alkaline underground environments. Considering the site-specific conditions of the Liangshuijing coal mine, ANSYS 2020 was employed to simulate and analyze the mechanical behavior of the blocks under varying loads, thicknesses, and dynamic conditions. The findings suggest that hexagonal coal gangue blocks with a side length of 20 cm and a thickness of 16 cm meet the structural requirements of most underground mine tunnels, offering a reference model for cost-effective paving and efficient roadway maintenance in coal mines. Full article
Show Figures

Figure 1

24 pages, 6323 KiB  
Article
Study on Creep Characteristics of High-Volume Fly Ash-Cement Backfill Considering Initial Damage
by Shuokang Wang, Jingjing Yan, Zihui Dong, Hua Guo, Yuanzhong Yang and Naseer Muhammad Khan
Minerals 2025, 15(7), 759; https://doi.org/10.3390/min15070759 - 19 Jul 2025
Viewed by 347
Abstract
To reveal the long-term deformation behavior of high-volume fly ash-based backfill under continuous mining and backfilling, a fly ash–cement backfill material with 73.0% fly ash content was developed, and creep characteristic tests considering initial damage were conducted. The results demonstrate that: (1) A [...] Read more.
To reveal the long-term deformation behavior of high-volume fly ash-based backfill under continuous mining and backfilling, a fly ash–cement backfill material with 73.0% fly ash content was developed, and creep characteristic tests considering initial damage were conducted. The results demonstrate that: (1) A calculation method for the initial damage of backfill based on stress–strain hysteresis loop cycles is proposed, with cumulative characteristics of initial damage across mining phases analyzed; (2) Creep behaviors of backfill affected by initial damage are investigated, revealing the weakening effect of initial damage on long-term bearing capacity; (3) An enhanced, nonlinear plastic damage element is developed, enabling the construction of an HKBN constitutive model capable of characterizing the complete creep behavior of backfill materials. The research establishes a theoretical framework for engineering applications of backfill materials with early-age strength below 5 MPa, while significantly enhancing the utilization efficiency of coal-based solid wastes. Full article
Show Figures

Figure 1

18 pages, 886 KiB  
Review
Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology
by Yongfei Jin, Yixin Li, Wenyong Liu, Xiaona Yang, Xiaojiao Cheng, Chenyang Qi, Changsheng Li, Jing Hui and Lei Zhang
Processes 2025, 13(7), 2305; https://doi.org/10.3390/pr13072305 - 19 Jul 2025
Viewed by 344
Abstract
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes [...] Read more.
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes previous research results, and based on the principles and research and development progress of existing detection technologies such as the surface temperature measurement method, ground temperature measurement method, wellbore temperature measurement method, and infrared remote sensing detection method, it briefly reviews the application of various detection technologies in engineering practice at this stage and briefly explains the advantages and disadvantages of each application. Research shows that the existing technologies are generally limited by the interference of complex environmental conditions (such as temperature measurement deviations caused by atmospheric turbulence and the influence of rock layer structure on ground temperature conduction) and the implementation difficulties of geophysical methods in mining applications (such as the interference of stray currents in the ground by electromagnetic methods and the fast attenuation speed of waves detected by geological radar methods), resulting in the insufficient accuracy of fire source location and difficulties in identifying concealed fire sources. In response to the above bottlenecks, the ”air–ground integrated” fire source location determination technology that breaks through environmental constraints and the location determination method of a CSC fire source based on a multi-physics coupling mechanism are proposed. By significantly weakening the deficiency in obtaining parameters through a single detection method, a new direction is provided for the detection of coal spontaneous combustion fire sources in the future. Full article
Show Figures

Figure 1

19 pages, 6727 KiB  
Article
Soil Contamination and Related Ecological Risks: Complex Analysis of the Defor Petrila Tailings Dump, Romania
by Emilia-Cornelia Dunca, Mădălina-Flavia Ioniță and Sorin Mihai Radu
Land 2025, 14(7), 1492; https://doi.org/10.3390/land14071492 - 18 Jul 2025
Viewed by 244
Abstract
Assessing the risks associated with waste disposal is essential for environmental protection and sustainable development, especially given concerns about the impact of industrial activities on the environment. This study analyses soil contamination in the Defor Petrila tailings-dump area caused by the deposition of [...] Read more.
Assessing the risks associated with waste disposal is essential for environmental protection and sustainable development, especially given concerns about the impact of industrial activities on the environment. This study analyses soil contamination in the Defor Petrila tailings-dump area caused by the deposition of waste material resulting from coal exploitation. To characterise the heavy-metal contamination in detail, we applied a comprehensive methodology that includes the calculation of the geo-accumulation index (Igeo), contamination factor (Cf), and potential ecological risk index (PERI), along with an analysis of the heavy-metal concentration isolines and a statistical analysis using the Pearson correlation coefficient. The results reveal varying levels of heavy-metal concentrations, as indicated by the calculated indices. The findings underscore the need for remediation and ongoing monitoring to mitigate the environmental impacts. This study provides a scientific basis for decision making in environmental management and highlights the importance of assessing mining-waste disposal near human settlements using various contamination-assessment methods. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

22 pages, 4184 KiB  
Article
Comparative Study of the Effect of Particle Size on Flotation Kinetics of Raw and Waste Coal
by Jovica Sokolović, Ivana Đolović, Dejan Tanikić, Zoran Štirbanović and Ivana Ilić
Minerals 2025, 15(7), 749; https://doi.org/10.3390/min15070749 - 17 Jul 2025
Viewed by 164
Abstract
This study examines the influence of particle size on the flotation kinetics parameters of both raw and waste fine coal originating from the anthracite mine “Vrška Čuka”, Serbia. Flotation kinetics modeling was performed using MATLAB for nonlinear regression analysis, based on coal flotation [...] Read more.
This study examines the influence of particle size on the flotation kinetics parameters of both raw and waste fine coal originating from the anthracite mine “Vrška Čuka”, Serbia. Flotation kinetics modeling was performed using MATLAB for nonlinear regression analysis, based on coal flotation test data. The correlation between total combustible recovery and flotation time was determined using the following models: Classical, Klimpel, Kelsall, Modified Kelsall, and Fully Mixed. The coefficients of determination range from 0.9724 (the Klimpel model) to 1 (the modified Kelsall model) for raw coal and from 0.8609 (the Klimpel model) to 0.9981 (the modified Kelsall model) for waste coal. Although both the Classical and Modified Kelsall models demonstrated a good correlation with the experimental data, the Modified Kelsall model provided a slightly better fit. The maximum values of the flotation rate constant (k) for both coals were obtained for the particle size-class (−0.1 + 0.053) mm for the Classical model and (−0.2 + 0.1) mm for the modified Kelsall model. The relation between flotation kinetics constant (k) and average particle size value (dsr) was estimated for the Classical model and the modified Kelsall model. It was observed that the flotation kinetics constant (k) for coal particle size could be predicted satisfactorily. Full article
(This article belongs to the Special Issue Mineral Processing and Recycling Technologies for Sustainable Future)
Show Figures

Figure 1

33 pages, 1593 KiB  
Review
Bio-Coal Briquetting as a Potential Sustainable Valorization Strategy for Fine Coal: A South African Perspective in a Global Context
by Veshara Ramdas, Sesethu Gift Njokweni, Parsons Letsoalo, Solly Motaung and Santosh Omrajah Ramchuran
Energies 2025, 18(14), 3746; https://doi.org/10.3390/en18143746 - 15 Jul 2025
Viewed by 337
Abstract
The generation of fine coal particles during mining and processing presents significant environmental and logistical challenges, particularly in coal-dependent, developing countries like South Africa (SA). This review critically evaluates the technical viability of fine coal briquetting as a sustainable waste-to-energy solution within a [...] Read more.
The generation of fine coal particles during mining and processing presents significant environmental and logistical challenges, particularly in coal-dependent, developing countries like South Africa (SA). This review critically evaluates the technical viability of fine coal briquetting as a sustainable waste-to-energy solution within a SA context, while drawing from global best practices and comparative benchmarks. It examines abundant feedstocks that can be used for valorization strategies, including fine coal and agricultural biomass residues. Furthermore, binder types, manufacturing parameters, and quality optimization strategies that influence briquette performance are assessed. The co-densification of fine coal with biomass offers a means to enhance combustion efficiency, reduce dust emissions, and convert low-value waste into a high-calorific, manageable fuel. Attention is also given to briquette testing standards (i.e., South African Bureau of Standards, ASTM International, and International Organization of Standardization) and end-use applications across domestic, industrial, and off-grid settings. Moreover, the review explores socio-economic implications, including rural job creation, energy poverty alleviation, and the potential role of briquetting in SA’s ‘Just Energy Transition’ (JET). This paper uniquely integrates technical analysis with policy relevance, rural energy needs, and practical challenges specific to South Africa, while offering a structured framework for bio-coal briquetting adoption in developing countries. While technical and economic barriers remain, such as binder costs and feedstock variability, the integration of briquetting into circular economy frameworks represents a promising path toward cleaner, decentralized energy and coal waste valorization. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

27 pages, 2895 KiB  
Article
Experimental Study on the Preparation of Paste Filling Materials from Coal-Based Solid Wastes
by Chaowen Hu, Xiaojie Yang, Feng Zhang, Bo Pan, Ruifeng Huang, Bing Hu, Yongyuan Li, Lei Zhang, Bingshan Wang, Jianxun Gao, Huifeng Wang and Yun Yu
Materials 2025, 18(14), 3244; https://doi.org/10.3390/ma18143244 - 9 Jul 2025
Viewed by 331
Abstract
To reduce the cost of coal mine filling materials, a novel composite cementitious material was developed by utilizing coal-based solid waste materials, including fly ash, desulfurized gypsum, and carbide slag, along with cement and water as raw materials. Initially, a comprehensive analysis of [...] Read more.
To reduce the cost of coal mine filling materials, a novel composite cementitious material was developed by utilizing coal-based solid waste materials, including fly ash, desulfurized gypsum, and carbide slag, along with cement and water as raw materials. Initially, a comprehensive analysis of the physical and chemical properties of each raw material was conducted. Subsequently, proportioning tests were systematically carried out using the single-variable method. During these tests, multiple crucial performance indicators were measured. Specifically, the fluidity and bleeding rate of the slurry were evaluated to assess its workability, while the compressive strength and chemically bound water content of the hardened sample were tested to determine its mechanical properties and hydration degree. Through in-depth analysis of the test results, the optimal formulation of the composite cementitious material was determined. In the basic group, the mass ratio of fly ash to desulfurized gypsum was set at 70:30. In the additional group, the carbide slag addition amount accounted for 20% of the total mass, the cement addition amount was 15%, and the water–cement ratio was fixed at 0.65. Under these optimal proportioning conditions, the composite cementitious material exhibited excellent performance: its fluidity ranged from 180 to 220 mm, the bleeding rate within 6 h was less than 5%, and the 28-day compressive strength reached 17.69 MPa. The newly developed composite cementitious material features good fluidity and high strength of the hardened sample, fully meeting the requirements for mine filling materials. Full article
Show Figures

Figure 1

26 pages, 2032 KiB  
Review
A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling
by Mustafa Rezaei, Gabriela Sanchez-Lecuona and Omid Abdolazimi
Minerals 2025, 15(7), 720; https://doi.org/10.3390/min15070720 - 9 Jul 2025
Viewed by 954
Abstract
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This [...] Read more.
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This review presents a comprehensive overview of REE geochemistry, mineralogy, and major deposit types including carbonatites, alkaline igneous rocks, laterites, placer deposits, coal byproducts, and marine sediments. It also highlights the global distribution and economic potential of key REE projects. The integration of machine learning has further enhanced exploration by enabling deposit classification and geochemical modeling, especially in data-limited regions. Environmental and health challenges associated with REE mining, processing, and electronic waste (e-waste) recycling are studied, along with the expanding use of REEs in agriculture and medicine. Some recycling efforts offer promise for supply diversification, but significant technological and economic barriers remain. Ensuring a secure and sustainable REE supply will require integrated approaches combining advanced analytics, machine learning, responsible extraction, and coordinated policy efforts. The present review offers a general overview that can be useful for informing future studies and resource-related discussions. Full article
Show Figures

Figure 1

16 pages, 866 KiB  
Article
Integrated Cover Crop and Fertilization Strategies for Sustainable Organic Zucchini Production in Mediterranean Climate
by Francesco Montemurro, Mariangela Diacono, Vincenzo Alfano, Alessandro Persiani, Michele Mascia, Fabrizio Pisanu, Elisabetta Fois, Gioia Sannino and Roberta Farina
Horticulturae 2025, 11(7), 809; https://doi.org/10.3390/horticulturae11070809 - 8 Jul 2025
Viewed by 326
Abstract
The integration of different agroecological practices could significantly mitigate the impact of climate change. Therefore, a 2-year field experiment on organic zucchini was carried out to study the effects of clover (Trifolium alexandrinum L.) cover crop management (green manure, GM vs. flattening [...] Read more.
The integration of different agroecological practices could significantly mitigate the impact of climate change. Therefore, a 2-year field experiment on organic zucchini was carried out to study the effects of clover (Trifolium alexandrinum L.) cover crop management (green manure, GM vs. flattening using a roller crimper, RC), compared to a control without cover (CT). This agroecological practice was tested in combination with the following different fertilizer treatments: T1. compost produced by co-composting coal mining wastes with municipal organic wastes compost plus urea; T2. compost produced with the same matrices as T1, replacing urea with lawn mowing residues; T3. non-composted mixture of the industrial matrices; T4. on-farm compost obtained from crop residues. The GM management showed the highest marketable yield and aboveground biomass of zucchini, with both values higher by approximately 38% than those recorded in CT. The T1, T2, and T3 treatments showed higher SOC values compared to T4 in both years, with a gradual increase in SOC over time. The residual effect of fertilization on SOC showed a smaller reduction in T3 and T4 than in T1 and T2, in comparison with the levels recorded during the fertilization years, indicating a higher persistence of the applied organic matter in these treatments. The findings of this study pointed out that combining organic fertilization and cover cropping is an effective agroecological practice to maintain adequate zucchini yields and enhance SOC levels in the Mediterranean environment. Full article
Show Figures

Graphical abstract

16 pages, 8495 KiB  
Article
Utilization of Waste Clay–Diatomite in the Production of Durable Mullite-Based Insulating Materials
by Svetlana Ilić, Jelena Maletaškić, Željko Skoko, Marija M. Vuksanović, Željko Radovanović, Ivica Ristović and Aleksandra Šaponjić
Appl. Sci. 2025, 15(13), 7512; https://doi.org/10.3390/app15137512 - 4 Jul 2025
Viewed by 290
Abstract
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 [...] Read more.
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 wt%) and a moderately high content of Al2O3 (13.8 wt%). In order to achieve the stoichiometric mullite composition (3Al2O3-2SiO2), the raw material was mixed with an appropriate amount of Al(NO3)3·9H2O. After preparing the precursor powder, the green compacts were sintered at 1300, 1400 and 1500 °C for 2 h. During the process, rod-shaped mullite grains were formed, measuring approximately 5 µm in length and a diameter of 500 nm (aspect ratio 10:1). The microstructure of the sample sintered at 1500 °C resulted in a well-developed, porous, nest-like morphology. According to the X-ray diffraction analysis, the sample at 1400 °C consisted of mullite, cristobalite and corundum phases, while the sample sintered at 1500 °C contained mullite (63.24 wt%) and an amorphous phase that reached 36.7 wt%. Both samples exhibited exceptional compressive strength—up to 188 MPa at 1400 °C. However, the decrease in compressive strength to 136 MPa at 1500 °C is attributed to changes in the phase composition, the disappearance of the corundum phase and alterations in the microstructure. This occurred despite an increase in bulk density to 2.36 g/cm3 (approximately 82% of theoretical density) and a complete reduction in open porosity. The residual glassy phase (36.7 wt% at 1500 °C) is probably the key factor influencing the mechanical properties at room temperature in these ceramics produced from waste clay–diatomite. However, the excellent mechanical stability of the samples sintered at 1400 and 1500 °C, achieved without binders or additives and using mined diatomaceous earth, supports further research into mullite-based insulating materials. Mullite-based materials obtained from mining waste might be successfully used in the field of energy-efficient refractory materials and thermal insulators. for high-temperature applications Full article
Show Figures

Figure 1

16 pages, 9789 KiB  
Article
CO2 Sequestration Potential Competitive with H2O and N2 in Abandoned Coal Mines Based on Molecular Modeling
by Tianyang Liu, Yun Li, Yaxuan Hu, Hezhao Li, Binghe Chen, Qixu Zhang, Qiufeng Xu and Yong Li
Processes 2025, 13(7), 2123; https://doi.org/10.3390/pr13072123 - 3 Jul 2025
Viewed by 353
Abstract
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of [...] Read more.
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of coal mine waste gas components (CO2, H2O, N2) under varying pressure levels and gas molar ratios at 353.15 K. We evaluated the adsorption capacity and selectivity for both single-component and multi-component gases, quantifying adsorption interactions through adsorption heat, interaction energy, and energy distribution. The simulation results revealed that the contribution of the three gases to the total adsorption amount followed the order: H2O > CO2 > N2. The selective adsorption coefficient of a gas exhibits an inverse correlation with its molar volume ratio. Isothermal heat adsorption of gases in coal was positive, decreasing sharply with increasing pressure before leveling off. Electrostatic interactions dominated CO2 and H2O adsorption, while van der Waals forces governed N2 adsorption. As the gas mixture complexity increased, the overlap of energy distribution curves pronounced, highlighting competitive adsorption behavior. These findings offer a theoretical foundation for optimizing coal mine waste gas treatment and CO2 sequestration technologies. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

22 pages, 3312 KiB  
Review
A Review of the Impact of Spontaneous Combustion on Slope Stability in Coal Mine Waste Dumps
by Phu Minh Vuong Nguyen
Appl. Sci. 2025, 15(13), 7138; https://doi.org/10.3390/app15137138 - 25 Jun 2025
Viewed by 329
Abstract
Mining waste from both underground and open-pit mines is typically placed in surface sites known as mine waste dumps. Over time, as large volumes of mining waste accumulate, these dumps become higher due to the limited surface area allocated to dumping. Ensuring the [...] Read more.
Mining waste from both underground and open-pit mines is typically placed in surface sites known as mine waste dumps. Over time, as large volumes of mining waste accumulate, these dumps become higher due to the limited surface area allocated to dumping. Ensuring the stability of mine waste dumps is a major concern for both mining operations and local governments due to safety risks to the dumps themselves and their surrounding environments. In some cases of mine waste dump, spontaneous combustion poses a significant challenge, affecting not only the environment but also the slope stability of mine waste dumps. This review synthesizes existing research on the mechanisms of spontaneous combustion, its thermal effects, and the implications for geomechanical stability in mine waste dumps. It also examines methods for monitoring and controlling these processes, identifies gaps in the current research, and suggests directions for future studies. The review also reveals that combustion-induced temperature changes, material degradation, and gas generation significantly impact the geotechnical properties of building material dumps, contributing to slope failure. This review is expected to provide valuable insights that help mining authorities assess risks, minimize impacts, and implement preventive measures to mitigate unexpected spontaneous combustion-induced slope failures in mine waste dumps. Full article
Show Figures

Figure 1

15 pages, 2052 KiB  
Article
Assessment of Potential Environmental Risks Posed by Soils of a Deactivated Coal Mining Area in Northern Portugal—Impact of Arsenic and Antimony
by Marcus Monteiro, Patrícia Santos, Jorge Espinha Marques, Deolinda Flores, Manuel Azenha and José A. Ribeiro
Pollutants 2025, 5(2), 15; https://doi.org/10.3390/pollutants5020015 - 18 Jun 2025
Viewed by 860
Abstract
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of [...] Read more.
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of the former Pejão coal mine complex in Northern Portugal, a site impacted by forest wildfires in October 2017 that triggered underground combustion within the waste heaps. Our methodology involved determining the “pseudo-total” concentrations of As and Sb in the collected heap samples using microwave digestion with aqua regia (ISO 12914), followed by analysis using hydride generation-atomic absorption spectroscopy (HG-AAS). The concentrations of As an Sb ranging from 31.0 to 68.6 mg kg−1 and 4.8 to 8.3 mg kg−1, respectively, were found to be above the European background values reported in project FOREGS (11.6 mg kg−1 for As and 1.04 mg kg−1 for Sb) and Portuguese Environment Agency (APA) reference values for agricultural soils (11 mg kg−1 for As and 7.5 mg kg−1 for Sb), indicating significant enrichment of these PTEs. Based on average Igeo values, As contamination overall was classified as “unpolluted to moderately polluted” while Sb contamination was classified as “moderately polluted” in the waste pile samples and “unpolluted to moderately polluted” in the downhill soil samples. However, total PTE content alone is insufficient for a comprehensive environmental risk assessment. Therefore, further studies on As and Sb fractionation and speciation were conducted using the Shiowatana sequential extraction procedure (SEP). The results showed that As and Sb levels in the more mobile fractions were not significant. This suggests that the enrichment in the burned (BCW) and unburned (UCW) coal waste areas of the mine is likely due to the stockpiling of lithic fragments, primarily coals hosting arsenian pyrites and stibnite which largely traps these elements within its crystalline structure. The observed enrichment in downhill soils (DS) is attributed to mechanical weathering, rock fragment erosion, and transport processes. Given the strong association of these elements with solid phases, the risk of leaching into surface waters and aquifers is considered low. This work underscores the importance of a holistic approach to environmental risk assessment at former mining sites, contributing to the development of sustainable remediation strategies for long-term environmental protection. Full article
(This article belongs to the Section Soil Pollution)
Show Figures

Figure 1

27 pages, 7946 KiB  
Article
Double-Borehole Superimposed Effect of a New Non-Explosive Directional Rock-Breaking Method
by Quan Zhang, Manchao He, Kai Chen, Shan Guo, Chun Yang, Rongzhou Yang, Yun Wu, Jiong Wang and Chao Wang
Appl. Sci. 2025, 15(12), 6805; https://doi.org/10.3390/app15126805 - 17 Jun 2025
Viewed by 284
Abstract
Due to the difficulty of creating directional fractures efficiently and accurately with existing non-explosive rock-breaking methods, a directional fracturing technique utilizing a coal-based solid waste expansive agent, termed the instantaneous expansion with a single fracture (IESF), has been developed. IESF can generate high-pressure [...] Read more.
Due to the difficulty of creating directional fractures efficiently and accurately with existing non-explosive rock-breaking methods, a directional fracturing technique utilizing a coal-based solid waste expansive agent, termed the instantaneous expansion with a single fracture (IESF), has been developed. IESF can generate high-pressure gases within 0.05–0.5 s and utilize gas pressure to achieve directional rock fragmentation. The rock-breaking mechanisms under double-borehole conditions of conventional blasting (CB), shaped charge blasting (SCB), and IESF were studied by theoretical analysis, numerical simulation, and in situ test. The gas pressure distribution within directional fractures of IESF was determined, and the crack propagation criterion between double-borehole was established. Numerical simulation results indicated that the stress distribution in CB was random. SCB exhibited tensile stress of −10.89 MPa in the inter-borehole region and −8.33 MPa on the outer-borehole region, while IESF generated −14.47 MPa and −12.62 MPa in the corresponding regions, demonstrating that stresses generated between adjacent boreholes can be superimposed in the inter-hole region. In CB, strain was concentrated along main fractures. SCB exhibited strains of 7 mm and 8 mm in the shaped charge direction, while non-shaped charge directions showed a strain of 1.5 mm. For IESF, strain in the shaped charge direction measured 6 mm, compared to 1 mm in non-shaped charge directions, resulting in superior directional fracture control. In situ test results from Donglin Coal Mine demonstrated that IESF can form superior directional rock-breaking efficacy compared to both CB and SCB, with the average crack rates of 95.5% by IESF higher than 85.0% by SCB. This technique provides a non-explosive method that realizes precise control of the direction of cracks while avoiding the high-risk and high-disturbance problems of explosives blasting. Full article
(This article belongs to the Special Issue Advanced Technology in Geotechnical Engineering)
Show Figures

Figure 1

Back to TopTop