Soil Contamination and Related Ecological Risks: Complex Analysis of the Defor Petrila Tailings Dump, Romania
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Description of the Study Area
2.2. Soil Sampling
2.3. Determination of the Presence of Heavy Metals in Soil Samples
2.4. Determination of the Geo-Accumulation Index of Heavy Metals in Soil
- Cn—Metal concentration in the analysed sample (mg/kg−1 dry matter);
- Bn—Reference concentration of the metal in the soil (mg/kg−1 dry matter);
- 1.5—Associated with the correction factor due to the lithogen.
2.5. Determination of the Contamination Factor for Heavy Metals in the Tailings Dump
- Cmetal—Heavy-metal concentration in the soil;
- Cbackground—Normal value for the respective heavy metal that can be found in the soil.
2.6. Pearson Correlation Coefficient Method for Analysing the Presence of Heavy Metals in Soil
2.7. Method for Mapping Heavy-Metal Concentrations in the Tailings Dump
- %ΔC—Percentage variation in the heavy-metal concentration in the soil;
- Cmax—Highest concentration of heavy metals in the soil;
- Cmin—Lowest concentration of heavy metals in the soil;
- Cmed—Average concentration of heavy metals in soil.
2.8. Determining the Potential Ecological Risk Index
- Individual ecological risk for the analysed heavy metal, i.e., the potential for a negative effect on the environment due to the presence of that metal;
- Toxicity coefficient (or toxic response factor) for the heavy metal analysed. This reflects the relative toxicity of the metal and the sensitivity of the environment to it;
- Contamination factor for the analysed heavy metal.
- —Contamination factor;
- —Heavy-metal concentration in the soil (in mg/kg−1 dry matter);
- —Background concentration (natural, before contamination) of the same metal in that environment.
2.9. Assessment of Metallophyte Adaptability to Heavy-Metal-Contaminated Soils
3. Results
3.1. Determination of Soil Heavy-Metals Concentrations in Samples
3.2. Determination of the Geo-Accumulation Index for Soil Heavy-Metal Concentrations
3.3. Determination of the Contamination Factor for Heavy Metals in the Tailings Dump
3.4. Pearson Correlation Coefficient Matrix for Heavy-Metal Presence in the Tailings Dump
3.5. Isoline Method for Mapping Heavy-Metal Concentrations in the Tailings Dump
3.6. Determining the Potential Ecological Risk Index (Er)
3.7. Evaluating Metallophyte Adaptation to Heavy-Metal-Contaminated Soils
- Best performers
- Moderate responses
4. Discussion
- ✓
- Spatial distribution and contamination hotspots
- ✓
- Contamination indices: Igeo and Cf
- ✓
- Ecological risk assessment (Er)
- ✓
- Statistical associations and mobilisation pathways
- ✓
- Phytoremediation potential of native metallophytes
- ✓
- Recommendations for environmental governance
- Targeted remediation zones: prioritise Ni- and Cu-rich areas (P6, P14, and P15) for in situ phytoremediation using identified hyperaccumulators, combined with soil amendments to optimise uptake;
- Regular monitoring programme: implement quarterly sampling and analysis of Igeo, Cf, and Er indices to track remediation progress;
- Stakeholder engagement: involve local communities and authorities through workshops, building capacity for the maintenance of green remediation measures;
- Regulatory integration: incorporate these site-specific thresholds into regional environmental guidelines and enforce buffer zones around high-risk sectors;
- Adaptive management: establish a feedback loop where monitoring data informs iterative adjustments to remediation strategies, ensuring responsiveness to changing site conditions.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, L.; Xu, Z.; Ren, M.; Guo, Q.; Hu, X.; Hu, G. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Saf. 2012, 78, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Guo, X. Soil Heavy Metal Pollution Evaluation around Mine Area with Traditional and Ecological Assessment Methods. J. Geosci. Environ. Prot. 2015, 3, 28–33. [Google Scholar] [CrossRef]
- Grygar, T.M.; Opatrilova, J.; Poscik, P.; Rohanova, D.; Novakova, T. Exploratory functional data analysis of multivariate densities for the identification of agricultural soil contamination by risk elements. arXiv 2023, arXiv:2310.13761. [Google Scholar] [CrossRef]
- Lesley, M.N.-Y.O.; Tati, E.B.; Nguimbyt, J.D.; Ndinga, D.; Mbon, J. Determination of Organic Matter and Trace Metals Elements (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) in the Soils of the Banks of Watercourses in Brazzaville City (Republic of Congo). Open J. Soil Sci. 2025, 15, 156–172. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Guo, G.; Wu, F.; Xie, F.; Zhang, R. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J. Environ. Sci. China 2012, 24, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-B.; Zheng, Y.-M.; Lei, M.; Huang, Z.-C.; Wu, H.-T.; Chen, H.; Fan, K.-K.; Yu, K.; Wu, X.; Tian, Q.-Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jia, X.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef] [PubMed]
- Sellami, S.; Zeghouan, O.; Dhahri, F.; Mechi, L.; Moussaoui, Y.; Kebabi, B. Assessment of Heavy Metal Pollution in Urban and Peri-Urban Soil of Setif City (High Plains, Eastern Algeria). Environ. Monit. Assess. 2022, 194, 126. [Google Scholar] [CrossRef] [PubMed]
- El Hamouri, B.; Bazzi, L.; El Hamdouni, R. Heavy Metal Contamination and Ecological Risk Assessment in Agricultural Soils Irrigated with Wastewater in Marrakech, Morocco. Environ. Sci. Pollut. Res. 2021, 28, 5723–5735. [Google Scholar]
- Cai, Q.-Y.; Mo, C.-H.; Li, Y.-H.; Zeng, Q.-Y.; Katsoyiannis, A.; Wu, Q.-T. Heavy metal contamination of urban soils and dusts in Guangzhou, South China. Environ. Monit. Assess. 2012, 185, 777–793. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Poon, C.; Liu, P.S. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl. Geochem. 2001, 16, 1361–1368. [Google Scholar] [CrossRef]
- Wei, B.; Jiang, F.; Li, X.; Mu, S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef]
- Souza, D.C.; Guedes, A.C.; de Andrade, F.B.; Machado, W.; de Oliveira, E.C. Environmental Impacts of Dumpsites and Landfills in Brazil: A Comprehensive Review. Waste Manag. Res. 2022, 40, 3–17. [Google Scholar]
- Turer, D.G.; Maynard, B.J. Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility. Clean Technol. Environ. Policy 2003, 4, 235–245. [Google Scholar] [CrossRef]
- Yang, J.; Ma, S.; Zhou, J.; Song, Y.; Li, F. Heavy metal contamination in soils and vegetables and health risk assessment of inhabitants in Daye, China. J. Int. Med. Res. 2018, 46, 3510–3524. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.; Abreu, C.; Paz-González, A. Total trace element contents in natural soils by two methods. Commun. Soil Sci. Plant Anal. 2002, 33, 889–898. [Google Scholar] [CrossRef]
- Luo, C.L.; Liu, C.P.; Wang, Y.; Liu, X.; Li, F.B.; Qi, S.H. Heavy Metal Contamination in Soils and Vegetables Near an E-Waste Processing Site, South China. J. Hazard. Mater. 2011, 186, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Smieja-Król, B.; Pawlyta, M.; Kądziołka-Gaweł, M.; Fiałkiewicz-Kozieł, B. Formation of Zn and Pb sulfides in a redox-sensitive modern system due to high atmospheric fallout. arXiv 2022, arXiv:2201.09552. [Google Scholar] [CrossRef]
- Rudmin, M.; Ruban, A.; Savichev, O.; Mazurov, A.; Dauletova, A.; Savinova, O. Authigenic and Detrital Minerals in Peat Environment of Vasyugan Swamp, Western Siberia. Minerals 2018, 8, 500. [Google Scholar] [CrossRef]
- Ioniţă, M.-F.; Radu, S.M.; Dunca, E.C. Research on the Identification of Inactive Mining Sites with the Potential for Soil Contamination in the Jiu Valley—Case Study Balomir Tailings Dump. Min. Rev. 2024, 30, 53–59. [Google Scholar] [CrossRef]
- Order No. 184/1997; Order for the Approval of the Procedure for Conducting Environmental Assessments. Ministry of Waters, Forests and Environmental Protection: Bucharest, Romania, 1997.
- Ioniţă, M.-F. Critical Analysis of Contaminated Sites Resulting from Mining Activities with Exemplification in the Closed Mine Perimeters of the Jiu Valley. Ph.D. Thesis, University of Petroșani, Petroșani, Romania, 2025. Unpublished. English Summary available online: https://www.upet.ro/doctorat/resource/doc/sustineri/2024%2009%2007%20IONITA%20Flavia/REZUMAT%20TEZ%C4%82%20ENG.pdf (accessed on 24 June 2025).
- Zhou, H.; Ouyang, T.; Guo, Y.; Peng, S.; He, C.; Zhu, Z. Assessment of Soil Heavy Metal Pollution and Its Ecological Risk for City Parks, Vicinity of a Landfill, and an Industrial Area within Guangzhou, South China. Appl. Sci. 2022, 12, 9345. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, C.; Wang, J.; Lu, X. Heavy Metal Contamination in Soils and Vegetables around a Coal Mining Area in Northern China: Concentrations, Health Risks, and Source Apportionment. Chemosphere 2021, 276, 130122. [Google Scholar] [CrossRef]
- Lamine, S.; Petropoulos, G.P.; Brewer, P.A.; Bachari, N.-E.-I.; Srivastava, P.K.; Manevski, K.; Kalaitzidis, C.; Macklin, M.G. Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom. Sensors 2019, 19, 762. [Google Scholar] [CrossRef] [PubMed]
- Order No. 756 of 3 November 1997. Portal Legislativ. Available online: https://legislatie.just.ro/Public/detaliidocument/13572 (accessed on 30 May 2025).
- Müller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Ioniţă, M.-F.; Radu, S.-M. Assessment of the Pollution Level and Determination of the Geo-Accumulation Index of Heavy Metals in the Soil from the Old Funicular Dump Area—Uricani. Min. Rev. 2024, 30 (Suppl. 1), 98–105. [Google Scholar] [CrossRef]
- Ioniţă, M.-F.; Radu, S.M.; Dunca, E.-C. Correlation Analysis of Heavy Metal Concentrations in the Tailing Dumps Branch 1 and 2 Lupeni Using Pearson Coefficient Matrix. Min. Rev. 2024, 30, 22–29. [Google Scholar] [CrossRef]
- Acharya, A.; Perez, E.; Maddox-Mandolini, M.; Fuente, H.D.L. The Status and Prospects of Phytoremediation of Heavy Metals. arXiv 2023, arXiv:2312.14288. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate Statistical and GIS-Based Approach to Identify Heavy Metal Sources in Soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Ioniţă, M.-F.; Radu, S.M.; Dunca, E.C. Researches on the Mobility and Toxicity of Heavy Metals from Balomir Tailings Dump—Uricani Jiu Valley. Min. Rev. 2024, 30, 44–52. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. Heavy Metal Distribution in Dust, Street Dust and Soils from the Work Place in Karak Industrial Estate, Jordan. Atmos. Environ. 2004, 38, 6803–6812. [Google Scholar] [CrossRef]
- Hakanson, L. Ecological risks index for aquatic pollution control sediment logical approaches. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ionită, M.-F.; Radu, S.M.; Dunca, E.-C. Research on the Phytoremediation of Soil Contaminated with Heavy Metals from Mining Activity: Case Study Balomir–Uricani Tailings Dump. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2024, 25, 417–426. [Google Scholar] [CrossRef]
- Bu, Q.; Li, Q.; Zhang, H.; Xu, Y.; Chen, X.; Huang, X. Concentrations, Spatial Distributions, and Sources of Heavy Metals in Surface Soils of the Coal Mining City Wuhai, China. J. Chem. 2020, 2020, 4705954. [Google Scholar] [CrossRef]
- Mathee, A.; Haman, T.; Nkosi, V.; Naicker, N.; London, L. Elevated Soil and Blood Lead Levels with Increasing Residential Proximity to a Mine Tailings Facility in Soweto, South Africa. Sci. Total Environ. 2022, 851 Pt 1, 158158. [Google Scholar] [CrossRef] [PubMed]
- Turer, D.G.; Maynard, B.J.; Sansalone, J.J. Heavy Metal Contamination in Soils of Urban Highways: Comparison Between Runoff and Soil Concentrations at Cincinnati, Ohio. Water Air Soil Pollut. 2001, 132, 293–314. [Google Scholar] [CrossRef]
- Morita, A.; Bianco, C.I.; Anache, J.A.A.; Heller, L.; Saliba, R.; de Castro, M. Pollution Threat to Water and Soil Quality by Dumpsites and Non-Sanitary Landfills in Brazil: A Review. Waste Manag. 2021, 131, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Popescu, I.V.; Radu, V.; Dincă, G.; Szabo, R.; Anghel, M.A. Spatial Distribution and Mobility of Potentially Toxic Elements in the Soils of Romania. In Recent Advances in Environmental Science from the Euro Mediterranean and Surrounding Regions (EMCEI 2021); Ksibi, M., Ed.; Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2024; pp. 315–318. [Google Scholar] [CrossRef]
- Rossi, M.; Russo, C.; De Marco, R.; Fornaro, F. Assessment of Heavy Metal Contamination in Soils of a Former Mine Site: Application of Geoaccumulation and Enrichment Factor Indices. Environ. Monit. Assess. 2017, 189, 567. [Google Scholar] [CrossRef]
- Calmuc, M.; Grigoraș, G.; Tiron, O.; Roman, M.; Bîrțoiu, D.; Sava, D. Assessment of Heavy Metal Pollution Levels in Sediments and of Ecological Risk by Quality Indices, Applying a Case Study: The Lower Danube River, Romania. Water 2021, 13, 1801. [Google Scholar] [CrossRef]
- Baldini, E.; Benvenuti, M.; Corsini, F.; Di Benedetto, F.; Mascaro, I.; Terranova, F.; Parrini, P. Land contamination by toxic elements in abandoned mine areas in Tuscany (Italy). J. Soils Sediments 2015, 15, 1928–1942. [Google Scholar] [CrossRef]
- Kim, S.-D.; Lee, S.-J. Contamination of soil with heavy metals drained out from abandoned mines in the South-West region of Korea. Environ. Prot. Eng. 2015, 41, 61–72. [Google Scholar] [CrossRef]
- Zhao, P.; Adnan, M.; Xiao, P.–w.; Yang, X.f.; Wang, H.–y.; Xue, S.g. Characterization of Soil Heavy Metals at an Abandoned Smelting Site Based on Particle Size Fraction and Its Implications for Remediation Strategy. J. Cent. South Univ. 2024, 31, 1076–1091. [Google Scholar] [CrossRef]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.B.A.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Bio/Technology 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Root, R.A.; Hayes, S.M.; Hammond, C.M.; Maier, R.M.; Chorover, J. Toxic Metal(loid) Speciation during Weathering of Iron Sulfide Mine Tailings under Semi-Arid Climate. Appl. Geochem. 2015, 62, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; López, R.; Pérez, C.; García, M.; Torres, F. Field Trials of Native Metallophytes for Zinc and Nickel Phytoextraction in Mediterranean Mine Soils. Environ. Pollut. 2022, 307, 119467. [Google Scholar] [CrossRef]
- Johnson, T.; Ng, E.; González, L. Assessment of Proso Millet (Panicum miliaceum L.) for Phytoextraction Potential on Metal-Contaminated Soils in Temperate Climates. Plant Soil 2019, 441, 379–390. [Google Scholar]
Trace Element | Normal Value | Unit | Alert Thresholds/Types of Use | Intervention Thresholds/Types of Use | ||
---|---|---|---|---|---|---|
Sensitive | Less Sensitive | Sensitive | Less Sensitive | |||
Cr (total) | 30 | mg/kg−1 dry matter | 100 | 300 | 300 | 600 |
Cu | 20 | mg/kg−1 dry matter | 100 | 250 | 200 | 500 |
Ni | 20 | mg/kg−1 dry matter | 75 | 200 | 150 | 500 |
Zn | 100 | mg/kg−1 dry matter | 300 | 700 | 600 | 1500 |
Co | 15 | mg/kg−1 dry matter | 30 | 100 | 50 | 250 |
Pb | 20 | mg/kg−1 dry matter | 50 | 250 | 100 | 1000 |
Cr (Total) | Cu | Ni | Zn | Co | Pb | |
---|---|---|---|---|---|---|
Cr (total) | 1.00 | 0.33 | −0.02 | 0.27 | −0.03 | 0.28 |
Cu | 0.33 | 1.00 | 0.19 | 0.16 | 0.12 | 0.30 |
Ni | −0.02 | 0.19 | 1.00 | −0.08 | 0.27 | 0.29 |
Zn | 0.27 | 0.16 | −0.08 | 1.00 | 0.21 | 0.39 |
Co | −0.03 | 0.12 | 0.27 | 0.21 | 1.00 | 0.45 |
Pb | 0.28 | 0.30 | 0.29 | 0.39 | 0.45 | 1.00 |
Trace Element | Unit | Identified Heavy Metal Values | ||
---|---|---|---|---|
Minimum | Maximum | Mean | ||
Cr (total) | mg/kg dry matter | 30.10 | 49.19 | 41.03 |
Cu | mg/kg dry matter | 50.39 | 75.28 | 59.72 |
Ni | mg/kg dry matter | 71.13 | 129.94 | 88.05 |
Zn | mg/kg dry matter | 101.3 | 219.75 | 143.78 |
Co | mg/kg dry matter | 15.96 | 37.21 | 25.61 |
Pb | mg/kg dry matter | 20.07 | 23.33 | 21.71 |
Metal | Cf | Tr | Er |
---|---|---|---|
Cr (total) | 1.24 | 2 | 2.48 |
Cu | 2.92 | 5 | 14.60 |
Ni | 4.35 | 5 | 21.75 |
Zn | 1.26 | 1 | 1.26 |
Co | 1.50 | 5 | 7.50 |
Pb | 0.98 | 5 | 4.90 |
Species | Soil Type | Number of Seeds | Number of Germinations | Germination Rate (%) | Mean Height (cm) ± SD | Density (Plants/cm2) |
---|---|---|---|---|---|---|
Marigold (Calendula officinalis) | Contaminated | 50 | 45 | 90 | 4.0 ± 0.6 | 1.8 |
Marigold (Calendula officinalis) | Control | 50 | 5 | 10 | 1.5 ± 0.3 | 0.2 |
Daisy (Alyssum spp.) | Contaminated | 50 | 5 | 10 | 1.0 ± 0.2 | 0.1 |
Daisy (Alyssum spp.) | Control | 50 | 3 | 6 | 0.8 ± 0.2 | 0.06 |
Violet (Viola calaminaris). | Contaminated | 50 | 4 | 8 | 0.9 ± 0.2 | 0.09 |
Violet (Viola calaminaris). | Control | 50 | 2 | 4 | 0.7 ± 0.1 | 0.05 |
Clover (Trifolium spp.) | Contaminated | 50 | 3 | 6 | 0.8 ± 0.2 | 0.05 |
Clover (Trifolium spp.) | Control | 50 | 2 | 4 | 0.6 ± 0.1 | 0.04 |
Millet (Panicum miliacuum) | Contaminated | 50 | 0 | 0 | 0 | 0 |
Millet (Panicum miliacuum) | Control | 50 | 0 | 0 | 0 | 0 |
Wheat (Triticum aestivum) | Contaminated | 50 | 45 | 90 | 6.0 ± 0.7 | 2.1 |
Wheat (Triticum aestivum) | Control | 50 | 15 | 30 | 3.0 ± 0.6 | 0.8 |
Lupine (Lupinus spp.) | Contaminated | 50 | 4 | 8 | 1.0 ± 0.2 | 0.1 |
Lupine (Lupinus spp.) | Control | 50 | 2 | 4 | 0.6 ± 0.1 | 0.05 |
St. John’s wort (Hypericum perforatum) | Contaminated | 50 | 3 | 6 | 0.8 ± 0.2 | 0.05 |
St. John’s wort (Hypericum perforatum) | Control | 50 | 1 | 2 | 0.5 ± 0.1 | 0.02 |
Mustard (Brassica spp.) | Contaminated | 50 | 48 | 96 | 5.5 ± 0.5 | 2.2 |
Mustard (Brassica spp.) | Control | 50 | 7 | 14 | 2.5 ± 0.4 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunca, E.-C.; Ioniță, M.-F.; Radu, S.M. Soil Contamination and Related Ecological Risks: Complex Analysis of the Defor Petrila Tailings Dump, Romania. Land 2025, 14, 1492. https://doi.org/10.3390/land14071492
Dunca E-C, Ioniță M-F, Radu SM. Soil Contamination and Related Ecological Risks: Complex Analysis of the Defor Petrila Tailings Dump, Romania. Land. 2025; 14(7):1492. https://doi.org/10.3390/land14071492
Chicago/Turabian StyleDunca, Emilia-Cornelia, Mădălina-Flavia Ioniță, and Sorin Mihai Radu. 2025. "Soil Contamination and Related Ecological Risks: Complex Analysis of the Defor Petrila Tailings Dump, Romania" Land 14, no. 7: 1492. https://doi.org/10.3390/land14071492
APA StyleDunca, E.-C., Ioniță, M.-F., & Radu, S. M. (2025). Soil Contamination and Related Ecological Risks: Complex Analysis of the Defor Petrila Tailings Dump, Romania. Land, 14(7), 1492. https://doi.org/10.3390/land14071492