Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,366)

Search Parameters:
Keywords = coal energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3532 KB  
Article
Interpretable Optimized Support Vector Machines for Predicting the Coal Gross Calorific Value Based on Ultimate Analysis for Energy Systems
by Paulino José García-Nieto, Esperanza García-Gonzalo, José Pablo Paredes-Sánchez and Luis Alfonso Menéndez-García
Modelling 2026, 7(1), 28; https://doi.org/10.3390/modelling7010028 - 26 Jan 2026
Abstract
In energy production systems, the higher heating value (HHV), also known as the gross calorific value, is a key parameter for identifying the primary energy source. In this study, a novel artificial intelligence model was developed using support vector machines (SVM) combined with [...] Read more.
In energy production systems, the higher heating value (HHV), also known as the gross calorific value, is a key parameter for identifying the primary energy source. In this study, a novel artificial intelligence model was developed using support vector machines (SVM) combined with the Differential Evolution (DE) optimizer to predict coal gross calorific value (the dependent variable). The model incorporated the elements from coal ultimate analysis—hydrogen (H), carbon (C), oxygen (O), sulfur (S), and nitrogen (N)—as input variables. For comparison, the experimental data were also fitted to previously reported empirical correlations, as well as Ridge, Lasso, and Elastic-Net regressions. The SVM-based model was first used to assess the influence of all independent variables on coal HHV and was subsequently found to be the most accurate predictor of coal gross calorific value. Specifically, the SVM regression (SVR) achieved a correlation coefficient (r) of 0.9861 and a coefficient of determination (R2) of 0.9575 for coal HHV prediction based on the test samples. The DE/SVM approach demonstrated strong performance, as evidenced by the close agreement between observed and predicted values. Finally, a summary of the results from these analyses is presented. Full article
(This article belongs to the Section Modelling in Artificial Intelligence)
Show Figures

Figure 1

25 pages, 2254 KB  
Perspective
Perspectives on Cleaner-Pulverized Coal Combustion: The Evolving Role of Combustion Modifiers and Biomass Co-Firing
by Sylwia Włodarczak, Andżelika Krupińska, Zdzisław Bielecki, Marcin Odziomek, Tomasz Hardy, Mateusz Tymoszuk, Marek Pronobis, Paweł Lewiński, Jakub Sobieraj, Dariusz Choiński, Magdalena Matuszak and Marek Ochowiak
Energies 2026, 19(3), 633; https://doi.org/10.3390/en19030633 - 26 Jan 2026
Abstract
The article presents an extensive review of modern technological solutions for pulverized coal combustion, with emphasis on combustion modifiers and biomass co-firing. It highlights the role of coal in the national energy system and the need for its sustainable use in the context [...] Read more.
The article presents an extensive review of modern technological solutions for pulverized coal combustion, with emphasis on combustion modifiers and biomass co-firing. It highlights the role of coal in the national energy system and the need for its sustainable use in the context of energy transition. The pulverized coal combustion process is described, along with factors influencing its efficiency, and a classification of modifiers that improve combustion parameters. Both natural and synthetic modifiers are analyzed, including their mechanisms of action, application examples, and catalytic effects. Special attention is given to the synergy between transition metal compounds (Fe, Cu, Mn, Ce) and alkaline earth oxides (Ca, Mg), which enhances energy efficiency, flame stability, and reduces emissions of CO, SO2, and NOx. The article also examines biomass-coal co-firing as a technology supporting energy sector decarbonization. Co-firing reduces greenhouse gas emissions and increases the reactivity of fuel blends. The influence of biomass type, its share in the mixture, and processing methods on combustion parameters is discussed. Finally, the paper identifies directions for further technological development, including nanocomposite combustion modifiers and intelligent catalysts integrating sorption and redox functions. These innovations offer promising potential for improving energy efficiency and reducing the environmental impact of coal-fired power generation. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

17 pages, 2155 KB  
Article
Environmental Impacts and Sustainability of Tannery: A Case Study
by Giancarlo D’Angelo, Ganapathy Pattukandan Ganapathy, Subramaniam Shanthakumar and Fulvia Chiampo
Sustainability 2026, 18(3), 1218; https://doi.org/10.3390/su18031218 - 26 Jan 2026
Abstract
Leather has been a commodity since ancient times, when primitive men hunted animals for food and used their hides and skins for clothes and tents. Nowadays, the tanning process is highly industrialised. The chromium tanning is the most widely used because it produces [...] Read more.
Leather has been a commodity since ancient times, when primitive men hunted animals for food and used their hides and skins for clothes and tents. Nowadays, the tanning process is highly industrialised. The chromium tanning is the most widely used because it produces high-quality leather despite its serious environmental impacts. The purpose of this study is to analyse the environmental impact of an Indian company that carries out post-tanning operations on bovine hides, that is to say, from the so-called wet-blue to finished crust. To do this, the Life Cycle Assessment (LCA) is implemented using the primary data provided by the company. The analysis has been carried out by the OpenLCA software, and 16 environmental impact categories have been evaluated. The results show that the processes for producing fuel (coal and diesel oil) and chromium(III) salts are the main contributors to the environmental impact for nearly all categories. These types of impacts are upstream, whereas the operations carried out by the company have impacts on the climate change category, due to the use of fossil fuels in the production process. Therefore, the direct action that the company could take is the substitution of fuel to produce energy with a renewable energy source. The comparison of these results with the whole tanning process present in the software confirms the limited impact of the post-tanning. At last, the results also evidence the methodological value of Life Cycle Assessment, which can be used to show what can be improved in one installation to reduce its environmental impact. Full article
(This article belongs to the Special Issue Process Life Cycle Assessment (LCA) and Sustainability)
Show Figures

Figure 1

21 pages, 3957 KB  
Article
Integration Optimization and Annual Performance of a Coal-Fired Power System Retrofitted with a Solar Tower
by Junjie Wu, Ximeng Wang, Yun Li, Jiawen Liu and Yu Han
Energies 2026, 19(3), 620; https://doi.org/10.3390/en19030620 - 25 Jan 2026
Viewed by 44
Abstract
Solar-aided power generation offers a pathway to reduce the carbon dioxide emissions from existing coal-fired plants. This study addresses the gap in comparing different solar integration modes by conducting a thermo-economic analysis of a 600 MW coal-fired system retrofitted with a solar tower. [...] Read more.
Solar-aided power generation offers a pathway to reduce the carbon dioxide emissions from existing coal-fired plants. This study addresses the gap in comparing different solar integration modes by conducting a thermo-economic analysis of a 600 MW coal-fired system retrofitted with a solar tower. Four integration modes were designed and rigorously compared, encompassing series and parallel configurations at either the high-exergy reheater or the lower-exergy economizer. A detailed thermodynamic model was developed to simulate its off-design and annual performance. The results showed that integration at the primary reheater outperformed the economizer integration. Specifically, the parallel configuration at the primary reheater (Mode II) achieved the highest annual solar-to-electricity efficiency of 18.43% at a thermodynamically optimal heliostat field area of 125,025.6 m2. Economic analysis revealed a trade-off, with the minimum levelized cost of energy (LCOE) of −0.00929 USD/kWh for Mode II occurring at the economically optimal area of 321,494 m2 due to greater coal and emission savings. Sensitivity analysis across two other locations confirmed that the annual solar-to-electricity efficiency and LCOE are directly influenced by solar resource quality, but the thermodynamically optimal and economically optimal heliostat field area remain consistent. This work demonstrates that parallel integration with the primary reheater presents a favorable and practical configuration, balancing high solar-to-electricity conversion efficiency with favorable economics for hybrid solar–coal power plants. Full article
(This article belongs to the Special Issue Solar Energy Conversion and Storage Technologies)
Show Figures

Figure 1

26 pages, 5958 KB  
Article
A Material–Structure Integrated Approach for Soft Rock Roadway Support: From Microscopic Modification to Macroscopic Stability
by Sen Yang, Yang Xu, Feng Guo, Zhe Xiang and Hui Zhao
Processes 2026, 14(3), 414; https://doi.org/10.3390/pr14030414 - 24 Jan 2026
Viewed by 91
Abstract
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of [...] Read more.
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of expansive clay minerals and well-developed micro-fractures within soft rock, which collectively undermine the effectiveness of conventional support methods. To address the soft rock control problem in China’s Longdong Mining Area, an integrated material–structure control approach is developed and validated in this study. Based on the engineering context of the 3205 material gateway in Xin’an Coal Mine, the research employs a combined methodology of micro-mesoscopic characterization (SEM, XRD), theoretical analysis, and field testing. The results identify the intrinsic instability mechanism, which stems from micron-scale fractures (0.89–20.41 μm) and a high clay mineral content (kaolinite and illite totaling 58.1%) that promote water infiltration, swelling, and strength degradation. In response, a novel synergistic technology was developed, featuring a high-performance grouting material modified with redispersible latex powder and a tiered thick anchoring system. This technology achieves microscale fracture sealing and self-stress cementation while constructing a continuous macroscopic load-bearing structure. Field verification confirms its superior performance: roof subsidence and rib convergence in the test section were reduced to approximately 10 mm and 52 mm, respectively, with grouting effectively sealing fractures to depths of 1.71–3.92 m, as validated by multi-parameter monitoring. By integrating microscale material modification with macroscale structural optimization, this study provides a systematic and replicable solution for enhancing the stability of soft rock roadways under demanding geo-environmental conditions. Soft rock roadways, due to their characteristics of being rich in expansive clay minerals and having well-developed microfractures, make traditional support difficult to ensure roadway stability, so there is an urgent need to develop new active control technologies. This paper takes the 3205 Material Drift in Xin’an Coal Mine as the engineering background and adopts an integrated method combining micro-mesoscopic experiments, theoretical analysis, and field tests. The soft rock instability mechanism is revealed through micro-mesoscopic experiments; a high-performance grouting material added with redispersible latex powder is developed, and a “material–structure” synergistic tiered thick anchoring reinforced load-bearing technology is proposed; the technical effectiveness is verified through roadway surface displacement monitoring, anchor cable axial force monitoring, and borehole televiewer. The study found that micron-scale fractures of 0.89–20.41 μm develop inside the soft rock, and the total content of kaolinite and illite reaches 58.1%, which is the intrinsic root cause of macroscopic instability. In the test area of the new support scheme, the roof subsidence is about 10 mm and the rib convergence is about 52 mm, which are significantly reduced compared with traditional support; grouting effectively seals rock mass fractures in the range of 1.71–3.92 m. This synergistic control technology achieves systematic control from micro-mesoscopic improvement to macroscopic stability by actively modifying the surrounding rock and optimizing the support structure, significantly improving the stability of soft rock roadways. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

19 pages, 1737 KB  
Article
Utilization of Organic Solvents for the Recycling of Waste Wooden Railroad Ties
by Željka M. Nikolić, Miloš S. Tošić, Jelena M. Radivojević, Mihajlo Gigov, Milica P. Marčeta Kaninski, Vladimir M. Nikolić and Dragana Z. Živojinović
Molecules 2026, 31(3), 406; https://doi.org/10.3390/molecules31030406 - 24 Jan 2026
Viewed by 88
Abstract
Wooden waste railroad ties preserved with coal tar creosote oil represent a specific source of polluting substances. The aim of this study was to investigate and compare extraction capacity due to solvent extraction of fifteen frequently used organic solvents for the purpose of [...] Read more.
Wooden waste railroad ties preserved with coal tar creosote oil represent a specific source of polluting substances. The aim of this study was to investigate and compare extraction capacity due to solvent extraction of fifteen frequently used organic solvents for the purpose of decontamination treatment of waste wooden railroad ties, while recovering wood for reuse. Pure organic solvents, ethanol 96%, propan-2-ol, deionized water, dichloromethane, acetone, n-hexane, mixture n-hexane/acetone (V/V = 1/1), cyclohexane, methanol, N,N-dimethyl formamide, toluene, ethyl acetate, acetonitrile, amyl acetate, medical gasoline, n-pentane and n-butyl acetate were for leaching pollutants from waste railroad ties. The highest extraction capacity was achieved using dichloromethane, where 7.50 to 7.89 wt.% of total sixteen polycyclic aromatic hydrocarbons were extracted from waste railroad tie chips. The most promising solvents for the treatment exhibited extraction efficiency which decreases in a series dichloromethane > n-hexane/acetone > acetone > methanol > ethanol 96% > propan-2-ol > cyclohexane > toluene > n-hexane. Solvent extraction represents a novel approach for treatment of wooden waste railroad ties. The experiments are based on the search for a management process for the treatment of wood waste railroad ties that is simple, low energy consumption, efficient and could potentially be applied for large scale. Full article
(This article belongs to the Section Materials Chemistry)
20 pages, 1046 KB  
Article
Understanding Hydropower Generation Across Countries Through Innovation Diffusion Models
by Farooq Ahmad and Mariangela Guidolin
Energies 2026, 19(3), 606; https://doi.org/10.3390/en19030606 - 24 Jan 2026
Viewed by 93
Abstract
The world is increasingly confronted with interconnected challenges such as energy shortages and climate change. Fossil fuels, including coal, oil, and natural gas, remain the dominant global energy sources, yet they are major contributors to greenhouse gas emissions and growing geopolitical instability. In [...] Read more.
The world is increasingly confronted with interconnected challenges such as energy shortages and climate change. Fossil fuels, including coal, oil, and natural gas, remain the dominant global energy sources, yet they are major contributors to greenhouse gas emissions and growing geopolitical instability. In response to energy insecurity and environmental pressures, many countries are expanding their use of renewable energy sources, including hydropower, solar, wind, and geothermal. Hydropower currently generates more electricity than all other renewable technologies combined and is expected to remain the largest source of renewable electricity through the 2030s. This paper analyzes the role of hydropower in national energy transitions by applying innovation diffusion models. Using an innovation diffusion framework, via the Bass Model, we examine the dynamics of hydropower generation across multiple countries and find that this approach effectively captures the mean nonlinear trajectory of most countries. We complete the analysis by evaluating the effect of rainfall on hydropower generation and show that this helps capture the residual variability not modeled by the Bass Model. Full article
Show Figures

Figure 1

17 pages, 6087 KB  
Article
Study on the Physicochemical Properties of Biomass-Assisted Enhanced Coal Extraction Process
by Yue Kang, Hailan Zhao, Yuanhao Yu and Haibin Zuo
Processes 2026, 14(3), 404; https://doi.org/10.3390/pr14030404 - 23 Jan 2026
Viewed by 111
Abstract
With the transformation of energy structure to low carbon, the clean and efficient utilization of coal has received extensive attention. Among them, the technology of preparing super-clean coal by solvothermal extraction has become a research hotspot because of its good product characteristics. In [...] Read more.
With the transformation of energy structure to low carbon, the clean and efficient utilization of coal has received extensive attention. Among them, the technology of preparing super-clean coal by solvothermal extraction has become a research hotspot because of its good product characteristics. In this paper, FGZ coal was used as a raw material to explore its synergistic extraction effect with wood charcoal at different mass ratios, and the extracted products were systematically characterized by various analytical methods. The results show that the addition of biomass can effectively improve the extraction yield of this coal. When the biomass addition ratio was 35%, the extraction yield reached the highest value of 69.47%, which was about 28.3% higher than that without biomass. Hypercoal has a smooth surface with significantly fewer impurities than raw coal. At the same time, Raman spectroscopy and X-ray diffraction analysis showed that when the biomass addition ratio was 35%, the ID/IG reached a minimum value of 0.8354, and the structural order of the extracted product was the highest. When the biomass addition ratio was 35%, the Lc reached a maximum value of 2.0569 nm, indicating the highest degree of carbon layer stacking and structural order among the samples. Full article
20 pages, 3919 KB  
Article
Mechanical Behavior and Energy Evolution of Coal–Rock Composites Under Mining-Induced Stress
by Hongqiang Song, Hong Li, Liang Du, Xiaoqing Zhao, Bingwei Gu, Jianping Zuo, Fuming Jia and Jinhao Wen
Buildings 2026, 16(3), 473; https://doi.org/10.3390/buildings16030473 - 23 Jan 2026
Viewed by 113
Abstract
To investigate the mechanical properties, energy evolution, and failure behavior of coal–rock composite structures under mining disturbances, a mining-induced stress path was designed based on the actual stress evolution ahead of a mining face. Triaxial tests were carried out under these stress conditions [...] Read more.
To investigate the mechanical properties, energy evolution, and failure behavior of coal–rock composite structures under mining disturbances, a mining-induced stress path was designed based on the actual stress evolution ahead of a mining face. Triaxial tests were carried out under these stress conditions on coal–rock composite samples at various confining pressures, supplemented by conventional triaxial compression tests for comparison. The results show that the coal–rock composite samples exhibited marked brittle failure under mining-induced stress, with no sign of the brittle–ductile transition observed in conventional triaxial tests as the confining pressure increased. Using dual circumferential extensometers, it was found that the circumferential deformation of the coal and rock was initially governed by their intrinsic mechanical properties and later controlled by crack propagation. At higher confining pressures, the growth rate of circumferential strain at failure increased significantly, indicating that deeper excavations result in more severe unloading-induced failure. Comparative analysis revealed that the coal component had a higher elastic energy density and faster energy accumulation and release rates than the rock, identifying coal as the dominant medium for elastic energy storage and release within the composite samples. Furthermore, at peak stress in mining-induced stress tests, the coal showed less circumferential deformation than in conventional tests, while the rock exhibited the opposite trend, confirming the presence of a bonding constraint effect at the coal–rock interface. These findings enhance our understanding of the mechanical behaviors and failure mechanisms of coal–rock composites under mining disturbances, thus providing practical guidance for ensuring safety and efficiency in deep coal mining. Full article
Show Figures

Figure 1

35 pages, 7197 KB  
Article
Assessing the Sustainable Synergy Between Digitalization and Decarbonization in the Coal Power Industry: A Fuzzy DEMATEL-MultiMOORA-Borda Framework
by Yubao Wang and Zhenzhong Liu
Sustainability 2026, 18(3), 1160; https://doi.org/10.3390/su18031160 - 23 Jan 2026
Viewed by 78
Abstract
In the context of the “Dual Carbon” goals, achieving synergistic development between digitalization and green transformation in the coal power industry is essential for ensuring a just and sustainable energy transition. The core scientific problem addressed is the lack of a robust quantitative [...] Read more.
In the context of the “Dual Carbon” goals, achieving synergistic development between digitalization and green transformation in the coal power industry is essential for ensuring a just and sustainable energy transition. The core scientific problem addressed is the lack of a robust quantitative tool to evaluate the comprehensive performance of diverse transition scenarios in a complex environment characterized by multi-objective trade-offs and high uncertainty. This study establishes a sustainability-oriented four-dimensional performance evaluation system encompassing 22 indicators, covering Synergistic Economic Performance, Green-Digital Strategy, Synergistic Governance, and Technology Performance. Based on this framework, a Fuzzy DEMATEL–MultiMOORA–Borda integrated decision model is proposed to evaluate seven transition scenarios. The computational framework utilizes the Interval Type-2 Fuzzy DEMATEL (IT2FS-DEMATEL) method for robust causal analysis and weight determination, addressing the inherent subjectivity and vagueness in expert judgments. The model integrates MultiMOORA with Borda Count aggregation for enhanced ranking stability. All model calculations were implemented using Matlab R2022a. Results reveal that Carbon Price and Digital Hedging Capability (C13) and Digital-Driven Operational Efficiency (C43) are the primary drivers of synergistic performance. Among the scenarios, P3 (Digital Twin Empowerment and New Energy Co-integration) achieves the best overall performance (score: 0.5641), representing the most viable pathway for balancing industrial efficiency and environmental stewardship. Robustness tests demonstrate that the proposed model significantly outperforms conventional approaches such as Fuzzy AHP (Analytic Hierarchy Process) and TOPSIS under weight perturbations. Sensitivity analysis further identifies Financial Return (C44) and Green Transformation Marginal Economy (C11) as critical factors for long-term policy effectiveness. This study provides a data-driven framework and a robust decision-support tool for advancing the coal power industry’s low-carbon, intelligent, and resilient transition in alignment with global sustainability targets. Full article
Show Figures

Figure 1

28 pages, 766 KB  
Article
Clean Energy Development and Public Health: An Empirical Analysis of Cross-Regional Gas Transmission Infrastructure in China
by Liu Hao and Zhang Bing
Sustainability 2026, 18(2), 1125; https://doi.org/10.3390/su18021125 - 22 Jan 2026
Viewed by 61
Abstract
Promoting the clean energy transition is crucial for environmental sustainability and public health. Utilizing data from the China Health and Nutrition Survey (CHNS) spanning 2006–2015, this study employs a Difference-in-Differences (DID) model, treating China’s West–East Gas Pipeline Project (WEGT) as a quasi-natural experiment [...] Read more.
Promoting the clean energy transition is crucial for environmental sustainability and public health. Utilizing data from the China Health and Nutrition Survey (CHNS) spanning 2006–2015, this study employs a Difference-in-Differences (DID) model, treating China’s West–East Gas Pipeline Project (WEGT) as a quasi-natural experiment to evaluate the causal impact of natural gas infrastructure expansion on residents’ health. The empirical results indicate that the WEGT significantly improved public health, reducing the probability of self-reported recent illness by approximately 8.2 percentage points. Heterogeneity analysis shows more pronounced effects among urban residents and the elderly. Mechanism analysis reveals that the infrastructure improves health primarily by optimizing household energy structures and reducing industrial pollution emissions. Furthermore, the “Coal-to-Gas” policy synergistically enhances these health benefits. Economic co-benefits analysis estimates that the project reduced individual annual medical expenditures by approximately 540 RMB and increased the probability of employment by 6.9%. These findings provide empirical evidence for deepening supply-side structural reforms in energy and support the realization of the United Nations Sustainable Development Goals (SDGs), specifically by demonstrating how resilient infrastructure (SDG 9) enables affordable clean energy (SDG 7), which in turn delivers good health and well-being (SDG 3). Full article
Show Figures

Figure 1

4 pages, 143 KB  
Editorial
Editorial for Special Issue “Mineralization Mechanism and Geochemical Characteristics of Coals and Associated Minerals”
by Dongdong Wang, Xue Zheng and Jian Shen
Minerals 2026, 16(1), 113; https://doi.org/10.3390/min16010113 - 22 Jan 2026
Viewed by 24
Abstract
Coal and its associated minerals are vital geological resources, holding significant value for both energy security and the supply of strategic materials [...] Full article
26 pages, 4074 KB  
Article
Implementation of the Just-in-Time Philosophy in Coal Production Processes as an Approach to Supporting Energy Transition and Reducing Carbon Emissions
by Dariusz Prostański, Radosław Marlęga and Slavko Dragić
Energies 2026, 19(2), 544; https://doi.org/10.3390/en19020544 - 21 Jan 2026
Viewed by 79
Abstract
In the context of Poland’s commitments under the European Union’s climate policy, including the European Green Deal and the Fit for 55 package, as well as the decision to ban imports of hard coal from Russia and Belarus, ensuring the stability of the [...] Read more.
In the context of Poland’s commitments under the European Union’s climate policy, including the European Green Deal and the Fit for 55 package, as well as the decision to ban imports of hard coal from Russia and Belarus, ensuring the stability of the domestic market for energy commodities is becoming a key challenge. The response to these needs is the Coal Platform concept developed by the KOMAG Institute of Mining Technology (KOMAG), which aims to integrate data on hard coal resources, production, and demand. The most important problem is not the just-in-time (JIT) strategy itself, but the lack of accurate, up-to-date data and the high technological and organizational inertia on the production side. The JIT strategy assumes an ability to predict future demand well in advance, which requires advanced analytical tools. Therefore, the Coal Platform project analyses the use of artificial intelligence algorithms to forecast demand and adjust production to actual market needs. The developed mathematical model (2024–2030) takes into account 12 variables, and the tested forecasting methods (including ARX and FLNN) exhibit high accuracy, which together make it possible to reduce overproduction, imports, and CO2 emissions, supporting the country’s responsible energy transition. This article describes approaches to issues related to the development of the Coal Platform and, above all, describes the concept, preliminary architecture, and data model. As an additional element, a mathematical model and preliminary results of research on forecasting methods in the context of historical data on hard coal production and consumption are presented. The core innovation lies in integrating the just-in-time (JIT) philosophy with AI-driven forecasting and scenario-based planning within a cloud-ready Coal Platform architecture, enabling dynamic resource management and compliance with decarbonization targets. Full article
Show Figures

Figure 1

15 pages, 4237 KB  
Article
Stage-Wise Simulation for Operational Stability Evaluation of Seasonal Heat Storage in Abandoned Coal Mines
by Wenying Tang, Jiawei Tang, Qiang Guo, Haiqin Zhang, Changhao Feng, Xiaolin He, Zixu Hu and Xi Wu
Energies 2026, 19(2), 537; https://doi.org/10.3390/en19020537 - 21 Jan 2026
Viewed by 76
Abstract
The development of coal resources has created a large number of underground mined-out spaces, which can be utilized for cross-seasonal thermal storage through underground reservoirs to achieve seasonal heat storage. However, there is currently limited research on the cross-seasonal thermal storage capabilities and [...] Read more.
The development of coal resources has created a large number of underground mined-out spaces, which can be utilized for cross-seasonal thermal storage through underground reservoirs to achieve seasonal heat storage. However, there is currently limited research on the cross-seasonal thermal storage capabilities and thermal storage performance evaluation of coal mine underground reservoirs. This study aims to evaluate the operational stability and long-term performance of a Coal Mine Underground Reservoir Energy Storage System (CMUR-ESS) under realistic geological conditions of the Shendong Coalfield. A multi-physics coupling model, integrating thermal-fluid processes, was developed based on the actual structure of the No. 5-2 coal seam goaf in the Dalinta Mine. Numerical simulations were conducted over five annual cycles, each comprising injection, storage, production, and transition stages. Results demonstrate that the system achieves progressive thermal accumulation, with the volume fraction of water above 70 °C increasing from 75.0% in the first cycle to 88.9% by the fifth cycle at the end of the storage stage. Production temperatures also improved, with peak and final temperatures rising by 6.2% and 6.8%, respectively, after five cycles. The analysis confirms enhanced heat retention and reduced thermal loss over time, indicating robust long-term stability and sustainability of the CMUR-ESS for seasonal energy storage applications. The results of this study can provide a reference for the design and evaluation of CMUR-ESS. Full article
Show Figures

Figure 1

30 pages, 16854 KB  
Article
Study on Shaped Charge Blasting Pressure-Relief Technology for the Floor of Extra-Thick Coal Seams and Its Application
by Renyuan Su, Zonglong Mu, Jiaxun Li, Jinglong Cao, Chunlong Jiang, Yongzheng Ren, Jingqi Ji and Hao Fu
Appl. Sci. 2026, 16(2), 1079; https://doi.org/10.3390/app16021079 - 21 Jan 2026
Viewed by 64
Abstract
During layered mining of extra-thick coal seams in deep rock-burst-prone mines, a thick bottom coal layer facilitates the accumulation of elastic strain energy in the floor strata. This stored energy may be released under mining-induced disturbances during retreat, thereby triggering rock-burst events. To [...] Read more.
During layered mining of extra-thick coal seams in deep rock-burst-prone mines, a thick bottom coal layer facilitates the accumulation of elastic strain energy in the floor strata. This stored energy may be released under mining-induced disturbances during retreat, thereby triggering rock-burst events. To mitigate floor energy accumulation at the lower-slice working face of extra-thick coal seams, previous studies have primarily adopted floor blasting for pressure relief. However, conventional blasting is often associated with poor energy utilization and limited controllability of the pressure-relief range, which hampers achieving the intended relief performance. Accordingly, this study proposes a shaped charge blasting scheme to reduce floor energy accumulation. ANSYS/LS-DYNA simulations and UDEC-based energy analyses, together with theoretical analysis and field validation, were conducted to clarify the mechanism of directional fracture propagation and the evolution of floor elastic energy before and after blasting. The results showed that the synergistic effects of the high-velocity jet and quasi-static pressure in shaped charge blasting generated a through-going fracture aligned with the maximum horizontal principal stress. This fracture effectively segmented the high-stress region in the floor and increased the maximum fracture length along the shaped charge direction to 10–13 times that achieved by conventional blasting. UDEC simulations and theoretical analysis indicated that the peak elastic energy in the floor was reduced by up to 54.08% after shaped charge blasting. Field measurements further showed that shaped charge blasting limited the maximum roadway floor heave to 300 mm and reduced floor deformation by 35–42% compared with the case without pressure relief. Overall, shaped charge blasting effectively blocks stress-transfer pathways and improves energy dissipation efficiency, providing theoretical support and a practical technical paradigm for safe and efficient mining of deep extra-thick coal seams. Full article
Show Figures

Figure 1

Back to TopTop