Understanding Hydropower Generation Across Countries Through Innovation Diffusion Models
Abstract
1. Introduction
2. Background
3. Materials and Methods
3.1. Innovation Diffusion: The Bass Model
3.2. ARMAX Models
3.3. Data Description
4. Results
4.1. BM Fit
4.2. Analysis of BM Parameters
4.3. ARMAX Adjustment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Renewables 2024; IEA: Paris, France, 2024. Available online: https://www.iea.org/reports/renewables-2024 (accessed on 17 July 2025).
- Unruh, G.C. Understanding carbon lock-in. Energy Policy 2000, 28, 817–830. [Google Scholar] [CrossRef]
- Meade, N.; Islam, T. Modelling European usage of renewable energy technologies for electricity generation. Technol. Forecast. Soc. Change 2015, 90, 497–509. [Google Scholar] [CrossRef]
- Marchetti, C. Primary energy substitution models: On the interaction between energy and society. Technol. Forecast. Soc. Change 1977, 10, 345–356. [Google Scholar] [CrossRef]
- Marchetti, C. Society as a learning system: Discovery, invention, and innovation cycles revisited. Technol. Forecast. Soc. Change 1980, 18, 267–282. [Google Scholar] [CrossRef]
- Guidolin, M.; Mortarino, C. Cross-country diffusion of photovoltaic systems: Modelling choices and forecasts for national adoption patterns. Technol. Forecast. Soc. Change 2010, 77, 279–296. [Google Scholar] [CrossRef]
- Dalla Valle, A.; Furlan, C. Forecasting accuracy of wind power technology diffusion models across countries. Int. J. Forecast. 2011, 27, 592–601. [Google Scholar] [CrossRef]
- Davies, S.W.; Diaz-Rainey, I. The patterns of induced diffusion: Evidence from the international diffusion of wind energy. Technol. Forecast. Soc. Change 2011, 78, 1227–1241. [Google Scholar] [CrossRef]
- Huh, S.Y.; Lee, C.Y. Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships. Energy Policy 2014, 69, 248–257. [Google Scholar] [CrossRef]
- Islam, T. Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data. Energy Policy 2014, 65, 340–350. [Google Scholar] [CrossRef]
- Lee, C.Y.; Huh, S.Y. Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea. Appl. Energy 2017, 197, 29–39. [Google Scholar] [CrossRef]
- Bass, F.M. A new product growth for model consumer durables. Manag. Sci. 1969, 15, 215–227. [Google Scholar] [CrossRef]
- Rao, K.U.; Kishore, V.V.N. A review of technology diffusion models with special reference to renewable energy technologies. Renew. Sustain. Energy Rev. 2010, 14, 1070–1078. [Google Scholar] [CrossRef]
- Bass, F.M.; Krishnan, T.V.; Jain, D.C. Why the Bass model fits without decision variables. Mark. Sci. 1994, 13, 203–223. [Google Scholar] [CrossRef]
- Guidolin, M.; Alpcan, T. Transition to sustainable energy generation in Australia: Interplay between coal, gas and renewables. Renew. Energy 2019, 139, 359–367. [Google Scholar] [CrossRef]
- Petropoulos, F.; Apiletti, D.; Assimakopoulos, V.; Babai, M.Z.; Barrow, D.K.; Taieb, S.B.; Bergmeir, C.; Bessa, R.J.; Bijak, J.; Boylan, J.E.; et al. Forecasting: Theory and practice. Int. J. Forecast. 2022, 38, 705–871. [Google Scholar] [CrossRef]
- IEA. Electricity 2025; IEA: Paris, France, 2025. Available online: https://www.iea.org/reports/electricity-2025 (accessed on 28 August 2025).
- Guidolin, M. Innovation Diffusion Models: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Wasti, A.; Ray, P.; Wi, S.; Folch, C.; Ubierna, M.; Karki, P. Climate change and the hydropower sector: A global review. Wiley Interdiscip. Rev. Clim. Change 2022, 13, e757. [Google Scholar] [CrossRef]
- Moran, E.F.; Lopez, M.C.; Moore, N.; Müller, N.; Hyndman, D.W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef]
- Sternberg, R. Hydropower: Dimensions of social and environmental coexistence. Renew. Sustain. Energy Rev. 2008, 12, 1588–1621. [Google Scholar] [CrossRef]
- Sternberg, R. Hydropower’s future, the environment, and global electricity systems. Renew. Sustain. Energy Rev. 2010, 14, 713–723. [Google Scholar] [CrossRef]
- Mwakangale, J.; Cook, D.; Ogmundarson, O.; Davidhsdottir, B. A systematic review on the application of lifecycle-based approaches in assessing sustainability of hydropower. Renew. Sustain. Energy Rev. 2025, 219, 115841. [Google Scholar] [CrossRef]
- Apergis, N.; Chang, T.; Gupta, R.; Ziramba, E. Hydroelectricity consumption and economic growth nexus: Evidence from a panel of ten largest hydroelectricity consumers. Renew. Sustain. Energy Rev. 2016, 62, 318–325. [Google Scholar] [CrossRef]
- Llamosas, C.; Sovacool, B.K. The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams. Renew. Sustain. Energy Rev. 2021, 137, 110495. [Google Scholar] [CrossRef]
- Schmitt, R.J.P.; Rosa, L. Dams for hydropower and irrigation: Trends, challenges, and alternatives. Renew. Sustain. Energy Rev. 2024, 199, 114439. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. An uncertain future for global hydropower. In Energy and Climate Change; Elsevier: Amsterdam, The Netherlands, 2025; pp. 279–298. [Google Scholar]
- Mayeda, A.; Boyd, A. Factors influencing public perceptions of hydropower projects: A systematic literature review. Renew. Sustain. Energy Rev. 2020, 121, 109713. [Google Scholar] [CrossRef]
- Ahmad, F.; Finos, L.; Guidolin, M. Forecasting Hydropower with Innovation Diffusion Models: A Cross-Country Analysis. Forecasting 2024, 6, 1045–1064. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Ahmad, F.; Guidolin, M. Explaining Hydropower Generation Through Innovation Diffusion Modeling. In Proceedings of the Scientific Meeting of the Italian Statistical Society; Springer: Berlin/Heidelberg, Germany, 2025; pp. 7–12. [Google Scholar]
- Seber, G.; Wild, C. Nonlinear Regression; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Akaike, H. Akaike’s information criterion. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2025; pp. 41–42. [Google Scholar]
- Statistical Review of World Energy. 2024. Available online: https://www.energyinst.org/statistical-review (accessed on 10 June 2025).
- Ritchie, H.; Rosado, P.; Samborska, V. Climate Change. Our World in Data. 2024. Available online: https://ourworldindata.org/grapher/average-precipitation-per-year (accessed on 3 October 2025).
- Roser, M.; Rohenkohl, B.; Arriagada, P.; Hasell, J.; Ritchie, H.; Ortiz-Ospina, E. Economic Growth. Our World in Data. 2023. Available online: https://ourworldindata.org/economic-growth (accessed on 30 December 2025).







| Country | m | p | q |
|---|---|---|---|
| Argentina | 1482.64 | 0.00179 | 0.08914 |
| Australia | 1328.04 | 0.00699 | 0.03285 |
| Austria | 3040.92 | 0.00534 | 0.04109 |
| Belgium | 28.22 | 0.00684 | 0.03370 |
| Brazil | 20,882.32 | 0.00187 | 0.07188 |
| Bulgaria | 3764.50 | 0.00056 | 0.01088 |
| Canada | 29,176.07 | 0.00486 | 0.04166 |
| Chile | 1265.92 | 0.00249 | 0.06801 |
| China | 90,999.42 | 0.00013 | 0.09318 |
| Colombia | 3089.25 | 0.00175 | 0.06295 |
| Czech Republic | 1722.81 | 0.00092 | 0.00670 |
| Ecuador | 4615.32 | 0.00014 | 0.06504 |
| Egypt | 938.24 | 0.00424 | 0.05022 |
| Finland | 2143.50 | 0.00468 | 0.01582 |
| France | 5218.87 | 0.00941 | 0.02903 |
| Germany | 2215.32 | 0.00666 | 0.02154 |
| Greece | 1161.81 | 0.00155 | 0.02421 |
| Hungary | 22.60 | 0.00412 | 0.03109 |
| Iceland | 1513.86 | 0.00073 | 0.05498 |
| India | 73,927.01 | 0.00037 | 0.03291 |
| Indonesia | 2595.86 | 0.00052 | 0.05601 |
| Iran | 12,736.66 | 0.00022 | 0.03452 |
| Iraq | 161.26 | 0.00073 | 0.13798 |
| Ireland | 112.56 | 0.00636 | 0.01068 |
| Italy | 27,857.70 | 0.00146 | 0.00272 |
| Japan | 9767.71 | 0.00758 | 0.01541 |
| Malaysia | 58,023.06 | 0.00001 | 0.06453 |
| Mexico | 2507.73 | 0.00465 | 0.03967 |
| Morocco | 1684.37 | 0.00059 | 0.00776 |
| New Zealand | 1895.97 | 0.00587 | 0.04100 |
| Norway | 10,985.51 | 0.00497 | 0.03780 |
| Pakistan | 1758.01 | 0.00184 | 0.06870 |
| Peru | 2939.92 | 0.00115 | 0.04753 |
| Philippines | 575.66 | 0.00261 | 0.05926 |
| Poland | 307.96 | 0.00419 | 0.02067 |
| Portugal | 964.80 | 0.00567 | 0.03295 |
| Romania | 991.69 | 0.00396 | 0.06245 |
| Slovakia | 348.16 | 0.00341 | 0.04531 |
| South Korea | 213.17 | 0.00446 | 0.06122 |
| Spain | 7021.56 | 0.00404 | 0.00584 |
| Sri Lanka | 313.29 | 0.00199 | 0.06165 |
| Sweden | 6173.87 | 0.00736 | 0.02866 |
| Switzerland | 4599.96 | 0.00583 | 0.01764 |
| Thailand | 357.46 | 0.00347 | 0.06622 |
| Turkey | 3440.32 | 0.00106 | 0.07179 |
| United Kingdom | 4141.57 | 0.00094 | 0.00730 |
| United States | 27,579.32 | 0.00876 | 0.02083 |
| Venezuela | 3220.97 | 0.00104 | 0.09948 |
| Vietnam | 3377.80 | 0.00006 | 0.11901 |
| Country | AIC (ARMA) | AIC (ARMAX) |
|---|---|---|
| Argentina | 295.42 | 297.41 |
| Australia | 215.17 | 216.87 |
| Austria | 289.39 | 259.42 |
| Belgium | −153.53 | −211.64 |
| Brazil | 495.83 | 497.66 |
| Bulgaria | 132.57 | 131.27 |
| Canada | 466.11 | 467.16 |
| Chile | 243.36 | 243.40 |
| China | 594.31 | 601.22 |
| Colombia | 298.21 | 300.18 |
| Czech Republic | 44.65 | 7.76 |
| Ecuador | 186.34 | 184.21 |
| Egypt | 94.11 | 94.49 |
| Finland | 217.52 | 171.81 |
| France | 419.89 | 387.82 |
| Germany | 236.96 | 197.07 |
| Greece | 168.93 | 161.87 |
| Hungary | −287.04 | −285.18 |
| Iceland | 109.31 | 109.56 |
| India | 422.27 | 422.53 |
| Indonesia | 220.32 | 208.88 |
| Iran | 321.48 | 314.15 |
| Iraq | 161.41 | 163.40 |
| Ireland | −87.17 | −161.21 |
| Italy | 361.45 | 350.02 |
| Japan | 389.91 | 347.89 |
| Malaysia | 197.76 | 198.33 |
| Mexico | 331.94 | 326.74 |
| Morocco | 83.50 | 81.12 |
| New Zealand | 214.08 | 182.72 |
| Norway | 429.82 | 428.10 |
| Pakistan | 334.12 | 335.57 |
| Peru | 163.47 | 160.58 |
| Philippines | 142.46 | 128.26 |
| Poland | −18.42 | −34.15 |
| Portugal | 293.56 | 276.94 |
| Romania | 254.95 | 218.32 |
| Slovakia | 95.45 | 66.46 |
| South Korea | 122.70 | 94.81 |
| Spain | 401.68 | 388.21 |
| Sri Lanka | 135.72 | 134.64 |
| Sweden | 390.10 | 366.37 |
| Switzerland | 304.79 | 287.40 |
| Thailand | 166.85 | 168.84 |
| Turkey | 404.93 | 406.93 |
| United Kingdom | 104.32 | 83.91 |
| US | 560.63 | 560.72 |
| Venezuela | 322.92 | 317.51 |
| Vietnam | 351.90 | 352.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ahmad, F.; Guidolin, M. Understanding Hydropower Generation Across Countries Through Innovation Diffusion Models. Energies 2026, 19, 606. https://doi.org/10.3390/en19030606
Ahmad F, Guidolin M. Understanding Hydropower Generation Across Countries Through Innovation Diffusion Models. Energies. 2026; 19(3):606. https://doi.org/10.3390/en19030606
Chicago/Turabian StyleAhmad, Farooq, and Mariangela Guidolin. 2026. "Understanding Hydropower Generation Across Countries Through Innovation Diffusion Models" Energies 19, no. 3: 606. https://doi.org/10.3390/en19030606
APA StyleAhmad, F., & Guidolin, M. (2026). Understanding Hydropower Generation Across Countries Through Innovation Diffusion Models. Energies, 19(3), 606. https://doi.org/10.3390/en19030606

