Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,369)

Search Parameters:
Keywords = co-contamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 972 KiB  
Article
A Preliminary Investigation into Heavy Metal Tolerance in Pseudomonas Isolates: Does the Isolation Site Have an Effect?
by Alessandro De Santis, Antonio Bevilacqua, Angela Racioppo, Barbara Speranza, Maria Rosaria Corbo, Clelia Altieri and Milena Sinigaglia
Agriculture 2025, 15(15), 1692; https://doi.org/10.3390/agriculture15151692 - 5 Aug 2025
Abstract
One hundred presumptive Pseudomonas isolates, recovered from 15 sites impacted by anthropogenic activity in the Foggia district (Italy), were screened for key adaptive and functional traits important for environmental applications. The isolates were phenotypically characterized for their ability to grow under combined pH [...] Read more.
One hundred presumptive Pseudomonas isolates, recovered from 15 sites impacted by anthropogenic activity in the Foggia district (Italy), were screened for key adaptive and functional traits important for environmental applications. The isolates were phenotypically characterized for their ability to grow under combined pH (5.0–8.0) and temperature (15–37 °C) conditions, to produce proteolytic enzymes, pigments, and exopolysaccharides, and to tolerate SDS. Moreover, the resistance to six environmentally relevant heavy metals (Cd, Co, Cu, Ni, Zn, As) was qualitatively assessed. The results highlighted wide inter-strain variability, with distinct clusters of isolates showing unique combinations of stress tolerance, enzymatic potential, and resistance profile. PERMANOVA analysis revealed significant effects of both the isolation site and the metal type, as well as their interaction, on the observed resistance patterns. A subset of isolates showed co-tolerance to elevated temperatures and heavy metals. These findings offer an initial yet insightful overview of the adaptive diversity of soil-derived Pseudomonas, laying the groundwork for the rational selection of strains for bioaugmentation in contaminated soils. Full article
Show Figures

Figure 1

22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

21 pages, 1245 KiB  
Article
Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents
by Mirosław Wyszkowski and Natalia Kordala
Appl. Sci. 2025, 15(15), 8650; https://doi.org/10.3390/app15158650 (registering DOI) - 5 Aug 2025
Abstract
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or [...] Read more.
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or fuel spills. This study aimed to determine whether organic and mineral materials could mitigate the effects of diesel oil pollution on the soil’s trace element content. The used materials were compost, bentonite and calcium oxide. Diesel oil pollution had the most pronounced effect on the levels of Cd, Ni, Fe and Co. The levels of the first three elements increased, while the level of Co decreased by 53%. Lower doses of diesel oil (2.5 and 5 cm3 per kg of soil) induced an increase in the levels of the other trace elements, while higher doses caused a reduction, especially in Cr. All materials applied to the soil (compost, bentonite and calcium oxide) reduced the content of Ni, Cr and Fe. Compost and calcium oxide also increased Co accumulation in the soil. Bentonite had the strongest reducing effect on the Ni and Cr contents of the soil, reducing them by 42% and 53%, respectively. Meanwhile, calcium oxide had the strongest reducing effect on Fe and Co accumulation, reducing it by 12% and 31%, respectively. Inverse relationships were recorded for Cd (mainly bentonite), Pb (especially compost), Cu (mainly compost), Mn (mainly bentonite) and Zn (only compost) content in the soil. At the most contaminated site, the application of bentonite reduced the accumulation of Pb, Zn and Mn in the soil, while the application of compost reduced the accumulation of Cd. Applying various materials, particularly bentonite and compost, limits the content of certain trace elements in the soil. This has a positive impact on reducing the effect of minor diesel oil pollution on soil properties and can promote the proper growth of plant biomass. Full article
Show Figures

Figure 1

33 pages, 8366 KiB  
Article
A Comprehensive Study of the Cobalt(II) Chelation Mechanism by an Iminodiacetate-Decorated Disaccharide Ligand
by Cécile Barbot, Laura Gouriou, Mélanie Mignot, Muriel Sebban, Ping Zhang, David Landy, Chang-Chun Ling and Géraldine Gouhier
Molecules 2025, 30(15), 3263; https://doi.org/10.3390/molecules30153263 - 4 Aug 2025
Abstract
We report an investigation on the cobalt(II) chelation mechanism by a modified α-maltoside ligand 9 decorated with two iminodiacetate (IDA) residues on C6,C6′ positions. Herein we uncovered the capacity of this biodegradable ligand to chelate cobalt(II), an ionic metal contaminant in the environment [...] Read more.
We report an investigation on the cobalt(II) chelation mechanism by a modified α-maltoside ligand 9 decorated with two iminodiacetate (IDA) residues on C6,C6′ positions. Herein we uncovered the capacity of this biodegradable ligand to chelate cobalt(II), an ionic metal contaminant in the environment that is used, in particular, in lithium-ion batteries. The interactions between cobalt(II) and synthesized ligand 9 were systematically studied using different analytical methods such as 1H and 13C NMR, potentiometry, spectrophotometry, ITC, and ICP-AES. We observed a high affinity for the 1:1 complex, one cobalt(II) associated with two iminodiacetate groups, which is 10-fold higher than the 2:1 complex, where each of the two IDA groups interacts alone with a cobalt(II). Taking into account the log βCoL value obtained (≈12.3) with the stoichiometry 1:1, the strength of this complexation with cobalt(II) can be ranked as follows for the most common ligands: IDA < MIDA < NTA < 9 < EDTA < TTHA < DTPA. We further completed a preliminary remediation test with water contaminated with cobalt(II) and recovered cobalt(II) metal using Chelex® resin, which allowed a recycling of the synthetic ligand for future recovering experiments. The results shed light on the great potential of using this synthetic ligand as an effective and green remediation tool. Full article
Show Figures

Graphical abstract

18 pages, 1365 KiB  
Article
Marker- and Microbiome-Based Microbial Source Tracking and Evaluation of Bather Health Risk from Fecal Contamination in Galveston, Texas
by Karalee A. Corbeil, Anna Gitter, Valeria Ruvalcaba, Nicole C. Powers, Md Shakhawat Hossain, Gabriele Bonaiti, Lucy Flores, Jason Pinchback, Anish Jantrania and Terry Gentry
Water 2025, 17(15), 2310; https://doi.org/10.3390/w17152310 - 3 Aug 2025
Abstract
(1) The beach areas of Galveston, Texas, USA are heavily used for recreational activities and often experience elevated fecal indicator bacteria levels, representing a potential threat to ecosystem services, human health, and tourism-based economies that rely on suitable water quality. (2) During the [...] Read more.
(1) The beach areas of Galveston, Texas, USA are heavily used for recreational activities and often experience elevated fecal indicator bacteria levels, representing a potential threat to ecosystem services, human health, and tourism-based economies that rely on suitable water quality. (2) During the span of 15 months (March 2022–May 2023), water samples that exceeded the U.S. Environmental Protection Agency-accepted alternative Beach Action Value (BAV) for enterococci of 104 MPN/100 mL were analyzed via microbial source tracking (MST) through quantitative polymerase chain reaction (qPCR) assays. The Bacteroides HF183 and DogBact as well as the Catellicoccus LeeSeaGull markers were used to detect human, dog, and gull fecal sources, respectively. The qPCR MST data were then utilized in a quantitative microbial risk assessment (QMRA) to assess human health risks. Additionally, samples collected in July and August 2022 were sequenced for 16S rRNA and matched with fecal sources through the Bayesian SourceTracker2 program. (3) Overall, 26% of the 110 samples with enterococci exceedances were positive for at least one of the MST markers. Gull was revealed to be the primary source of identified fecal contamination through qPCR and SourceTracker2. Human contamination was detected at very low levels (<1%), whereas dog contamination was found to co-occur with human contamination through qPCR. QMRA identified Campylobacter from canine sources as being the primary driver for human health risks for contact recreation for both adults and children. (4) These MST results coupled with QMRA provide important insight into water quality in Galveston that can inform future water quality and beach management decisions that prioritize public health risks. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 4994 KiB  
Article
Plant Growth-Promoting Serratia and Erwinia Strains Enhance Tea Plant Tolerance and Rhizosphere Microbial Diversity Under Heavy Metal Stress
by Mengjiao Wang and Zhimin Xu
Agronomy 2025, 15(8), 1876; https://doi.org/10.3390/agronomy15081876 - 2 Aug 2025
Viewed by 166
Abstract
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates [...] Read more.
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates (over 60%) and chlorophyll content of tea plants, and by reducing the accumulation of these metals in tea plants’ tissues (by 19–37%). The PGPRs elevated key soil nutrients organic carbon (OC), total nitrogen (TH), hydrolysable nitrogen (HN), and available potassium (APO) and phosphorus (APH) contents. Compared to non-PGPR controls, both strains consistently increased microbial α-diversity (Chao1 index: +28–42% in Zn/Pb soils; Shannon index: +19–33%) across all contamination regimes. PCoA/UniFrac analyses confirmed distinct clustering of PGPR-treated communities, with strain-specific enrichment of metal-adapted taxa, including Pseudomonas (LDA = 6) and Bacillus (LDA = 4) under Zn stress; Rhodanobacter (LDA = 4) under Pb stress; and Lysobacter (LDA = 5) in Zn + Pb co-contamination. Fungal restructuring featured elevated Mortierella (LDA = 6) in Zn soils and stress-tolerant Ascomycota dominance in co-contaminated soils. Multivariate correlations revealed that the PGPR-produced auxin was positively correlated with soil carbon dynamics and Mortierellomycota abundance (r = 0.729), while the chlorophyll content in leaves was closely associated with Cyanobacteria and reduced by Pb accumulation. These findings highlighted that PGPR could mediate and improve in tea plant physiology, soil fertility, and stress-adapted microbiome recruitment under heavy metal contaminated soil and stress. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 1365 KiB  
Article
Immobilization of Cd Through Biosorption by Bacillus altitudinis C10-4 and Remediation of Cd-Contaminated Soil
by Tianyu Gao, Chenlu Zhang, Xueqiang Hu, Tianqi Wang, Zhitang Lyu and Lei Sun
Microorganisms 2025, 13(8), 1798; https://doi.org/10.3390/microorganisms13081798 - 1 Aug 2025
Viewed by 139
Abstract
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the [...] Read more.
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the contact time, pH, Cd(II) concentration, and biomass dosage affected the adsorption of Cd(II) by strain C10-4. The adsorption process fit well to the Langmuir adsorption isotherm model and the pseudo-second-order kinetics model, based on the Cd(II) adsorption data obtained from the cells of strain C10-4. This suggests that Cd(II) is adsorbed by strain C10-4 cells via a single-layer homogeneous chemical adsorption process. According to the Langmuir model, the maximum biosorption capacity was 3.31 mg/g for fresh-strain C10-4 biomass. Cd(II) was shown to adhere to the bacterial cell wall through SEM-EDS analysis. FTIR spectroscopy further indicated that the main functional sites for the binding of Cd(II) ions on the cell surface of strain C10-4 were functional groups such as N-H, -OH, -CH-, C=O, C-O, P=O, sulfate, and phosphate. After the inoculation of strain C10-4 into Cd(II)-contaminated soils, there was a significant reduction (p < 0.01) in the exchangeable fraction of Cd and an increase (p < 0.01) in the sum of the reducible, oxidizable, and residual fractions of Cd. The results show that Bacillus altitudinis C10-4 has good potential for use in the remediation of Cd(II)-contaminated soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

12 pages, 4171 KiB  
Article
Effects of Paramisgurnus dabryanus Density on the Growth Performance of Pelophylax nigromaculatus and the Soil Microbial Communities Within a Rice–Frog–Loach Integrated Aquaculture System
by Chuanqi Yu, Yaping Li, Qiubai Zhou, Wenshuo Liu, Yuhong Liao, Jie Pan, Qi Chen, Haohua He and Zirui Wang
Microorganisms 2025, 13(8), 1794; https://doi.org/10.3390/microorganisms13081794 - 31 Jul 2025
Viewed by 129
Abstract
This investigation examines the influence of P. dabryanus density on the growth performance of P. nigromaculatus and the structural and functional dynamics of paddy soil microbial communities within a rice–frog–loach integrated aquaculture system. Field experiments were conducted with five density gradients of [...] Read more.
This investigation examines the influence of P. dabryanus density on the growth performance of P. nigromaculatus and the structural and functional dynamics of paddy soil microbial communities within a rice–frog–loach integrated aquaculture system. Field experiments were conducted with five density gradients of P. dabryanus (0.5, 1.0, 1.5, 2.0, and 2.5 × 104 individuals/667 m2), designated as RFLS0.5, RFLS1.0, RFLS1.5, RFLS2.0, and RFLS2.5, respectively. Control treatments included rice monoculture (RM) and rice–frog co-culture (RFS). These findings demonstrated that as the density of loach increased, the weight gain ratio of P. nigromaculatus showed a unimodal pattern, reaching its peak in RFLS1. Metagenomic analysis on paddy soil revealed that the RFLS1 facilitated the enrichment of nitrogen-fixing bacteria (Proteobacteria), while concurrently suppressing proliferation of the potential pathogen Pseudomonas aeruginosa and microbial markers in metal-contaminated environments of Usitatibacter rugosus. Further, functional profiling indicated that RFLS1 group reached a peak activity in amino acid metabolism (14.52 ± 0.09%) and carbohydrate metabolism (14.44 ± 0.06%) and showed a higher proportion of glycosyltransferase (GT) abundance (41.93 ± 0.02%) than other groups. In summary, the optimal stocking density of P. dabryanus in rice–frog–loach integrated systems was determined to be 1.0 × 104 individuals/667 m2. This density not only promotes the growth of P. nigromaculatus but also improves the structure of paddy soil microbial communities. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

25 pages, 1990 KiB  
Article
Fecal and Environmental Shedding of Influenza A Virus in Brazilian Swine: Genomic Evidence of Recent Human-to-Swine Transmission
by Nágila Rocha Aguilar, Beatriz Senra Alvares da Silva Santos, Bruno Zinato Carraro, Brenda Monique Magalhães Rocha, Jardelina de Souza Todao Bernardino, Ana Luiza Soares Fraiha, Alex Ranieri Jeronimo Lima, Gabriela Ribeiro, Alessandra Silva Dias, Renata Rezende Carvalho, Bruna Ferreira Sampaio Ribeiro, Marta Giovanetti, Luiz Carlos Júnior Alcântara, Sandra Coccuzzo Sampaio, Maria Carolina Quartim Barbosa Elias Sabbaga, Rafael Romero Nicolino, Zélia Inês Portela Lobato, Maria Isabel Maldonado Coelho Guedes, Cesar Rossas Mota Filho, Vincent Louis Viala, Bruna Coelho Lopes and Erica Azevedo Costaadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 753; https://doi.org/10.3390/pathogens14080753 (registering DOI) - 31 Jul 2025
Viewed by 221
Abstract
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples [...] Read more.
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples from naturally infected pigs in a commercial farm in Minas Gerais, Brazil. IAV RNA was detected in 25% of samples, including 42% from asymptomatic animals, with nasal swabs showing higher detection rates (30%) than rectal swabs (20%), though rectal Ct values were consistently higher, indicative of lower viral loads. We successfully isolated viable viruses from feces and effluent samples. Whole-genome sequencing revealed co-circulation of enzootic pH1N1 clade #2 (HA) and pN1 clade #4 (NA), alongside human-origin H3N2 sequences clustering within clade 3C.2a1b.2a.2a.1, and N2 segments related to pre-3C human lineages from 2001 to 2002. Phylogenetic and p-distance analyses support both recent reverse zoonosis and historical transmission events. Detection of complete HA/NA sequences from rectal swabs and treated effluent further emphasizes the surveillance value of non-respiratory matrices. The integration of respiratory and fecal/environmental sampling appears important to achieve more comprehensive IAV monitoring in swine herds and may have significant implications for One Health strategies in Brazil and beyond. Full article
Show Figures

Graphical abstract

23 pages, 4510 KiB  
Article
Identification and Characterization of Biosecurity Breaches on Poultry Farms with a Recent History of Highly Pathogenic Avian Influenza Virus Infection Determined by Video Camera Monitoring in the Netherlands
by Armin R. W. Elbers and José L. Gonzales
Pathogens 2025, 14(8), 751; https://doi.org/10.3390/pathogens14080751 - 30 Jul 2025
Viewed by 349
Abstract
Biosecurity measures applied on poultry farms, with a recent history of highly pathogenic avian influenza virus infection, were monitored using 24 h/7 days-per-week video monitoring. Definition of biosecurity breaches were based on internationally acknowledged norms. Farms of four different production types (two broiler, [...] Read more.
Biosecurity measures applied on poultry farms, with a recent history of highly pathogenic avian influenza virus infection, were monitored using 24 h/7 days-per-week video monitoring. Definition of biosecurity breaches were based on internationally acknowledged norms. Farms of four different production types (two broiler, two layer, two breeder broiler, and one duck farm) were selected. Observations of entry to and exit from the anteroom revealed a high degree of biosecurity breaches in six poultry farms and good biosecurity practices in one farm in strictly maintaining the separation between clean and potentially contaminated areas in the anteroom. Hand washing with soap and water and/or using disinfectant lotion was rarely observed at entry to the anteroom and was almost absent at exit. Egg transporters did not disinfect fork-lift wheels when entering the egg-storage room nor change or properly disinfect footwear. The egg-storage room was not cleaned and disinfected after egg transport by the farmer. Similarly, footwear and trolley wheels were not disinfected when introducing young broilers or ducklings to the poultry unit. Biosecurity breaches were observed when introducing bedding material in the duck farm. This study shows a need for an engaging awareness and training campaign for poultry farmers and their co-workers as well as for transporters to promote good biosecurity practices. Full article
Show Figures

Figure 1

21 pages, 6921 KiB  
Article
Transcriptomic Analysis Identifies Oxidative Stress-Related Hub Genes and Key Pathways in Sperm Maturation
by Ali Shakeri Abroudi, Hossein Azizi, Vyan A. Qadir, Melika Djamali, Marwa Fadhil Alsaffar and Thomas Skutella
Antioxidants 2025, 14(8), 936; https://doi.org/10.3390/antiox14080936 - 30 Jul 2025
Viewed by 407
Abstract
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved [...] Read more.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function. Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection. Enriched cultures were assessed through morphological criteria and immunocytochemistry using VASA and SSEA4. Transcriptomic profiling was performed using microarray and single-cell RNA sequencing (scRNA-seq) to identify oxidative stress-related genes. Bioinformatic analyses included STRING-based protein–protein interaction (PPI) networks, FunRich enrichment, weighted gene co-expression network analysis (WGCNA), and predictive modeling using machine learning algorithms. Results: The enriched SSC populations displayed characteristic morphology, positive germline marker expression, and minimal fibroblast contamination. Microarray analysis revealed six significantly upregulated oxidative stress-related genes in SSCs—including CYB5R3 and NDUFA10—and three downregulated genes, such as TXN and SQLE, compared to fibroblasts. PPI and functional enrichment analyses highlighted tightly clustered gene networks involved in mitochondrial function, redox balance, and spermatogenesis. scRNA-seq data further confirmed stage-specific expression of antioxidant genes during spermatogenic differentiation, particularly in late germ cell stages. Among the machine learning models tested, logistic regression demonstrated the highest predictive accuracy for antioxidant gene expression, with an area under the curve (AUC) of 0.741. Protein oxidation was implicated as a major mechanism of oxidative damage, affecting sperm motility, metabolism, and acrosome integrity. Conclusion: This study identifies key oxidative stress-related genes and pathways in human SSCs that may regulate spermatogenesis and impact sperm function. These findings offer potential targets for future functional validation and therapeutic interventions, including antioxidant-based strategies to improve male fertility outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

16 pages, 3308 KiB  
Article
Photocatalytic Degradation of Typical Fibrates by N and F Co-Doped TiO2 Nanotube Arrays Under Simulated Sunlight Irradiation
by Xiangyu Chen, Hao Zhong, Juanjuan Yao, Jingye Gan, Haibing Cong and Tengyi Zhu
Water 2025, 17(15), 2261; https://doi.org/10.3390/w17152261 - 29 Jul 2025
Viewed by 245
Abstract
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical [...] Read more.
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical removal from water, powered by inexhaustible sunlight. In this study, the degradation of two typical fibrates, i.e., bezafibrate (BZF) and ciprofibrate (CPF), under simulated sunlight irradiation through NF-TNAs were investigated. The photocatalytic degradation of BZF/CPF was achieved through combined radical and non-radical oxidation processes, while the generation and reaction mechanisms of associated reactive oxygen species (ROS) were examined. Electron paramagnetic resonance detection and quenching tests confirmed the existence of h+, •OH, O2•−, and 1O2, with O2•− playing the predominant role. The transformation products (TPs) of BZF/CPF were identified through high-resolution mass spectrometry analysis combined with quantum chemical calculations to elucidate the degradation pathways. The influence of co-existing ions and typical natural organic matters (NOM) on BZF/CPF degradation were also tested. Eventually, the ecological risk of BZF/CPF transformation products was assessed through quantitative structure–activity relationship (QSAR) modeling, and the results showed that the proposed photocatalytic system can largely alleviate fibrate toxicity. Full article
Show Figures

Graphical abstract

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 261
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

22 pages, 1255 KiB  
Article
Assessment of Bacterial Contamination and Biofilm Formation in Popular Street Foods of Biskra, Algeria
by Sara Boulmaiz, Ammar Ayachi and Widad Bouguenoun
Acta Microbiol. Hell. 2025, 70(3), 32; https://doi.org/10.3390/amh70030032 - 28 Jul 2025
Viewed by 454
Abstract
This study assessed microbiological contamination in street-sold meat products, focusing on Enterobacterales and coagulase-negative staphylococci (CoNS) species and their antibiotic resistance. Chicken and mutton street foods like shawarma and brochettes were tested for bacterial load, species distribution. and resistance profiles. The results showed [...] Read more.
This study assessed microbiological contamination in street-sold meat products, focusing on Enterobacterales and coagulase-negative staphylococci (CoNS) species and their antibiotic resistance. Chicken and mutton street foods like shawarma and brochettes were tested for bacterial load, species distribution. and resistance profiles. The results showed significant contamination, with Enterobacter cloacae (5.38 Log 10 CFU/g). Staphylococcus lentus and Staphylococcus xylosus were also common, reaching 6.23 Log 10 CFU/g in some samples. Contamination levels varied significantly by food type, with chicken shawarma showing the highest risk. Antimicrobial susceptibility testing revealed high multidrug resistance, particularly among E. cloacae and Staphylococcus species. Biofilm formation an indicator of resistance was observed mainly in staphylococci and enhanced under fed-batch culture. These findings highlight public health concerns tied to poor hygiene and undercooking in street food environments. The study emphasizes the need for improved hygiene practices, standardized cooking methods, and systematic food safety monitoring to reduce contamination and antibiotic resistance risks. Full article
Show Figures

Figure 1

22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Viewed by 928
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

Back to TopTop