Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (27,054)

Search Parameters:
Keywords = co-active

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 (registering DOI) - 2 Aug 2025
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
38 pages, 6505 KiB  
Review
Trends in Oil Spill Modeling: A Review of the Literature
by Rodrigo N. Vasconcelos, André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, Diego P. Costa, Soltan G. Duverger and Elaine C. B. Cambui
Water 2025, 17(15), 2300; https://doi.org/10.3390/w17152300 (registering DOI) - 2 Aug 2025
Abstract
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused [...] Read more.
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused on examining trends in scientific publications, utilizing the complete dataset derived after systematic screening and database integration. In the second phase, we applied elements of a systematic review to identify and evaluate the most influential contributions in the scientific field of oil spill simulations. Our analysis revealed a steady and accelerating growth of research activity over the past five decades, with a particularly notable expansion in the last two. The field has also experienced a marked increase in collaborative practices, including a rise in international co-authorship and multi-authored contributions, reflecting a more global and interdisciplinary research landscape. We cataloged the key modeling frameworks that have shaped the field from established systems such as OSCAR, OIL-MAP/SIMAP, and GNOME to emerging hybrid and Lagrangian approaches. Hydrodynamic models were consistently central, often integrated with biogeochemical, wave, atmospheric, and oil-spill-specific modules. Environmental variables such as wind, ocean currents, and temperature were frequently used to drive model behavior. Geographically, research has concentrated on ecologically and economically sensitive coastal and marine regions. We conclude that future progress will rely on the real-time integration of high-resolution environmental data streams, the development of machine-learning-based surrogate models to accelerate computations, and the incorporation of advanced biodegradation and weathering mechanisms supported by experimental data. These advancements are expected to enhance the accuracy, responsiveness, and operational value of oil spill modeling tools, supporting environmental monitoring and emergency response. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
Show Figures

Figure 1

12 pages, 2532 KiB  
Article
Efficient Oxygen Evolution Reaction Performance Achieved by Tri-Doping Modification in Prussian Blue Analogs
by Yanhong Ding, Bin Liu, Haiyan Xiang, Fangqi Ren, Tianzi Xu, Jiayi Liu, Haifeng Xu, Hanzhou Ding, Yirong Zhu and Fusheng Liu
Inorganics 2025, 13(8), 258; https://doi.org/10.3390/inorganics13080258 (registering DOI) - 2 Aug 2025
Abstract
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost [...] Read more.
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost hydrogen. In water electrolysis technology, the electrocatalytic activity of the electrode affects the kinetics of the oxygen evolution reaction (OER) and the hydrogen evolution rate. This study utilizes the liquid phase co-precipitation method to synthesize three types of Prussian blue analog (PBA) electrocatalytic materials: Fe/PBA(Fe4[Fe(CN)6]3), Fe-Mn/PBA((Fe, Mn)3[Fe(CN)6]2·nH2O), and Fe-Mn-Co/PBA((Mn, Co, Fe)3II[FeIII(CN)6]2·nH2O). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that Fe-Mn-Co/PBA has a smaller particle size and higher crystallinity, and its grain boundary defects provide more active sites for electrochemical reactions. The electrochemical test shows that Fe-Mn-Co/PBA exhibits the best electrochemical performance. The overpotential of the oxygen evolution reaction (OER) under 1 M alkaline electrolyte at 10/50 mA·cm−2 is 270/350 mV, with a Tafel slope of 48 mV·dec−1, and stable electrocatalytic activity is maintained at 5 mA·cm−2. All of these are attributed to the synergistic effect of Fe, Mn, and Co metal ions, grain refinement, and the generation of grain boundary defects and internal stresses. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

21 pages, 1705 KiB  
Article
Antioxidant Effects of Exogenous Mitochondria: The Role of Outer Membrane Integrity
by Sadab Sipar Ibban, Jannatul Naima, Ryo Kato, Taichi Kuroda and Yoshihiro Ohta
Antioxidants 2025, 14(8), 951; https://doi.org/10.3390/antiox14080951 (registering DOI) - 2 Aug 2025
Abstract
The administration of isolated mitochondria is a promising strategy for protecting cells from oxidative damage. This study aimed to identify mitochondrial characteristics that contribute to stronger protective effects. We compared two types of mitochondria isolated from C6 cells with similar ATP-producing capacity but [...] Read more.
The administration of isolated mitochondria is a promising strategy for protecting cells from oxidative damage. This study aimed to identify mitochondrial characteristics that contribute to stronger protective effects. We compared two types of mitochondria isolated from C6 cells with similar ATP-producing capacity but differing in outer membrane integrity. To evaluate their stability in extracellular conditions, we examined their behavior in serum. Both types underwent mitochondrial permeability transition to a similar extent; however, under intracellular-like conditions after serum incubation, mitochondria with intact membranes retained more polarized mitochondria. Notably, mitochondria with intact outer membranes were internalized more efficiently than those with damaged membranes. In H9c2 cells, both types of mitochondria similarly increased intracellular ATP levels 1 h after administration under all tested conditions. When co-administered with H2O2, both suppressed oxidative damage to a comparable degree, as indicated by similar H2O2-scavenging activity in solution, comparable intracellular ROS levels, and equivalent preservation of electron transport chain activity. However, at higher H2O2 concentrations, cells treated with mitochondria possessing intact outer membranes exhibited greater survival 24 h after co-administration. Furthermore, when mitochondria were added after H2O2-induced damage and their removal, intact mitochondria conferred superior cell survival compared to damaged ones. These findings suggest that while both mitochondrial types exert comparable antioxidant effects, outer membrane integrity prior to administration plays a critical role in enhancing cell survival under conditions of oxidative stress. Full article
(This article belongs to the Section ROS, RNS and RSS)
17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 (registering DOI) - 2 Aug 2025
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

15 pages, 1806 KiB  
Article
Drought and Shrub Encroachment Accelerate Peatland Carbon Loss Under Climate Warming
by Fan Lu, Boli Yi, Jun-Xiao Ma, Si-Nan Wang, Yu-Jie Feng, Kai Qin, Qiansi Tu and Zhao-Jun Bu
Plants 2025, 14(15), 2387; https://doi.org/10.3390/plants14152387 (registering DOI) - 2 Aug 2025
Abstract
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input [...] Read more.
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input under these stressors remains poorly understood. We incubated peat from two depths with different degrees of decomposition, either alone or incubated with Sphagnum divinum shoots or Betula ovalifolia leaves, under five temperature levels and two moisture conditions in growth chambers. We found that drought and Betula addition increased CO2 emissions in both peat layers, while Sphagnum affected only shallow peat. Deep peat alone or with Betula exhibited higher Q10 than pure shallow peat. Drought increased the Q10 of both depths’ peat, but this effect disappeared with fresh litter addition. The CO2 production rate showed a positive but marginal correlation with microbial biomass carbon, and it displayed a rather similar responsive trend to warming as the microbial metabolism quotient. These results indicate that both deep and dry peat are more sensitive to warming, highlighting the importance of keeping deep peat buried and waterlogged to conserve existing carbon storage. Additionally, they further emphasize the necessity of Sphagnum moss recovery following vascular plant encroachment in restoring carbon sink function in peatlands. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

29 pages, 6015 KiB  
Review
A Comprehensive Review of BBX Protein-Mediated Regulation of Anthocyanin Biosynthesis in Horticultural Plants
by Hongwei Li, Kuanping Deng, Yingying Zhao and Delin Xu
Horticulturae 2025, 11(8), 894; https://doi.org/10.3390/horticulturae11080894 (registering DOI) - 2 Aug 2025
Abstract
Anthocyanins, a subclass of flavonoid pigments, impart vivid red, purple, and blue coloration to horticultural plants, playing essential roles in ornamental enhancement, stress resistance, and pollinator attraction. Recent studies have identified B-box (BBX) proteins as a critical class of transcription factors (TFs) involved [...] Read more.
Anthocyanins, a subclass of flavonoid pigments, impart vivid red, purple, and blue coloration to horticultural plants, playing essential roles in ornamental enhancement, stress resistance, and pollinator attraction. Recent studies have identified B-box (BBX) proteins as a critical class of transcription factors (TFs) involved in anthocyanin biosynthesis. Despite these advances, comprehensive reviews systematically addressing BBX proteins are urgently needed, especially given the complexity and diversity of their roles in regulating anthocyanin production. In this paper, we provide an in-depth overview of the fundamental structures, biological functions, and classification of BBX TFs, along with a detailed description of anthocyanin biosynthetic pathways and bioactivities. Furthermore, we emphasize the diverse molecular mechanisms through which BBX TFs regulate anthocyanin accumulation, including direct activation or repression of target genes, indirect modulation via interacting protein complexes, and co-regulation with other transcriptional regulators. Additionally, we summarize the known upstream regulatory signals and downstream target genes of BBX TFs, highlighting their significance in shaping anthocyanin biosynthesis pathways. Understanding these regulatory networks mediated by BBX proteins will not only advance fundamental horticultural science but also provide valuable insights for enhancing the aesthetic quality, nutritional benefits, and stress adaptability of horticultural crops. Full article
Show Figures

Graphical abstract

19 pages, 427 KiB  
Review
The Role of Viral Infections in the Immunopathogenesis of Type 1 Diabetes Mellitus: A Narrative Review
by Ioanna Kotsiri, Maria Xanthi, Charalampia-Melangeli Domazinaki and Emmanouil Magiorkinis
Biology 2025, 14(8), 981; https://doi.org/10.3390/biology14080981 (registering DOI) - 2 Aug 2025
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections [...] Read more.
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections as potential environmental triggers in disease onset and progression. This narrative review synthesizes current findings on the role of viral pathogens in T1DM pathogenesis. Enteroviruses, especially Coxsackie B strains, are the most extensively studied and show strong epidemiological and mechanistic associations with beta-cell autoimmunity. Large prospective studies—including Diabetes Virus Detection (DiViD), The environmental determinans of diabetes in the young (TEDDY), Miljøfaktorer i utvikling av type 1 diabetes (MIDIA), and Diabetes Autoimmunity Study in the Young (DAISY)—consistently demonstrate correlations between enteroviral presence and the initiation or acceleration of islet autoimmunity. Other viruses—such as mumps, rubella, rotavirus, influenza A (H1N1), and SARS-CoV-2—have been investigated for their potential involvement through direct cytotoxic effects, immune activation, or molecular mimicry. Interestingly, certain viruses like varicella-zoster virus (VZV) and cytomegalovirus (CMV) may exert modulatory or even protective influences on disease progression. Proposed mechanisms include direct beta-cell infection, molecular mimicry, bystander immune activation, and dysregulation of innate and adaptive immunity. Although definitive causality remains unconfirmed, the complex interplay between genetic predisposition, immune responses, and viral exposure underscores the need for further mechanistic research. Elucidating these pathways may inform future strategies for targeted prevention, early detection, and vaccine or antiviral development in at-risk populations. Full article
Show Figures

Figure 1

14 pages, 2514 KiB  
Article
The Transcriptional Coactivator DEAD/H Box 5 (DDX5) Gene Is a Target of the Transcription Factor E2F1 Deregulated from the Tumor Suppressor pRB
by Rinka Nakajima, Yaxuan Zhou, Mashiro Shirasawa, Mariana Fikriyanti, Ritsuko Iwanaga, Andrew P. Bradford, Kenta Kurayoshi, Keigo Araki and Kiyoshi Ohtani
Genes 2025, 16(8), 929; https://doi.org/10.3390/genes16080929 (registering DOI) - 1 Aug 2025
Abstract
Background: DEAD/H box 5 (DDX5) serves as a transcriptional coactivator for several transcription factors including E2F1, the primary target of the tumor suppressor pRB. E2F1 physiologically activated by growth stimulation activates growth-related genes and promotes cell proliferation. In contrast, upon loss of pRB [...] Read more.
Background: DEAD/H box 5 (DDX5) serves as a transcriptional coactivator for several transcription factors including E2F1, the primary target of the tumor suppressor pRB. E2F1 physiologically activated by growth stimulation activates growth-related genes and promotes cell proliferation. In contrast, upon loss of pRB function due to oncogenic changes, E2F1 is activated out of restraint by pRB (deregulated E2F1) and stimulates tumor suppressor genes such as ARF, which activates the tumor suppressor p53, to suppress tumorigenesis. We have recently reported that DDX5 augments deregulated E2F1 activity to induce tumor suppressor gene expression and apoptosis. During the analyses, we noted that over-expression of E2F1 increased DDX5 expression, suggesting a feed forward loop in E2F1 activation through DDX5. Objective: We thus examined whether the DDX5 gene is a target of deregulated E2F1. Method: For this purpose, we performed promoter analysis and ChIP assay. Result: The DDX5 promoter did not possess typical E2F binding consensus but contained several GC repeats observed in deregulated E2F1 targets. Insertion of point mutations in these GC repeats decreased responsiveness to deregulated E2F1 induced by over-expression of E2F1, but scarcely affected responsiveness to growth stimulation. ChIP assays showed that deregulated E2F1 induced by over-expression of E2F1 or expression of E1a, which binds pRB and releases E2F1, bound to the DDX5 gene, while physiological E2F1 induced by growth stimulation did not. Conclusions: These results suggest that the DDX5 gene is a target of deregulated E2F1, generating a feed forward loop mediating tumor suppressive E2F1 activity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2583 KiB  
Article
Hierarchical Flaky Spinel Structure with Al and Mn Co-Doping Towards Preferable Oxygen Evolution Performance
by Hengfen Shen, Hao Du, Peng Li and Mei Wang
Materials 2025, 18(15), 3633; https://doi.org/10.3390/ma18153633 (registering DOI) - 1 Aug 2025
Abstract
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous [...] Read more.
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous spinel CoFe2O4 (np-CFO) with a tunable structure and composition as an OER catalyst through a simple two-step dealloying strategy. The as-formed np-CFO (Al and Mn) features a hierarchical flaky configuration; that is, there are a large number of fine nanosheets attached to the surface of a regular micron-sized flake, which not only increases the number of active sites but also enhances mass transport efficiency. Consequently, the optimized catalyst exhibits a low OER overpotential of only 320 mV at a current density of 10 mA cm−2, a minimal Tafel slope of 45.09 mV dec−1, and exceptional durability. Even under industrial conditions (6 M KOH, 60 °C), it only needs 1.83 V to achieve a current density of 500 mA cm−2 and can maintain good stability for approximately 100 h at this high current density. Theoretical simulations indicate that Al and Mn co-doping could indeed optimize the electronic structure of CFO and thus decrease the energy barrier of OER to 1.35 eV. This work offers a practical approach towards synthesizing efficient and stable OER catalysts. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
22 pages, 2050 KiB  
Article
YAP/TAZ Promote GLUT1 Expression and Are Associated with Prognosis in Endometrial Cancer
by Masayuki Fujita, Makoto Orisaka, Tetsuya Mizutani, Yuko Fujita, Toshimichi Onuma, Hideaki Tsuyoshi and Yoshio Yoshida
Cancers 2025, 17(15), 2554; https://doi.org/10.3390/cancers17152554 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) function as effectors in the Hippo pathway and have attracted attention due to their association with tumor formation. Glucose transporter (GLUT) proteins also contribute to the proliferation of cancer cells. In [...] Read more.
Background/Objectives: Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) function as effectors in the Hippo pathway and have attracted attention due to their association with tumor formation. Glucose transporter (GLUT) proteins also contribute to the proliferation of cancer cells. In this study, we investigated the effect of YAP/TAZ on GLUT1 expression in endometrial carcinoma, as well as the clinical relevance and prognostic value of YAP/TAZ. Methods: The effects of YAP and TAZ knockdown and YAP overexpression on GLUT1 expression in human endometrial carcinoma-derived HHUA and Ishikawa cells were evaluated using RT-qPCR. In addition, we performed immunohistochemical expression of 100 tissue samples of diagnosed endometrial carcinoma. Based on staining intensity and the percentage of positively stained tumor cells, the immunoreactivity score was calculated, which ranged from 0 to 12. Results: YAP/TAZ were identified as important factors in the regulation of GLUT1 expression in HHUA and Ishikawa cells. In addition, a significant correlation (progression-free survival p < 0.05) was observed between TAZ and GLUT1 expression in tissues from endometrial carcinoma patients, and nuclear expression of TAZ was associated with poor prognosis (p < 0.05). Conclusions: YAP/TAZ promote tumor growth via GLUT1. Therapeutic targeting of YAP/TAZ could therefore be useful in the development of future treatments. Full article
(This article belongs to the Section Clinical Research of Cancer)
15 pages, 1363 KiB  
Article
Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy
by António Paulo, Sofia Cardoso, Edgar Mendes, Elisa Palma, Paula Raposinho and Ana Belchior
Molecules 2025, 30(15), 3240; https://doi.org/10.3390/molecules30153240 (registering DOI) - 1 Aug 2025
Abstract
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years [...] Read more.
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years as a potential new class of radiosensitizers binding to specific DNA sequences. Recently, we have shown that the Re(I) tricarbonyl complex PDF-Pz-Re and its pyrazolyl-diamine chelator PDF-Pz, carrying a N-methylated pyridostatin (PDF) derivative, act as G4 binders of various G4-forming DNA and RNA sequences. As described in this contribution, these features prompted us to evaluate PDF-Pz-Re and PDF-Pz as radiosensitizers of prostate cancer PC3 cells submitted to concomitant treatment with Co-60 radiation. The compound RHPS4 was also tested, as this G4 ligand was previously shown to exhibit strong radiosensitizing properties in other cancer cell lines. The assessment of the resulting radiobiological effects, namely through clonogenic cell survival, DNA damage, and ROS production assays, showed that PDF-Pz-Re and PDF-Pz were able to radiosensitize PC3 cells despite being less active than RHPS4. Our results corroborate that G4 DNA ligands are a class of compounds with potential interest as radiosensitizers, deserving further studies to optimize their radiosensitization activity and elucidate the mechanisms of action. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future, 3rd Edition)
Show Figures

Figure 1

33 pages, 3259 KiB  
Review
Recent Development on the Synthesis Strategies and Mechanisms of Co3O4-Based Electrocatalysts for Oxygen Evolution Reaction: A Review
by Liangjuan Gao, Yifan Jia and Hongxing Jia
Molecules 2025, 30(15), 3238; https://doi.org/10.3390/molecules30153238 (registering DOI) - 1 Aug 2025
Abstract
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. [...] Read more.
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. However, the oxygen evolution reaction (OER) remains a critical challenge due to its high overpotential and slow kinetics during water electrolysis for hydrogen production. Electrocatalysts play an important role in lowering the overpotential of OER and promoting the kinetics. Co3O4-based electrocatalysts have emerged as promising candidates for the oxygen evolution reaction (OER) due to their favorable catalytic activity and good compatibility compared with precious metal-based electrocatalysts. This review presents a summary of the recent developments in the synthesis strategies and mechanisms of Co3O4-based electrocatalysts for the OER. Various synthesis strategies have been explored to control the size, morphology, and composition of Co3O4 nanoparticles. These strategies enable the fabrication of well-defined nanostructures with enhanced catalytic performance. Additionally, the mechanisms of OER catalysis on Co3O4-based electrocatalysts have been elucidated. Coordinatively unsaturated sites, synergistic effects with other elements, surface restructuring, and pH dependency have been identified as crucial factors influencing the catalytic activity. The understanding of these mechanisms provides insights into the design and optimization of Co3O4-based electrocatalysts for efficient OER applications. The recent advancements discussed in this review offer valuable perspectives for researchers working on the development of electrocatalysts for the OER, with the goal of achieving sustainable and efficient energy conversion and storage systems. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 (registering DOI) - 1 Aug 2025
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

20 pages, 1489 KiB  
Article
Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum)
by Yuanhang Ren, Yanting Yang, Mi Jiang, Wentao Gu, Yanan Cao, Liang Zou and Lianxin Peng
Foods 2025, 14(15), 2712; https://doi.org/10.3390/foods14152712 (registering DOI) - 1 Aug 2025
Abstract
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, [...] Read more.
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, stability, and digestibility, which may support promising application of the phenol and polysaccharide complex in health food industry. In this study, two complexes with potential existence in highland barley, such as β-glucan-ferulic acid (GF) and β-glucan-quercetin (GQ), were prepared using the equilibrium dialysis method in vitro. FTIR and SEM results showed that ferulic acid and quercetin formed complexes with β-glucan separately, with covalent and non-covalent bonds and a dense morphological structure. The pH value, reaction temperature, and concentration of phosphate buffer solution (PBS) were confirmed to have an impact on the formation and yield of the complex. Through the test of the response surface, it was found that the optimum conditions for GF and (GQ) preparations were a pH of 6.5 (6), a PBS buffer concentration of 0.08 mol/L (0.3 mol/L), and a temperature of 8 °C (20 °C). Through in vitro assays, GF and GQ were found to possess good antioxidant activity, with a greater scavenging effect of DPPH, ABTS, and hydroxyl radical than the individual phenolic acids and glucans, as well as their physical mixtures. Taking GF as an example, the DPPH radical scavenging capacity ranked as GF (71.74%) > ferulic acid (49.50%) > PGF (44.43%) > β-glucan (43.84%). Similar trends were observed for ABTS radical scavenging (GF: 54.56%; ferulic acid: 44.37%; PGF: 44.95%; β-glucan: 36.42%) and hydroxyl radical elimination (GF: 39.16%; ferulic acid: 33.06%; PGF: 35.51%; β-glucan: 35.47%). In conclusion, the convenient preparation method and excellent antioxidant effect of the phenol–polysaccharide complexes from highland barley provide new opportunities for industrial-scale production, development, and design of healthy food based on these complexes. Full article
Back to TopTop