Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (155)

Search Parameters:
Keywords = cloud number concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5286 KiB  
Article
Measurements of Wake Concentration from a Finite Release of a Dense Fluid Upstream of a Cubic Obstacle
by Romana Akhter and Nigel Kaye
Fluids 2025, 10(8), 194; https://doi.org/10.3390/fluids10080194 - 29 Jul 2025
Viewed by 154
Abstract
Results are reported for a series of small-scale experiments that examine the dispersion of dense gas released upstream of an isolated building. The experiments replicate the geometry of the Thorney Island Phase II field tests and show good qualitative agreement with the flow [...] Read more.
Results are reported for a series of small-scale experiments that examine the dispersion of dense gas released upstream of an isolated building. The experiments replicate the geometry of the Thorney Island Phase II field tests and show good qualitative agreement with the flow regimes observed therein. The experiments were run in a water flume, and the flow is characterized by the Richardson number (Ri), where high Ri represent relatively high density releases. For low Ri the dense cloud flows over and around the building and any fluid drawn into the building wake is rapidly flushed. However, for high Ri, the dense cloud collapses, flows around the building, and is drawn into the wake. The dense fluid layer becomes trapped in the wake and is flushed by small parcels of fluid being peeled off the top of the layer and driven up and out of the wake. Results are presented for the concentration field along the center plane (parallel to the flow) of the building wake and time series of concentration just above the floor and downstream of the building. The time series for low-Ri and high-Ri flows are starkly different, with differences explained in terms of the observed flow regimes. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

18 pages, 3393 KiB  
Article
An Investigation of the Characteristics of the Mei–Yu Raindrop Size Distribution and the Limitations of Numerical Microphysical Parameterization
by Zhaoping Kang, Zhimin Zhou, Yinglian Guo, Yuting Sun and Lin Liu
Remote Sens. 2025, 17(14), 2459; https://doi.org/10.3390/rs17142459 - 16 Jul 2025
Viewed by 327
Abstract
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR [...] Read more.
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR) are slightly underestimated relative to RG measurements. Both observations and simulations identify 1–3 mm raindrops as the dominant precipitation contributors, though the model overestimates small and large drop contributions. At low RR, decreased small-drop and increased large-drop concentrations cause corresponding leftward and rightward RSD shifts with decreasing altitude—a pattern well captured by simulations. However, at elevated rainfall rates, the simulated concentration of large raindrops shows no significant increase, resulting in negligible rightward shifting of RSD in the model outputs. Autoconversion from cloud droplets to raindrops (ATcr), collision and breakup between raindrops (AGrr), ice melting (MLir), and evaporation of raindrops (VDrv) contribute more to the number density of raindrops. At 0.1 < RR < 1 mm·h−1, ATcr dominates, while VDrv peaks in this intensity range before decreasing. At higher intensities (RR > 20 mm·h−1), AGrr contributes most, followed by MLir. When the RR is high enough, the breakup of raindrops plays a more important role than collision, leading to a decrease in the number density of raindrops. The overestimation of raindrop breakup from the numerical parameterization may be one of the reasons why the RSD does not shift significantly to the right toward the surface under the heavy RR grade. The RSD near the surface varies with the RR and characterizes surface precipitation well. Toward the surface, ATcr and VDrv, but not AGrr, become similar when precipitation approaches. Full article
Show Figures

Figure 1

32 pages, 1517 KiB  
Article
A Proposed Deep Learning Framework for Air Quality Forecasts, Combining Localized Particle Concentration Measurements and Meteorological Data
by Maria X. Psaropa, Sotirios Kontogiannis, Christos J. Lolis, Nikolaos Hatzianastassiou and Christos Pikridas
Appl. Sci. 2025, 15(13), 7432; https://doi.org/10.3390/app15137432 - 2 Jul 2025
Viewed by 312
Abstract
Air pollution in urban areas has increased significantly over the past few years due to industrialization and population increase. Therefore, accurate predictions are needed to minimize their impact. This paper presents a neural network-based examination for forecasting Air Quality Index (AQI) values, employing [...] Read more.
Air pollution in urban areas has increased significantly over the past few years due to industrialization and population increase. Therefore, accurate predictions are needed to minimize their impact. This paper presents a neural network-based examination for forecasting Air Quality Index (AQI) values, employing two different models: a variable-depth neural network (NN) called slideNN, and a Gated Recurrent Unit (GRU) model. Both models used past particulate matter measurements alongside local meteorological data as inputs. The slideNN variable-depth architecture consists of a set of independent neural network models, referred to as strands. Similarly, the GRU model comprises a set of independent GRU models with varying numbers of cells. Finally, both models were combined to provide a hybrid cloud-based model. This research examined the practical application of multi-strand neural networks and multi-cell recurrent neural networks in air quality forecasting, offering a hands-on case study and model evaluation for the city of Ioannina, Greece. Experimental results show that the GRU model consistently outperforms the slideNN model in terms of forecasting losses. In contrast, the hybrid GRU-NN model outperforms both GRU and slideNN, capturing additional localized information that can be exploited by combining particle concentration and microclimate monitoring services. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

23 pages, 2743 KiB  
Article
Aerosol, Clouds and Radiation Interactions in the NCEP Unified Forecast Systems
by Anning Cheng and Fanglin Yang
Meteorology 2025, 4(2), 14; https://doi.org/10.3390/meteorology4020014 - 23 May 2025
Viewed by 1094
Abstract
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and [...] Read more.
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and semi-direct aerosol effects. The sensitivity experiment (EXP ACI) couples aerosols with both radiation and Thompson microphysics, accounting for aerosol indirect effects and fully interactive aerosol–cloud dynamics. Introducing aerosol and cloud interactions results in net cooling at the top of the atmosphere (TOA). Further analysis shows that the EXP ACI produces more liquid water at lower levels and less ice water at higher levels compared to the EXP CTL. The aerosol optical depth (AOD) shows a good linear relationship with cloud droplet number concentration, similar to other climate models, though with larger standard deviations. Including aerosol and cloud interactions generally enhances simulations of the Indian Summer Monsoon, stratocumulus, and diurnal cycles. Additionally, the study evaluates the impacts of aerosols on deep convection and cloud life cycles. Full article
Show Figures

Figure 1

16 pages, 1763 KiB  
Article
Unveiling Cloud Microphysics of Marine Cold Air Outbreaks Through A-Train’s Active Instrumentation
by Kamil Mroz, Ranvir Dhillon and Alessandro Battaglia
Atmosphere 2025, 16(5), 518; https://doi.org/10.3390/atmos16050518 - 28 Apr 2025
Viewed by 374
Abstract
Marine Cold Air Outbreaks (MCAOs) are critical drivers of high-latitude climates because they regulate the exchange of heat, moisture, and momentum between cold continental or polar air masses and relatively warmer ocean surfaces. In this study, we combined CloudSat–CALIPSO observations (2007–2017) with ERA5 [...] Read more.
Marine Cold Air Outbreaks (MCAOs) are critical drivers of high-latitude climates because they regulate the exchange of heat, moisture, and momentum between cold continental or polar air masses and relatively warmer ocean surfaces. In this study, we combined CloudSat–CALIPSO observations (2007–2017) with ERA5 reanalysis data to investigate the microphysical properties and vertical structure of snowfall during MCAOs. By classifying events using a low-level instability parameter, we provide a detailed comparison of the vertical and spatial characteristics of different snowfall regimes, focusing on key cloud properties such as the effective radius, particle concentration, and ice water content. Our analysis identified two distinct snowfall regimes: shallow stratocumulus-dominated snowfall, prevalent during typical MCAOs and characterized by cloud top heights below 3 km and a comparatively lower ice water content (IWC), and deeper snowfall occurring during non-CAO conditions. We demonstrate that, despite their lower instantaneous snowfall rates, CAO-related snowfall events cumulatively contribute significantly to the total ice mass production in the subpolar North Atlantic. Additionally, CAO events are characterized by a greater number of ice particles near the surface, which are also smaller (reff of 59 μm versus 62 μm) than those associated with non-CAO events. These microphysical differences impact cloud optical properties, influencing the surface radiative balance. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

23 pages, 20568 KiB  
Article
On the Boundary Conditions in Out-of-Plane Analysis of Thin Plates by the Finite Point Method
by Sadegh Tavakoliyan, Mohamad Najar, Parham Memarzadeh and Tadeh Zirakian
Buildings 2025, 15(2), 241; https://doi.org/10.3390/buildings15020241 - 15 Jan 2025
Viewed by 656
Abstract
The finite point method (FPM) is a numerical, mesh-free technique for solving differential equations, particularly in fluid dynamics. While the FPM has been previously applied in solid mechanics to analyze plates under in-plane loading, there remains a notable scarcity of research exploring the [...] Read more.
The finite point method (FPM) is a numerical, mesh-free technique for solving differential equations, particularly in fluid dynamics. While the FPM has been previously applied in solid mechanics to analyze plates under in-plane loading, there remains a notable scarcity of research exploring the out-of-plane analysis of elastic plates using this method. This study thoroughly investigates the elastic FPM analysis of thin plates subjected to transverse loadings, focusing specifically on various boundary conditions (BCs). Boundary conditions represent a significant challenge in the out-of-plane analysis of thin plates within the FPM framework. To address this challenge, the approach incorporates additional nodal points positioned close to each boundary node, supplementing the points distributed throughout the plate’s interior and along its edges. The strong form of the governing equation is employed for the interior points, while the analysis also includes the scenario of a plate resting on boundary columns. Both distributed and concentrated external loads are examined to provide a comprehensive understanding of the behavior under different loading conditions. Furthermore, the optimal placement of the extra boundary nodes is briefly discussed, alongside a focus on the number of nodes within the finite point clouds. An appropriate range for this number is proposed, although the determination of the optimal distance for the extra boundary nodes and the ideal number of cloud points is earmarked for future research. The contribution of this work is to enhance the understanding of the FPM in the context of thin plates, particularly concerning the critical influence of boundary conditions. Full article
Show Figures

Figure 1

19 pages, 4568 KiB  
Article
Quantifying the Influence of Cloud Seeding on Ice Particle Growth and Snowfall Through Idealized Microphysical Modeling
by Ghazal Mehdizadeh, Ehsan Erfani, Frank McDonough and Farnaz Hosseinpour
Atmosphere 2024, 15(12), 1460; https://doi.org/10.3390/atmos15121460 - 6 Dec 2024
Viewed by 2866
Abstract
Cloud seeding is a weather modification technique for enhancing precipitation in arid and semi-arid regions, including the Western U.S. However, designing an optimal cloud seeding operation based on comprehensive evaluation metrics, such as seeding agent dispersion and atmospheric conditions, has yet to be [...] Read more.
Cloud seeding is a weather modification technique for enhancing precipitation in arid and semi-arid regions, including the Western U.S. However, designing an optimal cloud seeding operation based on comprehensive evaluation metrics, such as seeding agent dispersion and atmospheric conditions, has yet to be thoroughly explored for this region. This study investigated the impacts of cloud seeding, particularly utilizing silver iodide, on ice particle growth within clouds through numerical modeling. By leveraging the Snow Growth Model for Rimed Snowfall (SGMR), the microphysical processes involved in cloud seeding across five distinct events were simulated. The events were in the Lake Tahoe region, nestled within the Sierra Nevada Mountain ranges in the Western U.S. This model was executed based on six primary variables, including cloud top height, cloud base height, cloud top temperature, cloud base temperature, liquid water content, and ice water content. This study incorporated datasets from the Modern-Era Retrospective Analysis for Research and Applications Version 2 and the Clouds and the Earth Radiant Energy System. The findings revealed the importance of ice nucleation, aggregation, diffusion, and riming processes and highlighted the effectiveness of cloud seeding in enhancing ice particle number concentration, ice water content, and snowfall rates. However, event-specific analyses indicated diverse precipitation responses to cloud seeding based on initial atmospheric conditions. The SGMR modeling hints at the importance of improving ice microphysical processes and provides insights for future cloud seeding research using regional and global climate models. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

18 pages, 24371 KiB  
Article
Research on Occurrence Law and the Prevention of Rockbursts in Main Roadways Affected by Mining Activities: Two Case Studies from Gaojiapu and Cuimu Coal Mines, Shaanxi, China
by Yinfeng Zhang, Guifeng Wang, Lihai Tan, Ruizhi Wang, Zonglong Mu, Anye Cao and Linming Dou
Appl. Sci. 2024, 14(22), 10172; https://doi.org/10.3390/app142210172 - 6 Nov 2024
Viewed by 774
Abstract
Rockburst, one of the leading types of disaster in mining and rock engineering causing serious injuries and the loss of property, frequently occurs, involving various features and complex evolutionary mechanisms. Compared to rockbursts occurring at mining faces, those occurring in main roadways cause [...] Read more.
Rockburst, one of the leading types of disaster in mining and rock engineering causing serious injuries and the loss of property, frequently occurs, involving various features and complex evolutionary mechanisms. Compared to rockbursts occurring at mining faces, those occurring in main roadways cause more serious problems for mine production. This paper first analyzes the characteristics of rockbursts in main roadways using two case studies involving the Gaojiapu and Cuimu coal mines. The causes of rockbursts in main roadways were studied using microseismic monitoring, energy density cloud maps, and seismic velocity tomography. During the mining of the 22306 working face in the Cuimu coal mine, targeted measures, such as deep-hole blasting of the roof strata and deep-hole blasting of the coal seam, were implemented to prevent rockbursts in the main roadways. The effectiveness of these measures was verified through long-term analysis of tremor activities. The study found that the influence of mining at two working faces on both sides of main roadways was significantly greater than that from a single-sided working face. The intensity of the tremor activities occurring near the main roadways was correlated with the distance from the working face to the main roadways. The closer the working face was to the main roadways, the stronger the tremor activities were near the main roadways. According to the distribution range of the tremors, the influence area of working face mining exceeded 800 m, with tremors distributed linearly along the main roadways. Even five months after the completion of working face mining, there were still a large number of tremors near the main roadways, which gradually disappeared after another five months. Mining activities were the main reason for the occurrence of main roadway rockbursts and the stress concentration within the main roadways themselves was another reason for the occurrence of rockbursts. The influence of working face mining could be reduced by deep-hole blasting of roof strata and the stress concentration within main roadways themselves could be reduced by large-diameter drilling. Those joint preventive measures effectively prevented the occurrence of rockbursts in main roadways. This study is of important theoretical and practical significance for further studies of rockburst mechanisms and prevention in regard to main roadways in coal mines, and the findings are significant in terms of the enhancement of safety in coal mines. Full article
Show Figures

Figure 1

37 pages, 34329 KiB  
Technical Note
The Cycle 46 Configuration of the HARMONIE-AROME Forecast Model
by Emily Gleeson, Ekaterina Kurzeneva, Wim de Rooy, Laura Rontu, Daniel Martín Pérez, Colm Clancy, Karl-Ivar Ivarsson, Bjørg Jenny Engdahl, Sander Tijm, Kristian Pagh Nielsen, Metodija Shapkalijevski, Panu Maalampi, Peter Ukkonen, Yurii Batrak, Marvin Kähnert, Tosca Kettler, Sophie Marie Elies van den Brekel, Michael Robin Adriaens, Natalie Theeuwes, Bolli Pálmason, Thomas Rieutord, James Fannon, Eoin Whelan, Samuel Viana, Mariken Homleid, Geoffrey Bessardon, Jeanette Onvlee, Patrick Samuelsson, Daniel Santos-Muñoz, Ole Nikolai Vignes and Roel Stappersadd Show full author list remove Hide full author list
Meteorology 2024, 3(4), 354-390; https://doi.org/10.3390/meteorology3040018 - 5 Nov 2024
Cited by 2 | Viewed by 3770
Abstract
The aim of this technical note is to describe the Cycle 46 reference configuration of the HARMONIE-AROME convection-permitting numerical weather prediction model. HARMONIE-AROME is one of the canonical system configurations that is developed, maintained, and validated in the ACCORD consortium, a collaboration of [...] Read more.
The aim of this technical note is to describe the Cycle 46 reference configuration of the HARMONIE-AROME convection-permitting numerical weather prediction model. HARMONIE-AROME is one of the canonical system configurations that is developed, maintained, and validated in the ACCORD consortium, a collaboration of 26 countries in Europe and northern Africa on short-range mesoscale numerical weather prediction. This technical note describes updates to the physical parametrizations, both upper-air and surface, configuration choices such as lateral boundary conditions, model levels, horizontal resolution, model time step, and databases associated with the model, such as for physiography and aerosols. Much of the physics developments are related to improving the representation of clouds in the model, including developments in the turbulence, shallow convection, and statistical cloud scheme, as well as changes in radiation and cloud microphysics concerning cloud droplet number concentration and longwave cloud liquid optical properties. Near real-time aerosols and the ICE-T microphysics scheme, which improves the representation of supercooled liquid, and a wind farm parametrization have been added as options. Surface-wise, one of the main advances is the implementation of the lake model FLake. An outlook on upcoming developments is also included. Full article
Show Figures

Figure 1

18 pages, 8355 KiB  
Article
On Exploiting and Implementing Collaborative Virtual and Augmented Reality in a Cloud Continuum Scenario
by Beniamino Di Martino, Gennaro Junior Pezzullo, Vincenzo Bombace, Ling-Huey Li and Kuan-Ching Li
Future Internet 2024, 16(11), 393; https://doi.org/10.3390/fi16110393 - 26 Oct 2024
Cited by 5 | Viewed by 1403
Abstract
This work explores the application of collaborative virtual and augmented reality in a cloud continuum context, focusing on designing, implementing, and verifying three reference architectures for five collaborative VR/AR software deployment. The architectures designed differ in their distribution of computational load: one handles [...] Read more.
This work explores the application of collaborative virtual and augmented reality in a cloud continuum context, focusing on designing, implementing, and verifying three reference architectures for five collaborative VR/AR software deployment. The architectures designed differ in their distribution of computational load: one handles everything in the cloud, one balances the load between the cloud and the edge, and the last concentrates the load entirely on the edge. The design of the architectures was initially outlined through sequence and component diagrams and then implemented using the most appropriate technologies and frameworks. For each architecture, a specific application was developed and deployed on the various components of that architecture to test its proper functioning. Finally, the scenarios were simulated to be stressed with a significant number of users, employing tools such as Cloud Analyst to analyze performance and present well-defined and implemented reference architectures. Full article
Show Figures

Figure 1

12 pages, 4993 KiB  
Article
Raindrop Size Distribution Characteristics of the Precipitation Process of 2216 Typhoon “Noru” in the Xisha Region
by Guozhang Wang, Lei Li, Chaoying Huang and Lili Zhang
Water 2024, 16(18), 2630; https://doi.org/10.3390/w16182630 - 16 Sep 2024
Viewed by 1180
Abstract
This study focuses on the comparative analysis and research of the raindrop size distribution (DSD) in the outer rainband and inner rainband of Typhoon “Noru” in 2022, using the OTT-Parsivel raindrop spectrometer deployed on Yongxing Island, Sansha City. The results indicate that precipitation [...] Read more.
This study focuses on the comparative analysis and research of the raindrop size distribution (DSD) in the outer rainband and inner rainband of Typhoon “Noru” in 2022, using the OTT-Parsivel raindrop spectrometer deployed on Yongxing Island, Sansha City. The results indicate that precipitation intensity is lower when composed mainly of small and medium raindrops and increases with the presence of larger raindrops. Stronger precipitation is associated with a higher number of large raindrops. Due to the interaction of cold and warm air masses, the raindrop concentration is higher, and the raindrop diameters are larger compared to Typhoons “LEKIMA” and “RUMBIA”. The entire process predominantly consists of numerous small- to medium-sized raindrops, characteristic of a tropical typhoon. The precipitation in the inner and outer rainbands exhibits consistent types, characterized by a unimodal raindrop size distribution with a narrow spectral width, typical of stratiform-mixed cloud precipitation, where stratiform precipitation constitutes a significant portion. Strong echo reflectivity factors are often associated with higher raindrop number concentrations and larger particle sizes. The Z-R relationship of the precipitation shows a smaller coefficient but a consistent exponent compared to the standard. The calculated shape parameter slope relationship is Λ=0.02μ2+0.696μ+1.539, providing a reference for localizing the Z-R relationship in the South China Sea. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 35058 KiB  
Article
Characteristics of Hydrogen Leakage and Dissipation from Storage Tanks in an Integrated Hydrogen Production and Refueling Station
by Tianqi Yang, Zhili Xiao, Shiyan Zeng, Yingjiang Zhao, Linzhi Xu, Shiyu Chen, Chunyan Song, Xianglin Yan, Xuefang Li, Hao Luo, Nianfeng Xu and Jinsheng Xiao
Fire 2024, 7(9), 306; https://doi.org/10.3390/fire7090306 - 27 Aug 2024
Viewed by 1724
Abstract
Hydrogen, as a renewable and clean energy carrier, has the potential to play an important role in carbon reduction. Crucial to achieving this is the ability to produce clean sources of hydrogen and to store hydrogen safely. With the rapid development of the [...] Read more.
Hydrogen, as a renewable and clean energy carrier, has the potential to play an important role in carbon reduction. Crucial to achieving this is the ability to produce clean sources of hydrogen and to store hydrogen safely. With the rapid development of the hydrogen industry, the number of hydrogen refueling stations (HRS) is increasing. However, hydrogen safety at HRS is of great concern due to the high risk of hydrogen leakage during storage. This study focused on an integrated hydrogen production and refueling station (IHPRS) in Weifang, China, and numerically simulated a hydrogen leakage accident in its storage area. The effects of the leakage aperture, the leakage direction and the ambient wind direction and speed on the leakage and dissipation characteristics of hydrogen were investigated. The results showed that the volume, mass and dissipation time of the flammable hydrogen cloud (FHC) increased with an increase in the leakage aperture. The installation of a canopy or densely packed equipment near the hydrogen storage area will seriously hinder the dissipation of the FHC. Ambient winds in the opposite direction of the leakage may cause high-concentration hydrogen to accumulate near the hydrogen storage tanks and be difficult to dissipate, seriously threatening the safety of the integrated station. Full article
(This article belongs to the Special Issue Hydrogen Safety: Challenges and Opportunities)
Show Figures

Figure 1

15 pages, 4400 KiB  
Article
The Effect of Distance between Jet Fans on Gas Transport, Energy Conservation, and Emission Reduction in Long Highway Tunnels
by Liang Suo, Shugang Li, Fengliang Wu, Pengxiang Zhao, Jian Wen, Peng Qi and Zongbo Diao
Sustainability 2024, 16(16), 6990; https://doi.org/10.3390/su16166990 - 15 Aug 2024
Cited by 3 | Viewed by 1395
Abstract
With the rapid development of the national economy, China’s transportation industry is experiencing accelerated development, and, at the same time, the number of long tunnels is constantly increasing. In order to examine the influence of jet fan spacing on gas transport law during [...] Read more.
With the rapid development of the national economy, China’s transportation industry is experiencing accelerated development, and, at the same time, the number of long tunnels is constantly increasing. In order to examine the influence of jet fan spacing on gas transport law during the construction of long highway tunnels, this study used the Baima Highway Tunnel in Sichuan as an engineering prototype and established a numerical tunnel ventilation model based on Fluent numerical simulation software. The gas transport characteristics of jet fans in tunnels at different spacings (200 m, 400 m, 600 m, and 800 m) were studied. The results showed that with the increase in jet fan spacing (200 m, 400 m, 600 m, and 800 m), the gas concentration at the tunnel face showed a trend of decreasing and then increasing. Moreover, by analyzing the gas distribution cloud map and the wind flow line diagram, it was determined that the ventilation system effect was the best when the jet fan spacing was 600 m, which met the requirements of a gas concentration of less than 0.5% at the tunnel face and a minimum wind speed of 0.25 m/s. At the same time, according to the optimal spacing for the optimization of the site ventilation system, it was observed that after the ventilation was stabilized (after 600 s), the minimum value of the gas concentration in the left and right tunnel holes diminished from 0.38% to 0.31% and from 0.41% to 0.31%, with rates of reduction of 18.42% and 24.39%, respectively. This indicated that after optimizing the ventilation system at the tunnel site, the concentration significantly decreased compared with before the optimization. Moreover, when the jet fan spacing was 600 m compared with 200 m and 400 m, the annual energy savings were 1900.8 MW·h and 950.4 MW·h, respectively. The research results clarified the optimal layout parameters of jet fans in the Baima Highway Tunnel, providing a reference for the rational layout of jet fans in long-distance tunnels. In addition, the results of this study provide an important theoretical basis for the gas prevention and safe construction of long highway tunnels. Furthermore, this study contributes to research in energy conservation, emission reduction, and sustainable development of energy in the ventilation process during tunnel construction. Full article
(This article belongs to the Collection Mine Hazards Identification, Prevention and Control)
Show Figures

Figure 1

18 pages, 7843 KiB  
Article
Variations in Cloud Concentration Nuclei Related to Continental Air Pollution Control and Maritime Fuel Regulation over the Northwest Pacific Ocean
by Lei Sun, Wenxin Cui, Nan Ma, Juan Hong, Yujiao Zhu, Yang Gao, Huiwang Gao and Xiaohong Yao
Atmosphere 2024, 15(8), 972; https://doi.org/10.3390/atmos15080972 - 14 Aug 2024
Cited by 1 | Viewed by 1302
Abstract
Here, we compared the concentrations of cloud condensation nuclei (CCN) and particle number size distributions (PNSDs) measured during the transient period from the winter to the summer East Asian monsoon in 2021 with those in 2014 to explore possible responses to how CCN [...] Read more.
Here, we compared the concentrations of cloud condensation nuclei (CCN) and particle number size distributions (PNSDs) measured during the transient period from the winter to the summer East Asian monsoon in 2021 with those in 2014 to explore possible responses to how CCN responds to upwind continental air pollutant mitigation and marine traffic fuel sulfur content (FSC) regulation over the northwest Pacific Ocean (NWPO). We also employed the Positive Matrix Factorization (PMF) analysis to apportion concentrations of CCN (Nccn) to different sources in order to quantify its source-specified responses to mitigation of air pollution during the transient period. Our results showed that (1) upwind continental mitigation likely reduced Nccn by approximately 200 cm−3 and 400 cm−3 at 0.2% and 0.4% supersaturation (SS), respectively, in the marine background atmosphere over the NWPO; (2) FSC regulation resulted in a decrease in Nccn at 0.4% SS by about 50 cm−3 and was nearly negligible at 0.2% SS over the NWPO. Additionally, a PMF-resolved factor, characterized by a dominant nucleation mode, was present only in 2014 and disappeared in 2021, likely due to the reduction. This estimation, however, suffered from uncertainties since seasonal changes were hard to be deducted accurately. PMF-resolved factors accurately represented Nccn in 80–90% of cases, but this accuracy was not observed in the remaining cases. Finally, an integrated analysis of satellite-derived cloud parameters and ship-based measurements indicated that the reduced Nccn over the NWPO might be co-limited with meteorological factors in forming cloud droplets during the transient period. Full article
Show Figures

Graphical abstract

12 pages, 4643 KiB  
Article
Three-Dimensional Lightning Characteristics Analysis over the Tibetan Plateau Based on Satellite-Based and Ground-Based Multi-Source Data
by Jie Zhu, Shulin Zhi, Dong Zheng and Zhengguo Yuan
Atmosphere 2024, 15(7), 854; https://doi.org/10.3390/atmos15070854 - 19 Jul 2024
Viewed by 1124
Abstract
Based on the data from the Chinese national ground-based (LFEDA: Low-frequency E-field Detection Array) and satellite-based lightning-detection systems (LMI: Lightning Mapping Imager), the spatial and temporal distribution statistical properties of all types of lightning over the Tibetan Plateau in the summer of 2022 [...] Read more.
Based on the data from the Chinese national ground-based (LFEDA: Low-frequency E-field Detection Array) and satellite-based lightning-detection systems (LMI: Lightning Mapping Imager), the spatial and temporal distribution statistical properties of all types of lightning over the Tibetan Plateau in the summer of 2022 and 2023 are analyzed, and were compared with those in Hainan, which are under quite different geographical conditions. The discrepancy between ground-based and space-borne lightning detection was also discussed. The main results show the following: (1) the characteristics of lightning activities over the Tibetan Plateau based on multi-source data: Most of the high-value lightning areas were located in the transition zone between lower and higher terrain; the diurnal variation of lightning activity was significant, and the most active period concentrated around 15:00 LST (Local Standard Time, the same below). In addition, lightning activities were significantly increased at 21:00 and 0:00, which was related to the unique topography and night rain phenomenon of the plateau. In terms of lightning types, the number of IC (Intra-Cloud) lightning was more than that of CG (Cloud-to-Ground). The study of IC changes is of great significance to the early warning of the plateau DCSs. The spatial distribution of IC at different altitudes was quite different. (2) Comparison of lightning activities between the Tibetan Plateau and Hainan: The hourly variation of lightning activities in Nagqu showed a single peak, while that in Hainan was characterized by a primary peak and a secondary peak, affected by the enhancement of the boundary stream in the low latitude and altitude area of China. At the peak of convection, the lightning activities in Nagqu were less than 1/3 of that in Hainan. However, the duration of high-frequency lightning activities in Nagqu (15–19:00) was about 2 h longer than that in Hainan (15–17:00), which may be related to the fact that the Tibetan Plateau is located in the west of China, where the sunset is later, and solar radiation and convective activities last longer. (3) Analysis of features of LMI: LMI has more advantages in IC detection; LMI has higher detection efficiency for the lightning in the range of 4–6 KM altitude, which is partly related to the stronger convective process and the higher proportion of IC. This work will provide deeper understanding of the characteristics of all types of lightning over the Tibetan Plateau, to reveal the indication significance of lightning for DCSs, and help to promote the development of Chinese satellite-based lightning-detection technology, the optimization of subsequent instruments and the fusion application of ground-based and satellite-based lightning data. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Back to TopTop