Aerosols Pollution: Characteristics, Impacts, Projections and Mitigation

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Aerosols".

Deadline for manuscript submissions: 19 February 2025 | Viewed by 2824

Special Issue Editors


E-Mail Website
Guest Editor
1. College of Ecology and Environment, Hainan University, Haikou 570228, China
2. Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
Interests: aerosols; source appointment; environmental chemistry; air pollution; microplastics; climate change; environmental health

E-Mail
Guest Editor
Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
Interests: air science; indoor air quality; sustainable urban and buildings; ventilation and air cleaning technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The importance of aerosol studies has been steadily rising in response to growing global concerns regarding the urgent issues of global warming, climate change, and the spread of airborne diseases. Primarily, researchers focus on the properties, source appointment, transportation, fate, level of toxicity, and exposure intensity of aerosols both in outdoor and indoor environment. Recent reports claim that over 90% of the global population breathes polluted air. The impact of this remains a subject of intense discussion as we grapple with the potential consequences for life on Earth. Additionally, we must critically assess whether or not existing efforts to address air pollution will be sufficient to confront anticipated future environmental issues. The use of emerging data science and artificial intelligence, with satellite technology support, holds immense potential in addressing the pressing issue of ambient aerosol pollution. However, it is crucial to acknowledge that effective mitigation strategies necessitate a deep understanding of the complex physio-chemical composition of the atmosphere and aerosols. The current knowledge regarding aerosol interactions, transformation, and their persistence in the atmosphere is still limited and requires comprehensive research.

This Special Issue aims to foster excellence in the monitoring of the characteristics of atmospheric aerosols integrated with recent advancements in technology to evaluate the effectiveness of mitigation strategies and prospects.

This Special Issue encompasses various subjects on aerosols, including their properties, consequences, and interactions within the atmosphere. These may include, but are not limited to, the following:

  1. Aerosol characteristics and composition (conventional and emerging aerosols);
  2. The source appointment of aerosols;
  3. Indoor aerosols and built environment;
  4. Bioaerosols;
  5. The fate and transportation of aerosols in the environment;
  6. Advanced monitoring tools and their precision;
  7. The transformation and persistence of aerosols;
  8. The behaviors and interactions of aerosols with other ambient air attributes in the atmospheric environment;
  9. The risk assessment of aerosols;
  10. The future projection of atmospheric aerosol implications;
  11. Data science and artificial intelligence tools used in aerosol studies;
  12. The effectiveness of existing mitigation strategies and future prospectives;
  13. Regional and global collaboration for clean air.

Given this prevalent area of scientific concern, we invite original articles, reviews, and meta-analyses on relevant topics of interest.

Dr. Tariq Mehmood
Prof. Dr. Junjie Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aerosols
  • sources and composition
  • data science and artificial intelligence
  • bioaerosols
  • conventional and emerging aerosols
  • future prospectives of atmospheric aerosols
  • regional and global collaborations
  • atmospheric aerosol implications
  • atmospheric aerosol mitigation strategies
  • transformation and persistence of atmospheric aerosols

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 9526 KiB  
Article
High-Resolution Characterization of Aerosol Optical Depth and Its Correlation with Meteorological Factors in Afghanistan
by Sayed Esmatullah Torabi, Muhammad Amin, Worradorn Phairuang, Hyung-Min Lee, Mitsuhiko Hata and Masami Furuuchi
Atmosphere 2024, 15(7), 849; https://doi.org/10.3390/atmos15070849 - 19 Jul 2024
Viewed by 625
Abstract
Atmospheric aerosols pose a significant global problem, particularly in urban areas in developing countries where the rapid urbanization and industrial activities degrade air quality. This study examined the spatiotemporal variations and trends in aerosol optical depth (AOD) at a 550 nm wavelength, alongside [...] Read more.
Atmospheric aerosols pose a significant global problem, particularly in urban areas in developing countries where the rapid urbanization and industrial activities degrade air quality. This study examined the spatiotemporal variations and trends in aerosol optical depth (AOD) at a 550 nm wavelength, alongside key meteorological factors, in Kabul, Afghanistan, from 2000 to 2022. Using the Google Earth Engine geospatial analysis platform, daily AOD data were retrieved from the Moderate Resolution Imaging Spectroradiometer to assess monthly, seasonal, and annual spatiotemporal variations and long-term trends. Meteorological parameters such as temperature (T), relative humidity (RH), precipitation (PCP), wind speed (WS), wind direction, and solar radiation (SR) were obtained from the Modern Era Retrospective Analysis for Research and Applications. The Mann–Kendall test was employed to analyze the time-series trends, and a Pearson correlation matrix was calculated to assess the influence of the meteorological factors on AOD. Principal component analysis (PCA) was performed to understand the underlying structure. The results indicated high AOD levels in spring and summer, with a significant upward trend from 2000 to 2022. The findings revealed a positive correlation of AOD value with T, RH, WS, and PCP and a negative correlation with SR. The PCA results highlighted complex interactions among these factors and their impact on the AOD. These insights underscore the need for stringent air quality regulations and emission control measures in Kabul. Full article
Show Figures

Graphical abstract

20 pages, 2824 KiB  
Article
The Effect of Wood Species on Fine Particle and Gaseous Emissions from a Modern Wood Stove
by Henna Rinta-Kiikka, Karna Dahal, Juho Louhisalmi, Hanna Koponen, Olli Sippula, Kamil Krpec and Jarkko Tissari
Atmosphere 2024, 15(7), 839; https://doi.org/10.3390/atmos15070839 - 16 Jul 2024
Viewed by 362
Abstract
Residential wood combustion (RWC) is a significant source of gaseous and particulate emissions causing adverse health and environmental effects. Several factors affect emissions, but the effects of the fuel wood species on emissions are currently not well understood. In this study, the Nordic [...] Read more.
Residential wood combustion (RWC) is a significant source of gaseous and particulate emissions causing adverse health and environmental effects. Several factors affect emissions, but the effects of the fuel wood species on emissions are currently not well understood. In this study, the Nordic wood species (named BirchA, BirchB, Spruce, SpruceDry, Pine and Alder) were combusted in a modern stove, and the emissions were studied. The lowest emissions were obtained from the combustion of BirchA and the highest from Spruce and Alder. The fine particle mass (PM2.5) was mainly composed of elemental carbon (50–70% of PM2.5), which is typical in modern appliances. The lowest PAH concentrations were measured from BirchA (total PAH 107 µg/m3) and Pine (250 µg/m3). In the ignition batch, the PAH concentration was about 4-fold (416 µg/m3). The PAHs did not correlate with other organic compounds, and thus, volatile organic compounds (VOCs) or organic carbon (OC) concentrations cannot be used as an indicator of PAH emissions. Two birch species from different origins with a similar chemical composition but different density produced partially different emission profiles. This study indicates that emission differences may be due more to the physical properties of the wood and the combustion conditions than to the wood species themselves. Full article
Show Figures

Figure 1

17 pages, 4248 KiB  
Article
Understanding the Dynamics of Source-Apportioned Black Carbon in an Urban Background Environment
by Daria Pashneva, Agnė Minderytė, Lina Davulienė, Vadimas Dudoitis and Steigvilė Byčenkienė
Atmosphere 2024, 15(7), 832; https://doi.org/10.3390/atmos15070832 - 11 Jul 2024
Viewed by 339
Abstract
This study aims to delineate the characteristics of black carbon (BC) in the atmosphere over the urban background environment in Vilnius (Lithuania) from 1 June 2021 to 31 May 2022 using aethalometer (Magee Scientific) measurements. The annual mean concentrations of BC originating from [...] Read more.
This study aims to delineate the characteristics of black carbon (BC) in the atmosphere over the urban background environment in Vilnius (Lithuania) from 1 June 2021 to 31 May 2022 using aethalometer (Magee Scientific) measurements. The annual mean concentrations of BC originating from fossil fuels (BCff) and from biomass burning (BCbb) were found to be 0.63 μg m−3 with a standard deviation (SD) of 0.67 μg m−3 and 0.27 µg m−3 (0.35 μg m−3). The further findings highlight the dominance of fossil-fuel-related BC throughout the study period (71%) and the seasonal variability of BC pollution, with biomass-burning-related BC making the largest contribution during the summer season (41%) and the smallest contribution during autumn (23%). This information provides valuable insights into the sources and dynamics of BC pollution in the region. The sources and composition of BC on the days with the highest pollution levels were influenced by a combination of local and regional factors in every season. Additionally, this study employs an advanced approach to understanding urban BC pollution by focusing on high-pollution days (18), identified based on a daily mean BC mass concentration exceeding the 95th percentile, alongside an analysis of overall seasonal and diurnal variations. This methodology surpasses many those of previous urban BC studies, offering a comprehensive examination of the sources and composition of BC pollution. Full article
Show Figures

Figure 1

16 pages, 5541 KiB  
Article
Diversity Analysis of Fungi Distributed in Inhalable and Respirable Size Fractions of Aerosols: A Report from Kuwait
by Nazima Habibi, Saif Uddin, Montaha Behbehani, Mohammad Kishk, Mohd. Wasif Khan and Wadha A. Al-Fouzan
Atmosphere 2024, 15(7), 806; https://doi.org/10.3390/atmos15070806 - 4 Jul 2024
Viewed by 563
Abstract
Fungi are an important part of the atmospheric ecosystem yet an underexplored group. Airborne pathogenic fungi are the root cause of hypersensitive and allergenic states highly prevalent in Kuwait. Frequent dust storms in the region carry them further into the urban areas, posing [...] Read more.
Fungi are an important part of the atmospheric ecosystem yet an underexplored group. Airborne pathogenic fungi are the root cause of hypersensitive and allergenic states highly prevalent in Kuwait. Frequent dust storms in the region carry them further into the urban areas, posing an occupational health hazard. The fungal population associated with the respirable (more than 2.5 µm) and inhalable (2.5 µm and less) fractions of aerosols is negligibly explored and warrants comprehensive profiling to pinpoint tAhe health implications. For the present investigation, aerosol was collected using a high-volume air sampler coupled with a six-stage cascade impactor (Tisch Environmental, Inc) at a rate of 566 L min−1. The samples were lysed, DNA was extracted, and the internal transcribed regions were sequenced through targeted amplicon sequencing. Aspergillus, Penicillium, Alternaria, Cladosporium, Fusarium, Gleotinia and Cryptococcus were recorded in all the size fractions with mean relative abundances (RA%) of 17.5%, 12.9%, 12.9%, 4.85%, 4.08%, 2.77%, and 2.51%, respectively. A weak community structure was associated with each size fraction (ANOSIM r2 = 0.11; p > 0.05). The Shannon and Simpson indices also varied among the respirable and inhalable aerosols. About 24 genera were significantly differentially abundant, as described through the Wilcoxon rank sum test (p < 0.05). The fungal microbiome existed as a complex lattice of networks exhibiting both positive and negative correlations and were involved in 428 functions. All the predominant genera were pathogenic, hence, their presence in inhalable fractions raises concerns and poses an occupational exposure risk to both human and non-human biota. Moreover, long-range transport of these fungi to urban locations is undesirable yet plausible. Full article
Show Figures

Figure 1

Back to TopTop