Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (923)

Search Parameters:
Keywords = cloud base heights

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2797 KB  
Article
Seed 3D Phenotyping Across Multiple Crops Using 3D Gaussian Splatting
by Jun Gao, Chao Zhu, Junguo Hu, Fei Deng, Zhaoxin Xu and Xiaomin Wang
Agriculture 2025, 15(22), 2329; https://doi.org/10.3390/agriculture15222329 - 8 Nov 2025
Viewed by 151
Abstract
This study introduces a versatile seed 3D reconstruction method that is applicable to multiple crops—including maize, wheat, and rice—and designed to overcome the inefficiency and subjectivity of manual measurements and the high costs of laser-based phenotyping. A panoramic video of the seed is [...] Read more.
This study introduces a versatile seed 3D reconstruction method that is applicable to multiple crops—including maize, wheat, and rice—and designed to overcome the inefficiency and subjectivity of manual measurements and the high costs of laser-based phenotyping. A panoramic video of the seed is captured and processed through frame sampling to extract multi-view images. Structure-from-Motion (SFM) is employed for sparse reconstruction and camera pose estimation, while 3D Gaussian Splatting (3DGS) is utilized for high-fidelity dense reconstruction, generating detailed point cloud models. The subsequent point cloud preprocessing, filtering, and segmentation enable the extraction of key phenotypic parameters, including length, width, height, surface area, and volume. The experimental evaluations demonstrated a high measurement accuracy, with coefficients of determination (R2) for length, width, and height reaching 0.9361, 0.8889, and 0.946, respectively. Moreover, the reconstructed models exhibit superior image quality, with peak signal-to-noise ratio (PSNR) values consistently ranging from 35 to 37 dB, underscoring the robustness of 3DGS in preserving fine structural details. Compared to conventional multi-view stereo (MVS) techniques, the proposed method can achieve significantly improved reconstruction accuracy and visual fidelity. The key outcomes of this study confirm that the 3DGS-based pipeline provides a highly accurate, efficient, and scalable solution for digital phenotyping, establishing a robust foundation for its application across diverse crop species. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

40 pages, 11595 KB  
Article
An Automated Workflow for Generating 3D Solids from Indoor Point Clouds in a Cadastral Context
by Zihan Chen, Frédéric Hubert, Christian Larouche, Jacynthe Pouliot and Philippe Girard
ISPRS Int. J. Geo-Inf. 2025, 14(11), 429; https://doi.org/10.3390/ijgi14110429 - 31 Oct 2025
Viewed by 378
Abstract
Accurate volumetric modeling of indoor spaces is essential for emerging 3D cadastral systems, yet existing workflows often rely on manual intervention or produce surface-only models, limiting precision and scalability. This study proposes and validates an integrated, largely automated workflow (named VERTICAL) that converts [...] Read more.
Accurate volumetric modeling of indoor spaces is essential for emerging 3D cadastral systems, yet existing workflows often rely on manual intervention or produce surface-only models, limiting precision and scalability. This study proposes and validates an integrated, largely automated workflow (named VERTICAL) that converts classified indoor point clouds into topologically consistent 3D solids served as materials for land surveyor’s cadastral analysis. The approach sequentially combines RANSAC-based plane detection, polygonal mesh reconstruction, mesh optimization stage that merges coplanar faces, repairs non-manifold edges, and regularizes boundaries and planar faces prior to CAD-based solid generation, ensuring closed and geometrically valid solids. These modules are linked through a modular prototype (called P2M) with a web-based interface and parameterized batch processing. The workflow was tested on two condominium datasets representing a range of spatial complexities, from simple orthogonal rooms to irregular interiors with multiple ceiling levels, sloped roofs, and internal columns. Qualitative evaluation ensured visual plausibility, while quantitative assessment against survey-grade reference models measured geometric fidelity. Across eight representative rooms, models meeting qualitative criteria achieved accuracies exceeding 97% for key metrics including surface area, volume, and ceiling geometry, with a height RMSE around 0.01 m. Compared with existing automated modeling solutions, the proposed workflow has the ability of dealing with complex geometries and has comparable accuracy results. These results demonstrate the workflow’s capability to produce topologically consistent solids with high geometric accuracy, supporting both boundary delineation and volume calculation. The modular, interoperable design enables integration with CAD environments, offering a practical pathway toward an automated and reliable core of 3D modeling for cadastre applications. Full article
Show Figures

Figure 1

22 pages, 6748 KB  
Article
Automated 3D Reconstruction of Interior Structures from Unstructured Point Clouds
by Youssef Hany, Wael Ahmed, Adel Elshazly, Ahmad M. Senousi and Walid Darwish
ISPRS Int. J. Geo-Inf. 2025, 14(11), 428; https://doi.org/10.3390/ijgi14110428 - 31 Oct 2025
Viewed by 755
Abstract
The automatic reconstruction of existing buildings has gained momentum through the integration of Building Information Modeling (BIM) into architecture, engineering, and construction (AEC) workflows. This study presents a hybrid methodology that combines deep learning with surface-based techniques to automate the generation of 3D [...] Read more.
The automatic reconstruction of existing buildings has gained momentum through the integration of Building Information Modeling (BIM) into architecture, engineering, and construction (AEC) workflows. This study presents a hybrid methodology that combines deep learning with surface-based techniques to automate the generation of 3D models and 2D floor plans from unstructured indoor point clouds. The approach begins with point cloud preprocessing using voxel-based downsampling and robust statistical outlier removal. Room partitions are extracted via DBSCAN applied in the 2D space, followed by structural segmentation using the RandLA-Net deep learning model to classify key building components such as walls, floors, ceilings, columns, doors, and windows. To enhance segmentation fidelity, a density-based filtering technique is employed, and RANSAC is utilized to detect and fit planar primitives representing major surfaces. Wall-surface openings such as doors and windows are identified through local histogram analysis and interpolation in wall-aligned coordinate systems. The method supports complex indoor environments including Manhattan and non-Manhattan layouts, variable ceiling heights, and cluttered scenes with occlusions. The approach was validated using six datasets with varying architectural characteristics, and evaluated using completeness, correctness, and accuracy metrics. Results show a minimum completeness of 86.6%, correctness of 84.8%, and a maximum geometric error of 9.6 cm, demonstrating the robustness and generalizability of the proposed pipeline for automated as-built BIM reconstruction. Full article
Show Figures

Figure 1

19 pages, 3577 KB  
Article
Orchard Robot Navigation via an Improved RTAB-Map Algorithm
by Jinxing Niu, Le Zhang, Tao Zhang, Jinpeng Guan and Shuheng Shi
Appl. Sci. 2025, 15(21), 11673; https://doi.org/10.3390/app152111673 - 31 Oct 2025
Viewed by 392
Abstract
To address issues such as low visual SLAM (Simultaneous Localization and Mapping) positioning accuracy and poor map construction robustness caused by light variations, foliage occlusion, and texture repetition in unstructured orchard environments, this paper proposes an orchard robot navigation method based on an [...] Read more.
To address issues such as low visual SLAM (Simultaneous Localization and Mapping) positioning accuracy and poor map construction robustness caused by light variations, foliage occlusion, and texture repetition in unstructured orchard environments, this paper proposes an orchard robot navigation method based on an improved RTAB-Map algorithm. By integrating ORB-SLAM3 as the visual odometry module within the RTAB-Map framework, the system achieves significantly improved accuracy and stability in pose estimation. During the post-processing stage of map generation, a height filtering strategy is proposed to effectively filter out low-hanging branch point clouds, thereby generating raster maps that better meet navigation requirements. The navigation layer integrates the ROS (Robot Operating System) Navigation framework, employing the A* algorithm for global path planning while incorporating the TEB (Timed Elastic Band) algorithm to achieve real-time local obstacle avoidance and dynamic adjustment. Experimental results demonstrate that the improved system exhibits higher mapping consistency in simulated orchard environments, with the odometry’s absolute trajectory error reduced by approximately 45.5%. The robot can reliably plan paths and traverse areas with low-hanging branches. This study provides a solution for autonomous navigation in agricultural settings that balances precision with practicality. Full article
Show Figures

Figure 1

24 pages, 5353 KB  
Article
Comparative Accuracy Assessment of Unmanned and Terrestrial Laser Scanning Systems for Tree Attribute Estimation in an Urban Mediterranean Forest
by Ante Šiljeg, Katarina Kolar, Ivan Marić, Fran Domazetović and Ivan Balenović
Remote Sens. 2025, 17(21), 3557; https://doi.org/10.3390/rs17213557 - 28 Oct 2025
Viewed by 345
Abstract
Urban mediterranean forests are key components of urban ecosystems. Accurate, high-resolution data on forest structural attributes are essential for effective management. This study evaluates the efficiency of unmanned laser scanning systems (ULS) and terrestrial LiDAR (TLS) in deriving key tree attributes, diameter at [...] Read more.
Urban mediterranean forests are key components of urban ecosystems. Accurate, high-resolution data on forest structural attributes are essential for effective management. This study evaluates the efficiency of unmanned laser scanning systems (ULS) and terrestrial LiDAR (TLS) in deriving key tree attributes, diameter at breast height (DBH) and tree height, within a small urban park in Zadar, Croatia. Accuracy assessment of the ULS and TLS-derived DBH was conducted based on traditional ground-based measurement (TGBM) data. For ULS, an automatic Spatix workflow was applied that classified points into a Tree class, segmented trees using trunk-based logic, and estimated DBH by fitting a circle to a 1.3 m slice; tree height was computed from the ground-normalized cloud with the Output Tree Cells tool. A semi-automatic CloudCompare/ArcMap workflow used CSF ground filtering, Connected Components segmentation, extraction of a 10 cm slice, manual trunk vectorization, and DBH calculation via Minimum Bounding Geometry. TLS scans, processed in FARO SCENE, were then analyzed in Spatix using the same automatic trunk-fitting procedure to derive DBH and height. Accuracy for DBH was evaluated against TGBM; comparative performance was summarized with standard error metrics, while ULS and TLS tree heights were compared using Concordance Correlation Coefficient (CCC) and Bland–Altman statistics. Results indicate that the semi-automatic approach outperformed the automatic approach in deriving DBH. TLS-derived DBH values demonstrated higher consistency and agreement with TGBM, as evidenced by their strong linear correlation, minimal bias, and narrow residual spread, while ULS exhibited greater variability and systematic deviation. Tree height comparisons between ULS and TLS revealed that ULS consistently produced slightly higher and more uniform measurements. This study highlights limitations in the evaluated techniques and proposes a hybrid approach combining ULS scanning with personal laser scanning (PLS) systems to enhance data accuracy in urban forest assessments. Full article
Show Figures

Figure 1

21 pages, 3844 KB  
Article
Impacts of Aerosol Optical Depth on Different Types of Cloud Macrophysical and Microphysical Properties over East Asia
by Xinlei Han, Qixiang Chen, Zijue Song, Disong Fu and Hongrong Shi
Remote Sens. 2025, 17(21), 3535; https://doi.org/10.3390/rs17213535 - 25 Oct 2025
Viewed by 386
Abstract
Aerosol–cloud interaction remains one of the largest sources of uncertainty in weather and climate modeling. This study investigates the impacts of aerosols on the macro- and microphysical properties of different cloud types over East Asia, based on nine years of joint satellite observations [...] Read more.
Aerosol–cloud interaction remains one of the largest sources of uncertainty in weather and climate modeling. This study investigates the impacts of aerosols on the macro- and microphysical properties of different cloud types over East Asia, based on nine years of joint satellite observations from CloudSat, CALIPSO, and MODIS, combined with ERA5 reanalysis data. Results reveal pronounced cloud-type dependence in aerosol effects on cloud fraction, cloud top height, and cloud thickness. Aerosols enhance the development of convective clouds while suppressing the vertical extent of stable stratiform clouds. For ice-phase structures, ice cloud fraction and ice water path significantly increase with aerosol optical depth (AOD) in deep convective and high-level clouds, whereas mid- to low-level clouds exhibit reduced ice crystal effective radius and ice water content, indicating an “ice crystal suppression effect.” Even after controlling for 14 meteorological variables, partial correlations between AOD and cloud properties remain significant, suggesting a degree of aerosol influence independent of meteorological conditions. Humidity and wind speed at different altitudes are identified as key modulating factors. These findings highlight the importance of accounting for cloud-type differences, moisture conditions, and dynamic processes when assessing aerosol–cloud–climate interactions and provide observational insights to improve the parameterization of aerosol indirect effects in climate models. Full article
Show Figures

Figure 1

24 pages, 6893 KB  
Article
Biases of Sentinel-5P and Suomi-NPP Cloud Top Height Retrievals: A Global Comparison
by Zhuowen Zheng, Lechao Dong, Jie Yang, Qingxin Wang, Hao Lin and Siwei Li
Remote Sens. 2025, 17(21), 3526; https://doi.org/10.3390/rs17213526 - 24 Oct 2025
Viewed by 254
Abstract
Cloud Top Height (CTH) is a fundamental parameter in atmospheric science, critically influencing Earth’s radiation budget and hydrological cycle. Satellite-based passive remote sensing provides the primary means of monitoring CTH on a global scale due to its extensive spatial coverage. However, these passive [...] Read more.
Cloud Top Height (CTH) is a fundamental parameter in atmospheric science, critically influencing Earth’s radiation budget and hydrological cycle. Satellite-based passive remote sensing provides the primary means of monitoring CTH on a global scale due to its extensive spatial coverage. However, these passive retrieval techniques often rely on idealized physical assumptions, leading to significant systematic biases. To quantify these biases, this study provides an evaluation of two prominent passive CTH products, i.e., Sentinel-5P (S5P, O2 A-band) and Suomi-NPP (NPP, thermal infrared), by comparing their global data from July 2018 to June 2019 against the active CloudSat/CALIPSO (CC) reference. The results reveal stark and complementary error patterns. For single-layer liquid clouds over land, the products exhibit opposing biases, with S5P underestimating CTH while NPP overestimates it. For ice clouds, both products show a general underestimation, but NPP is more accurate. In challenging two-layer scenes, both retrieval methods show large systematic biases, with S5P often erroneously detecting the lower cloud layer. These distinct error characteristics highlight the fundamental limitations of single-sensor retrievals and reveal the potential to organically combine the advantages of different products to improve CTH accuracy. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

29 pages, 7085 KB  
Article
Marine Boundary Layer Cloud Boundaries and Phase Estimation Using Airborne Radar and In Situ Measurements During the SOCRATES Campaign over Southern Ocean
by Anik Das, Baike Xi, Xiaojian Zheng and Xiquan Dong
Atmosphere 2025, 16(10), 1195; https://doi.org/10.3390/atmos16101195 - 16 Oct 2025
Viewed by 292
Abstract
The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) was an aircraft-based campaign (15 January–26 February 2018) that deployed in situ probes and remote sensors to investigate low-level clouds over the Southern Ocean (SO). A novel methodology was developed to identify cloud [...] Read more.
The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) was an aircraft-based campaign (15 January–26 February 2018) that deployed in situ probes and remote sensors to investigate low-level clouds over the Southern Ocean (SO). A novel methodology was developed to identify cloud boundaries and classify cloud phases in single-layer, low-level marine boundary layer (MBL) clouds below 3 km using the HIAPER Cloud Radar (HCR) and in situ measurements. The cloud base and top heights derived from HCR reflectivity, Doppler velocity, and spectrum width measurements agreed well with corresponding lidar-based and in situ estimates of cloud boundaries, with mean differences below 100 m. A liquid water content–reflectivity (LWC-Z) relationship, LWC = 0.70Z0.29, was derived to retrieve the LWC and liquid water path (LWP) from HCR profiles. The cloud phase was classified using HCR measurements, temperature, and LWP, yielding 40.6% liquid, 18.3% mixed-phase, and 5.1% ice samples, along with drizzle (29.1%), rain (3.2%), and snow (3.7%) for drizzling cloud cases. The classification algorithm demonstrates good consistency with established methods. This study provides a framework for the boundary and phase detection of MBL clouds, offering insights into SO cloud microphysics and supporting future efforts in satellite retrievals and climate model evaluation. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

25 pages, 10766 KB  
Article
Prediction of Thermal Response of Burning Outdoor Vegetation Using UAS-Based Remote Sensing and Artificial Intelligence
by Pirunthan Keerthinathan, Imanthi Kalanika Subasinghe, Thanirosan Krishnakumar, Anthony Ariyanayagam, Grant Hamilton and Felipe Gonzalez
Remote Sens. 2025, 17(20), 3454; https://doi.org/10.3390/rs17203454 - 16 Oct 2025
Viewed by 407
Abstract
The increasing frequency and intensity of wildfires pose severe risks to ecosystems, infrastructure, and human safety. In wildland–urban interface (WUI) areas, nearby vegetation strongly influences building ignition risk through flame contact and radiant heat exposure. However, limited research has leveraged Unmanned Aerial Systems [...] Read more.
The increasing frequency and intensity of wildfires pose severe risks to ecosystems, infrastructure, and human safety. In wildland–urban interface (WUI) areas, nearby vegetation strongly influences building ignition risk through flame contact and radiant heat exposure. However, limited research has leveraged Unmanned Aerial Systems (UAS) remote sensing (RS) to capture species-specific vegetation geometry and predict thermal responses during ignition events This study proposes a two-stage framework integrating UAS-based multispectral (MS) imagery, LiDAR data, and Fire Dynamics Simulator (FDS) modeling to estimate the maximum temperature (T) and heat flux (HF) of outdoor vegetation, focusing on Syzygium smithii (Lilly Pilly). The study data was collected at a plant nursery at Queensland, Australia. A total of 72 commercially available outdoor vegetation samples were classified into 11 classes based on pixel counts. In the first stage, ensemble learning and watershed segmentation were employed to segment target vegetation patches. Vegetation UAS-LiDAR point cloud delineation was performed using Raycloudtools, then projected onto a 2D raster to generate instance ID maps. The delineated point clouds associated with the target vegetation were filtered using georeferenced vegetation patches. In the second stage, cone-shaped synthetic models of Lilly Pilly were simulated in FDS, and the resulting data from the sensor grid placed near the vegetation in the simulation environment were used to train an XGBoost model to predict T and HF based on vegetation height (H) and crown diameter (D). The point cloud delineation successfully extracted all Lilly Pilly vegetation within the test region. The thermal response prediction model demonstrated high accuracy, achieving an RMSE of 0.0547 °C and R2 of 0.9971 for T, and an RMSE of 0.1372 kW/m2 with an R2 of 0.9933 for HF. This study demonstrates the framework’s feasibility using a single vegetation species under controlled ignition simulation conditions and establishes a scalable foundation for extending its applicability to diverse vegetation types and environmental conditions. Full article
Show Figures

Figure 1

6 pages, 3351 KB  
Proceeding Paper
Greek National Hail Suppression Program: Severe Supercell of CDC +4 Produces Egg-Sized Hail in Thessaly on 7 September 2024
by Mary Vlachou and Dimitris Brikas
Environ. Earth Sci. Proc. 2025, 35(1), 71; https://doi.org/10.3390/eesp2025035071 - 15 Oct 2025
Viewed by 221
Abstract
On 7 September 2024, a trough, situated over the Black Sea, in combination with a northeasterly outflow of a surface anticyclone over Russia, increased moisture and established an instability environment in Greece. Veering winds with height, in combination with high CAPE values in [...] Read more.
On 7 September 2024, a trough, situated over the Black Sea, in combination with a northeasterly outflow of a surface anticyclone over Russia, increased moisture and established an instability environment in Greece. Veering winds with height, in combination with high CAPE values in the middle and upper troposphere, produced a violent supercell. Cloud base updrafts, intense lightning activity and severe precipitation in the form of large hail were the main characteristics of this case. Egg-sized hail was reported, contributing to the highest observed CDC index (+4) in Thessaly. Weather RADAR data were recorded and processed by TITAN, revealing an extensive WER in the RHI. Full article
Show Figures

Figure 1

21 pages, 5782 KB  
Article
Sand Ingestion Behavior of Helicopter Engines During Hover in Ground Effect
by Qiang Li, Linghua Dong, Changxin Song and Weidong Yang
Aerospace 2025, 12(10), 927; https://doi.org/10.3390/aerospace12100927 - 15 Oct 2025
Viewed by 369
Abstract
Sand ingestion exerts significant effects on the performance of helicopter engines, and it is imperative to investigate this phenomenon. In this study, the mechanisms of engine sand ingestion during helicopter hover in ground effect are analyzed. Firstly, a coupled computational model is established [...] Read more.
Sand ingestion exerts significant effects on the performance of helicopter engines, and it is imperative to investigate this phenomenon. In this study, the mechanisms of engine sand ingestion during helicopter hover in ground effect are analyzed. Firstly, a coupled computational model is established based on computational fluid dynamics (CFD) and the discrete element method (DEM). The aerodynamic calculation accuracy of this model is validated by comparing the pressure coefficient and tip vortex with wind tunnel test results. Subsequently, based on this method, a systematic simulation is carried out to investigate the flow field dynamics and sand cloud distribution for the helicopter at different ground-effect heights (GEHs, h). Simulation results indicate that helicopter engines can potentially directly ingest sand particles from the ground at low GEHs. When h > 2R (where R is the rotor radius), the height of sand clouds is insufficient for helicopter engines to ingest sand. Finally, guided by the simulation conclusions, a rotor test bench is designed to conduct research on sand ingestion by helicopter engines. It aims to further study how GEH and engine intake flowrate (Q) affect sand ingestion amount and distribution across the inlet cross-section. Experimental results demonstrate that the sand ingestion amount exhibits a nonlinear decreasing trend with the increasing GEH and a positive correlation with Q. At h = 0.5R, the engine directly ingests sand particles from the ground sand field, leading to a significant increase in sand ingestion. The increase reaches 11 times that at other GEHs. For the right-handed rotor in this study, the sand ingestion of the right engine is significantly higher than that of the left engine. Furthermore, for the cross-sectional position of the engine inlet in this study, over 60% of sand particles are ingested through the upper region. The research can provide scientific guidance for the design of particle separators and is of great significance for helicopter engine sand prevention. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

21 pages, 6020 KB  
Article
Trees as Sensors: Estimating Wind Intensity Distribution During Hurricane Maria
by Vivaldi Rinaldi, Giovanny Motoa and Masoud Ghandehari
Remote Sens. 2025, 17(20), 3428; https://doi.org/10.3390/rs17203428 - 14 Oct 2025
Viewed by 401
Abstract
Hurricane Maria crossed Puerto Rico with winds as high as 250 km/h, resulting in widespread damages and loss of weather station data, thus limiting direct weather measurements of wind variability. Here, we identified more than 155 million trees to estimate the distribution of [...] Read more.
Hurricane Maria crossed Puerto Rico with winds as high as 250 km/h, resulting in widespread damages and loss of weather station data, thus limiting direct weather measurements of wind variability. Here, we identified more than 155 million trees to estimate the distribution of wind speed over 9000 km2 of land from island-wide LiDAR point clouds collected before and after the hurricane. The point clouds were classified and rasterized into the canopy height model to perform individual tree identification and perform change detection analysis. Individual trees’ stem diameter at breast height were estimated using a function between delineated crown and extracted canopy height, validated using the records from Puerto Rico’s Forest Inventory 2003. The results indicate that approximately 35.7% of trees broke at the stem (below the canopy center) and 28.5% above the canopy center. Furthermore, we back-calculated the critical wind speed, or the minimum speed to cause breakage, at individual tree level this was performed by applying a mechanical model using the estimated diameter at breast height, the extrapolated breakage height, and pre-Hurricane Maria canopy height. Individual trees were then aggregated at 115 km2 cells to summarize the critical wind speed distribution of each cell, based on the percentage of stem breakage. A vertical wind profile analysis was then applied to derive the hurricane wind distribution using the mean hourly wind speed 10 m above the canopy center. The estimated wind speed ranges from 250 km/h in the southeast at the landfall to 100 km/h in the southwest parts of the islands. Comparison of the modeled wind speed with the wind gust readings at the few remaining NOAA stations support the use of tree breakages to model the distribution of hurricane wind speed when ground readings are sparse. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 7782 KB  
Article
Numerical Investigation on Safety Assessment of Gas Dispersion from Vent Mast for LNG-Powered Vessels
by Zhaowen Wang, Zhangjian Wang and Gang Chen
J. Mar. Sci. Eng. 2025, 13(10), 1892; https://doi.org/10.3390/jmse13101892 - 2 Oct 2025
Viewed by 397
Abstract
Conducting a safety simulation assessment of gas release from the vent mast during the design stage holds significant importance for ship design and system operation safety on LNG-powered vessels. Based on a large-scale practical LNG-powered vessel, this paper employs the CFD method to [...] Read more.
Conducting a safety simulation assessment of gas release from the vent mast during the design stage holds significant importance for ship design and system operation safety on LNG-powered vessels. Based on a large-scale practical LNG-powered vessel, this paper employs the CFD method to carry out a safety assessment of the natural gas dispersion, and proposes an optimization design method to address the issue where the vent mast height of large-scale LNG-powered vessels fails to meet specifications. The influencing factors of gas dispersion are discussed. The simulation results indicate that the vent mast height, wind direction, and wind velocity significantly affect the gas dispersion behavior. A lower vent mast height results in a greater risk of flammable gas clouds accumulating on the deck surface. Hazards analysis of the 6 m vent mast condition with windless suggests that a cryogenic explosion hazard zone is formed on the deck centered around the mast position, with the maximum gas concentration reaching 30% and the minimum temperature below −55 °C. The gas cloud spreads along the wind direction, and the extension distance is positively correlated with wind speed. With the increase in wind velocity, the height and volume of flammable gas clouds decrease. When the wind speed is 15 m/s, the volume of the flammable gas cloud is less than half of that at 5 m/s and less than one-tenth of that at 0 m/s. Higher wind velocity can notably promote gas diffusion. Full article
(This article belongs to the Special Issue Maritime Transportation Safety and Risk Management)
Show Figures

Figure 1

26 pages, 3841 KB  
Article
Comparison of Regression, Classification, Percentile Method and Dual-Range Averaging Method for Crop Canopy Height Estimation from UAV-Based LiDAR Point Cloud Data
by Pai Du, Jinfei Wang and Bo Shan
Drones 2025, 9(10), 683; https://doi.org/10.3390/drones9100683 - 1 Oct 2025
Viewed by 464
Abstract
Crop canopy height is a key structural indicator that is strongly associated with crop development, biomass accumulation, and crop health. To overcome the limitations of time-consuming and labor-intensive traditional field measurements, Unmanned Aerial Vehicle (UAV)-based Light Detection and Ranging (LiDAR) offers an efficient [...] Read more.
Crop canopy height is a key structural indicator that is strongly associated with crop development, biomass accumulation, and crop health. To overcome the limitations of time-consuming and labor-intensive traditional field measurements, Unmanned Aerial Vehicle (UAV)-based Light Detection and Ranging (LiDAR) offers an efficient alternative by capturing three-dimensional point cloud data (PCD). In this study, UAV-LiDAR data were acquired using a DJI Matrice 600 Pro equipped with a 16-channel LiDAR system. Three canopy height estimation methodological approaches were evaluated across three crop types: corn, soybean, and winter wheat. Specifically, this study assessed machine learning regression modeling, ground point classification techniques, percentile-based method and a newly proposed Dual-Range Averaging (DRA) method to identify the most effective method while ensuring practicality and reproducibility. The best-performing method for corn was Support Vector Regression (SVR) with a linear kernel (R2 = 0.95, RMSE = 0.137 m). For soybean, the DRA method yielded the highest accuracy (R2 = 0.93, RMSE = 0.032 m). For winter wheat, the PointCNN deep learning model demonstrated the best performance (R2 = 0.93, RMSE = 0.046 m). These results highlight the effectiveness of integrating UAV-LiDAR data with optimized processing methods for accurate and widely applicable crop height estimation in support of precision agriculture practices. Full article
(This article belongs to the Special Issue UAV Agricultural Management: Recent Advances and Future Prospects)
Show Figures

Figure 1

20 pages, 6963 KB  
Article
Revisiting Clear-Air Echo Classification in Cloudnet: A Deep Learning Perspective
by Jiajia Zhang, Jianan Yin, Wei Tang, Zheng Liu, Zhenping Yin, Weijie Zou, Yubing Wei, Shuangliang Li, Tong Lu, Xuan Wang and Detlef Müller
Remote Sens. 2025, 17(19), 3324; https://doi.org/10.3390/rs17193324 - 28 Sep 2025
Viewed by 366
Abstract
Accurate identification of clear-air echoes is crucial for reliable cloud boundary detection using ground-based radar. The clear-air echo classification method in the Cloudnet processing chain, which depends on temperature and the depolarization ratio (LDR), faces issues with height-based false alarms and misclassifications during [...] Read more.
Accurate identification of clear-air echoes is crucial for reliable cloud boundary detection using ground-based radar. The clear-air echo classification method in the Cloudnet processing chain, which depends on temperature and the depolarization ratio (LDR), faces issues with height-based false alarms and misclassifications during precipitation, especially when LDR data are missing. This study introduces and assesses a deep learning (DL) algorithm for identifying clear-air echoes across multiple sites and climatic conditions. Compared to the Cloudnet algorithm, the DL model provides more continuous classifications and notably reduces errors—reducing cloud-base height underestimation by 19.5% and false detection of meteorological echoes by 1.7%. Furthermore, seasonal analyses of the 1-year dataset at Cloudnet sites with different geophysical features (Jülich, Germany and Lampedusa, Italy) reveal that the influence of temperature on clear-air echoes varies significantly across environments. As a result, a single temperature-based probability function is insufficient to robustly distinguish non-meteorological echoes under diverse climatic conditions. These findings highlight the robustness of DL methods and their potential to enhance cloud radar data quality in complex observational environments. Full article
Show Figures

Figure 1

Back to TopTop