Trees as Sensors: Estimating Wind Intensity Distribution During Hurricane Maria
Abstract
Highlights
- Island-wide individual tree delineation from airborne LiDAR collection from pre- and post-Hurricane Maria reveals 64% tree trunk breakage.
- Calculation of wind speeds from tree stem breakages shows wind speed reaching up to 250 km/h at landfall in the southeastern part of the island.
- Trees may serve as natural sensors to calculate hurricane wind speed intensity distributions when conventional weather stations fail.
- The approach developed in this study provides a scalable framework for post-disaster wind mapping and forest vulnerability using remote sensing data.
Abstract
1. Introduction
2. Materials and Methods
2.1. USGS 3DEP LiDAR Data and Processing Environment
2.2. Point Cloud Processing and Classification
2.3. Individual Tree Detection
2.4. Tree Atem Diameter Estimation Based on Allometry
2.5. Stem Parameterization and Height of Breakage
2.6. Wind Speed Calculation
Symbol | Parameter | Equation | Source |
---|---|---|---|
Height at pre-Maria | Canopy Height Model | ||
Height at post-Maria | Canopy Height Model | ||
Height of crown base | Canopy Height Model | ||
Height action of wind | [42] | ||
Diameter at breakage | [40] | ||
Diameter at post height | [42] | ||
Modulus of Rupture | [44] | ||
Critical Wind Speed | [23,42,47] | ||
Frontal Area Index | [48] | ||
Aerodynamic roughness | [48] | ||
Drag coefficient | [48] | ||
Wind Speed at 10 m above wind height action | [47] |
3. Results
3.1. Rasterization Results and Elevation Distribution
3.2. Individual Tree Detection and Diameter Validation
3.3. Change Analysis
3.3.1. Height Loss by Elevation
3.3.2. Height Loss per Forest Type and Diameter
3.3.3. Changes in Tree Height Proportion
3.3.4. Mapping Breakages at Tree Stem
3.4. Wind Speed Distribution
3.4.1. Critical Wind Speed
3.4.2. Hurricane Wind Speed and Validation
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pasch, R.J.; Penny, A.B.; Berg, R. National Hurricane Center Tropical Cyclone Report: Hurricane Maria. In Tropical Cyclone Report AL152017, National Oceanic And Atmospheric Administration and the National Weather Service; National Hurricane Center: Miami, FL, USA, 2018; pp. 1–48. [Google Scholar]
- Montoya-Rincon, J.P.; Azad, S.; Pokhrel, R.; Ghandehari, M.; Jensen, M.P.; Gonzalez, J.E. On the Use of Satellite Nightlights for Power Outages Prediction. IEEE Access 2022, 10, 16729–16739. [Google Scholar] [CrossRef]
- Azad, S.; Ghandehari, M. A Study on the Association of Socioeconomic and Physical Cofactors Contributing to Power Restoration After Hurricane Maria. IEEE Access 2021, 9, 98654–98664. [Google Scholar] [CrossRef]
- Boose, E.R.; Foster, D.R.; Fluet, M. Hurricane Impacts to Tropical and Temperate Forest Landscapes. Ecol. Monogr. 1994, 64, 369–400. [Google Scholar] [CrossRef]
- Boose, E.R.; Serrano, M.I.; Foster, D.R. Landscape and regional impacts of hurricanes in Puerto Rico. Ecol. Monogr. 2004, 74, 335–352. [Google Scholar] [CrossRef]
- Patricola, C.M.; Wehner, M.F. Anthropogenic Influences on Major Tropical Cyclone Events. Nature 2018, 563, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Van Beusekom, A.; Álvarez-Berríos, N.; Gould, W.; Quiñones, M.; González, G. Hurricane Maria in the U.S. Caribbean: Disturbance Forces, Variation of Effects, and Implications for Future Storms. Remote Sens. 2018, 10, 1386. [Google Scholar] [CrossRef]
- Pokhrel, R.; Cos, S.D.; Montoya Rincon, J.P.; Glenn, E.; González, J.E. Observation and Modeling of Hurricane Maria for Damage Assessment. Weather. Clim. Extrem. 2021, 33, 100331. [Google Scholar] [CrossRef]
- Marcano-Vega, H. Forests of Puerto Rico, 2014. Resource Update FS–121; US Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2017; Volume 121, pp. 1–4. [Google Scholar]
- Heartsill Scalley, T.; Scatena, F.N.; Lugo, A.E.; Moya, S.; Estrada Ruiz, C.R. Changes in Structure, Composition, and Nutrients During 15 Yr of Hurricane-Induced Succession in a Subtropical Wet Forest in Puerto Rico. Biotropica 2010, 42, 455–463. [Google Scholar] [CrossRef]
- López-Marrero, T.; Heartsill-Scalley, T.; Rivera-López, C.F.; Escalera-García, I.A.; Echevarría-Ramos, M. Broadening Our Understanding of Hurricanes and Forests on the Caribbean Island of Puerto Rico: Where and What Should We Study Now? Forests 2019, 10, 710. [Google Scholar] [CrossRef]
- Lugo, A.E.; Scatena, F.N. Background and Catastrophic Tree Mortality in Tropical Moist, Wet, and Rain Forests. Biotropica 1996, 28, 585. [Google Scholar] [CrossRef]
- Hu, T.; Smith, R. The Impact of Hurricane Maria on the Vegetation of Dominica and Puerto Rico Using Multispectral Remote Sensing. Remote Sens. 2018, 10, 827. [Google Scholar] [CrossRef]
- Feng, Y.; Negrón-Juárez, R.I.; Chambers, J.Q. Remote Sensing and Statistical Analysis of the Effects of Hurricane María on the Forests of Puerto Rico. Remote Sens. Environ. 2020, 247, 111940. [Google Scholar] [CrossRef]
- Hall, J.; Muscarella, R.; Quebbeman, A.; Arellano, G.; Thompson, J.; Zimmerman, J.K.; Uriarte, M. Hurricane-Induced Rainfall Is a Stronger Predictor of Tropical Forest Damage in Puerto Rico Than Maximum Wind Speeds. Sci. Rep. 2020, 10, 4318. [Google Scholar] [CrossRef]
- Negrón-Juárez, R.; Baker, D.B.; Zeng, H.; Henkel, T.K.; Chambers, J.Q. Assessing Hurricane-induced Tree Mortality in U.S. Gulf Coast Forest Ecosystems. J. Geophys. Res. 2010, 115, 2009JG001221. [Google Scholar] [CrossRef]
- Negrón-Juárez, R.; Baker, D.B.; Chambers, J.Q.; Hurtt, G.C.; Goosem, S. Multi-Scale Sensitivity of Landsat and MODIS to Forest Disturbance Associated with Tropical Cyclones. Remote Sens. Environ. 2014, 140, 679–689. [Google Scholar] [CrossRef]
- Gao, Q.; Yu, M. Canopy Density and Roughness Differentiate Resistance of a Tropical Dry Forest to Major Hurricane Damage. Remote Sens. 2021, 13, 2262. [Google Scholar] [CrossRef]
- Leitold, V.; Morton, D.C.; Martinuzzi, S.; Paynter, I.; Uriarte, M.; Keller, M.; Ferraz, A.; Cook, B.D.; Corp, L.A.; González, G. Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data. Ecosystems 2022, 25, 892–910. [Google Scholar] [CrossRef]
- Uriarte, M.; Thompson, J.; Zimmerman, J.K. Hurricane María Tripled Stem Breaks and Doubled Tree Mortality Relative to Other Major Storms. Nat. Commun. 2019, 10, 1362. [Google Scholar] [CrossRef]
- Frelich, L.E.; Ostuno, E.J. Estimating Wind Speeds of Convective Storms from Tree Damage. E-J. Sev. Storms Meteorol. 2021, 7, 1–19. [Google Scholar] [CrossRef]
- Ilies, G.; Ilies, M.; Hotea, M.; Bumbak, S.-V.; Hodor, N.; Ilies, D.-C.; Caciora, T.; Safarov, B.; Morar, C.; Valjarević, A.; et al. Integrating Forest Windthrow Assessment Data in the Process of Windscape Reconstruction: Case of the Extratropical Storms Downscaled for the Gutai Mountains (Romania). Front. Environ. Sci. 2022, 10, 926430. [Google Scholar] [CrossRef]
- Gardiner, B.; Peltola, H.; Kellomäki, S. Comparison of Two Models for Predicting the Critical Wind Speeds Required to Damage Coniferous Trees. Ecol. Model. 2000, 129, 1–23. [Google Scholar] [CrossRef]
- Ancelin, P.; Courbaud, B.; Fourcaud, T. Development of an Individual Tree-Based Mechanical Model to Predict Wind Damage within Forest Stands. For. Ecol. Manag. 2004, 203, 101–121. [Google Scholar] [CrossRef]
- Gardiner, B.; Byrne, K.; Hale, S.; Kamimura, K.; Mitchell, S.J.; Peltola, H.; Ruel, J.-C. A Review of Mechanistic Modelling of Wind Damage Risk to Forests. Forestry 2008, 81, 447–463. [Google Scholar] [CrossRef]
- Peterson, C.J.; Cannon, J.B. Modelling Wind Damage to Southeastern U.S. Trees: Effects of Wind Profile, Gaps, Neighborhood Interactions, and Wind Direction. Front. For. Glob. Change 2021, 4, 719813. [Google Scholar] [CrossRef]
- Dupont, S. A Simple Wind–Tree Interaction Model Predicting the Probability of Wind Damage at Stand Level. Agric. For. Meteorol. 2016, 224, 49–63. [Google Scholar] [CrossRef]
- Dalponte, M.; Marzini, S.; Solano-Correa, Y.T.; Tonon, G.; Vescovo, L.; Gianelle, D. Mapping Forest Windthrows Using High Spatial Resolution Multispectral Satellite Images. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102206. [Google Scholar] [CrossRef]
- Torresani, M.; Montagnani, L.; Rocchini, D.; Moudrý, V.; Andreoli, A.; Wellstein, C.; Koyanagi, K.; Ros, L.D.; Bacaro, G.; Perrone, M.; et al. LiDAR Insights on Stand Structure and Topography in Mountain Forest Wind Extreme Events: The Vaia Case Study. Agric. For. Meteorol. 2024, 359, 110267. [Google Scholar] [CrossRef]
- Gao, Q.; Yu, M. Elevation and Distribution of Freshwater and Sewage Canals Regulate Canopy Structure and Differentiate Hurricane Damages to a Basin Mangrove Forest. Remote Sens. 2021, 13, 3387. [Google Scholar] [CrossRef]
- Gao, Q.; Yu, M. Elevation Regimes Modulated the Responses of Canopy Structure of Coastal Mangrove Forests to Hurricane Damage. Remote Sens. 2022, 14, 1497. [Google Scholar] [CrossRef]
- Liu, A.; Chen, Y.; Cheng, X. Evaluating ICESat-2 and GEDI with Integrated Landsat-8 and PALSAR-2 for Mapping Tropical Forest Canopy Height. Remote Sens. 2024, 16, 3798. [Google Scholar] [CrossRef]
- Liu, A.; Chen, Y.; Cheng, X. Improving Tropical Forest Canopy Height Mapping by Fusion of Sentinel-1/2 and Bias-Corrected ICESat-2–GEDI Data. Remote Sens. 2025, 17, 1968. [Google Scholar] [CrossRef]
- Brandeis, T.J.; Helmer, E.H.; Oswalt, S.N. The Status of Puerto Rico’s Forests, 2003. Resour. Bull. SRS-119; US Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2007; Volume 119, 72p. [Google Scholar]
- U.S. Geological Survey. USGS 3D Elevation Program Digital Elevation Model. Available online: https://www.usgs.gov/3d-elevation-program (accessed on 3 August 2025).
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Meador, A.S.; Bourdon, J.-F.; De Boissieu, F.; Achim, A. lidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Khosravipour, A.; Skidmore, A.K.; Isenburg, M.; Wang, T.; Hussin, Y.A. Generating Pit-Free Canopy Height Models from Airborne Lidar. Photogramm. Eng. Remote Sens. 2014, 80, 863–872. [Google Scholar] [CrossRef]
- Limberger, F.A.; Oliveira, M.M. Real-Time Detection of Planar Regions in Unorganized Point Clouds. Pattern Recognit. 2015, 48, 2043–2053. [Google Scholar] [CrossRef]
- Dalponte, M.; Coomes, D.A. Tree-centric Mapping of Forest Carbon Density from Airborne Laser Scanning and Hyperspectral Data. Methods Ecol. Evol. 2016, 7, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Jucker, T.; Caspersen, J.; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; Van Ewijk, K.Y.; Forrester, D.I.; Haeni, M.; et al. Allometric Equations for Integrating Remote Sensing Imagery into Forest Monitoring Programmes. Glob. Change Biol. 2017, 23, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Dalponte, M. itcSegment: Individual Tree Crowns Segmentation. R Package Version 1.0, 2023. Available online: https://CRAN.R-project.org/package=itcSegment (accessed on 3 August 2025).
- Quine, C.P.; Gardiner, B.A.; Moore, J. Wind Disturbance in Forests: The Process of Wind Created Gaps, Tree Overturning, and Stem Breakage. In Plant Disturbance Ecology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 117–184. ISBN 978-0-12-818813-2. [Google Scholar]
- Luo, L.; Zhai, Q.; Su, Y.; Ma, Q.; Kelly, M.; Guo, Q. Simple Method for Direct Crown Base Height Estimation of Individual Conifer Trees Using Airborne LiDAR Data. Opt. Express 2018, 26, A562. [Google Scholar] [CrossRef]
- Baar, J.; Tippner, J.; Rademacher, P. Prediction of Mechanical Properties—Modulus of Rupture and Modulus of Elasticity—of Five Tropical Species by Nondestructive Methods. Maderas Cienc. Tecnol. 2015, 17, 239–252. [Google Scholar] [CrossRef]
- Hale, S.E.; Gardiner, B.A.; Wellpott, A.; Nicoll, B.C.; Achim, A. Wind Loading of Trees: Influence of Tree Size and Competition. Eur. J. For. Res. 2012, 131, 203–217. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 3rd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Hale, S.E.; Gardiner, B.; Peace, A.; Nicoll, B.; Taylor, P.; Pizzirani, S. Comparison and Validation of Three Versions of a Forest Wind Risk Model. Environ. Model. Softw. 2015, 68, 27–41. [Google Scholar] [CrossRef]
- Raupach, M.R. Simplified Expressions for Vegetation Roughness Length and Zero-Plane Displacement as Functions of Canopy Height and Area Index. Bound.-Layer Meteorol. 1994, 71, 211–216. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration, National Weather Service. Hurricane Maria—September 20, 2017. Available online: https://www.weather.gov/sju/maria2017 (accessed on 3 August 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi, V.; Motoa, G.; Ghandehari, M. Trees as Sensors: Estimating Wind Intensity Distribution During Hurricane Maria. Remote Sens. 2025, 17, 3428. https://doi.org/10.3390/rs17203428
Rinaldi V, Motoa G, Ghandehari M. Trees as Sensors: Estimating Wind Intensity Distribution During Hurricane Maria. Remote Sensing. 2025; 17(20):3428. https://doi.org/10.3390/rs17203428
Chicago/Turabian StyleRinaldi, Vivaldi, Giovanny Motoa, and Masoud Ghandehari. 2025. "Trees as Sensors: Estimating Wind Intensity Distribution During Hurricane Maria" Remote Sensing 17, no. 20: 3428. https://doi.org/10.3390/rs17203428
APA StyleRinaldi, V., Motoa, G., & Ghandehari, M. (2025). Trees as Sensors: Estimating Wind Intensity Distribution During Hurricane Maria. Remote Sensing, 17(20), 3428. https://doi.org/10.3390/rs17203428