Seed 3D Phenotyping Across Multiple Crops Using 3D Gaussian Splatting
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Data Acquisition
2.2. Three-Dimensional Seed Reconstruction Based on 3D Gaussian Splatting
2.2.1. Three-Dimensional Gaussian Initialization
2.2.2. Three-Dimensional Gaussian Rendering
2.2.3. Calculating Loss
2.2.4. Adaptive Density Control
- Under-Reconstruction: The existing 3D Gaussian primitives are insufficient to cover the areas that need reconstruction. The solution involves cloning the existing primitives to expand their coverage, ensuring they accurately reconstruct all necessary regions.
- Over-Reconstruction: Although the existing 3D Gaussian primitives can cover the reconstructed area, they lack sufficient detail. The solution involves segmenting the existing primitives to increase detail and accuracy. By adjusting parameters and subdivision operations, Gaussian primitives can more accurately describe the detailed features of the reconstructed area.
2.3. Phenotype Extraction
2.3.1. Filtering
2.3.2. Downsampling
2.3.3. Obtaining Seed Point Cloud
2.3.4. Obtaining Seed Length, Width, and Height
2.3.5. Obtaining Seed Surface Area and Volume
2.4. Experimental Platform
3. Results
3.1. Comparison and Analysis of Reconstruction Methods
3.2. Validation of 3D Representation Capability
3.3. Measurement Accuracy Evaluation
3.4. Multi-Crop Applicability Expansion
4. Discussion
4.1. Reconstruction Efficiency, Measurement Accuracy, and Multi-Crop Applicability of 3DGS
4.2. Trade-Offs Between Implicit and Explicit Representations
4.3. Extensions of 3DGS in Sparse-View Contexts
5. Conclusions
- (1)
- The high accuracy of 3DGS in measuring key phenotypic traits—seed length, width, and height—was validated. The coefficients of determination (R2) between 3DGS-reconstructed seed dimensions and manual measurements were 0.9361, 0.8889, and 0.946, respectively, indicating strong consistency.
- (2)
- Compared with the traditional SFM-MVS approach, 3DGS exhibited superior performance in both reconstruction accuracy and efficiency. While the average reconstruction times were comparable, 3DGS achieved higher reconstruction quality at 30,000 iterations.
- (3)
- The method demonstrated robust applicability across multiple crop species. For maize (Zhengdan 958 and Tiangui Nuo 932), wheat (Jimai 22 and Aikang 58), and rice (Suijing 18 and Xiangya Xiangzhan), the 3DGS-reconstructed models yielded structural similarity indices (SSIM) above 0.95 and peak signal-to-noise ratios (PSNRs) between 35 and 37 dB, highlighting the method’s generalizability and stability for broader germplasm phenotyping.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, C. Genome engineering for crop improvement and future agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef]
- Sajja, S.; Pranati, J.; Shyamala, S.; Vinutha, K.S.; Reddy, R.; Joshi, P.; Pannem, S.; Rakshit, P.; Jadhav, Y.; Kumar, C.V.S.; et al. Rapid Ragi: A speed breeding protocol for finger millet. Plant Methods 2025, 21, 84. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Li, C. Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change. Crop J. 2020, 8, 688–700. [Google Scholar] [CrossRef]
- Feng, L.; Chen, S.; Zhang, C.; Zhang, Y.; He, Y. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. Comput. Electron. Agric. 2021, 182, 106033. [Google Scholar] [CrossRef]
- Rebetzke, G.J.; Jimenez-Berni, J.; Fischer, R.A.; Deery, D.M.; Smith, D.J. Review: High-throughput phenotyping to enhance the use of crop genetic resources. Plant Sci. 2019, 282, 40–48. [Google Scholar] [CrossRef]
- Cobb, J.N.; DeClerck, G.; Greenberg, A.; Clark, R.; McCouch, S. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 2013, 126, 867–887. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yang, W.; Duan, L.; Jiang, N.; Chen, G.; Xiong, L.; Liu, Q. Rice panicle length measuring system based on dual-camera imaging. Comput. Electron. Agric. 2013, 98, 158–165. [Google Scholar] [CrossRef]
- Tanabata, T.; Shibaya, T.; Hori, K.; Ebana, K.; Yano, M. SmartGrain: High-Throughput Phenotyping Software for Measuring Seed Shape through Image Analysis. Plant Physiol. 2012, 160, 1871–1880. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Zafar, Z.; Nawaz, R.; Fraz, M.M. Unlocking plant secrets: A systematic review of 3D imaging in plant phenotyping techniques. Comput. Electron. Agric. 2024, 222, 109033. [Google Scholar] [CrossRef]
- Moreno, H.; Valero, C.; Bengochea-Guevara, J.M.; Ribeiro, Á.; Garrido-Izard, M.; Andújar, D. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System. Sensors 2020, 20, 1102. [Google Scholar] [CrossRef]
- Zhou, L.; Gu, X.; Cheng, S.; Yang, G.; Shu, M.; Sun, Q. Analysis of Plant Height Changes of Lodged Maize Using UAV-LiDAR Data. Agriculture 2020, 10, 146. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, G.; Jiang, Y.; Xu, B.; Li, X.; Zhu, Y.; Lei, L.; Chen, R.; Dong, Z.; Yang, H. Apple Tree Branch Information Extraction from Terrestrial Laser Scanning and Backpack-LiDAR. Remote Sens. 2020, 12, 3592. [Google Scholar] [CrossRef]
- Li, N.; Ho, C.P.; Xue, J.; Lim, L.W.; Chen, G.; Fu, Y.H.; Lee, L.Y.T. A Progress Review on Solid-State LiDAR and Nanophotonics-Based LiDAR Sensors. Laser Photonics Rev. 2022, 16, 2100511. [Google Scholar] [CrossRef]
- Zuo, C.; Yin, W.; Feng, S.; Tao, T.; Chen, Q. High-speed 3D shape measurement using composite structured-light patterns and multiview system. In Proceedings of the Optical Metrology and Inspection for Industrial Applications V, Beijing, China, 11–13 October 2018; p. 19. [Google Scholar]
- Qin, Z.; Zhang, Z.; Hua, X.; Yang, W.; Liang, X.; Zhai, R.; Huang, C. Cereal grain 3D point cloud analysis method for shape extraction and filled/unfilled grain identification based on structured light imaging. Sci. Rep. 2022, 12, 3145. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Dai, J.; Shen, P.; Liu, H.; Wei, Y. Seedscreener: A novel integrated wheat germplasm phenotyping platform based on NIR-feature detection and 3D-reconstruction. Comput. Electron. Agric. 2023, 215, 108378. [Google Scholar] [CrossRef]
- Paturkar, A.; Sen Gupta, G.; Bailey, D. Plant trait measurement in 3D for growth monitoring. Plant Methods 2022, 18, 59. [Google Scholar] [CrossRef]
- Gao, Q.; Kan, J. Automatic Forest DBH Measurement Based on Structure from Motion Photogrammetry. Remote Sens. 2022, 14, 2064. [Google Scholar] [CrossRef]
- Zermas, D.; Morellas, V.; Mulla, D.; Papanikolopoulos, N. 3D model processing for high throughput phenotype extraction—The case of corn. Comput. Electron. Agric. 2020, 172, 105047. [Google Scholar] [CrossRef]
- Xiao, S.; Chai, H.; Shao, K.; Shen, M.; Wang, Q.; Wang, R.; Sui, Y.; Ma, Y. Image-Based Dynamic Quantification of Aboveground Structure of Sugar Beet in Field. Remote Sens. 2020, 12, 269. [Google Scholar] [CrossRef]
- Li, M.; Shamshiri, R.R.; Schirrmann, M.; Weltzien, C. Impact of Camera Viewing Angle for Estimating Leaf Parameters of Wheat Plants from 3D Point Clouds. Agriculture 2021, 11, 563. [Google Scholar] [CrossRef]
- Li, W.; Wu, S.; Wen, W.; Lu, X.; Liu, H.; Zhang, M.; Xiao, P.; Guo, X.; Zhao, C. Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat. AoB PLANTS 2024, 16, plae019. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Li, C.; Chee, P.W.; Paterson, A.H.; Jiang, Y.; Xu, R.; Robertson, J.S.; Adhikari, J.; Shehzad, T. Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering. ISPRS J. Photogramm. Remote Sens. 2020, 160, 195–207. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.; Ren, H.; Yang, W.; Zhai, R. 3DPhenoMVS: A Low-Cost 3D Tomato Phenotyping Pipeline Using 3D Reconstruction Point Cloud Based on Multiview Images. Agronomy 2022, 12, 1865. [Google Scholar] [CrossRef]
- Azinovic, D.; Martin-Brualla, R.; Goldman, D.B.; Niebner, M.; Thies, J. Neural RGB-D Surface Reconstruction. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 6280–6291. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12346, pp. 405–421. [Google Scholar]
- Kang, H.; Hu, K.; Ying, W.; Pan, Y.; Chen, C. High-Fidelity 3d Reconstruction of Plants Using Neural Radiance Field. Comput. Electron. Agric. 2024, 220, 108848. [Google Scholar] [CrossRef]
- Kerbl, B.; Kopanas, G.; Leimkuehler, T.; Drettakis, G. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Trans. Graph. 2023, 42, 139. [Google Scholar] [CrossRef]
- Wu, T.; Yuan, Y.-J.; Zhang, L.-X.; Yang, J.; Cao, Y.-P.; Yan, L.-Q.; Gao, L. Recent advances in 3D Gaussian splatting. Comput. Vis. Media 2024, 10, 613–642. [Google Scholar] [CrossRef]
- Fei, B.; Xu, J.; Zhang, R.; Zhou, Q.; Yang, W.; He, Y. 3D Gaussian Splatting as a New Era: A Survey. IEEE Trans. Vis. Comput. Graph. 2025, 31, 4429–4449. [Google Scholar] [CrossRef]
- Shen, P.; Jing, X.; Deng, W.; Jia, H.; Wu, T. PlantGaussian: Exploring 3D Gaussian splatting for cross-time, cross-scene, and realistic 3D plant visualization and beyond. Crop J. 2025, 13, 607–618. [Google Scholar] [CrossRef]
- Cheng, K.; Long, X.; Yang, K.; Yao, Y.; Yin, W.; Ma, Y.; Wang, W.; Chen, X. Gaussianpro: 3D gaussian splatting with progressive propagation. In Proceedings of the Forty-First International Conference on Machine Learning, Vienna, Austria, 21–27 July 2024. [Google Scholar]
- Gao, X.; Li, X.; Zhuang, Y.; Zhang, Q.; Hu, W.; Zhang, C.; Yao, Y.; Shan, Y.; Quan, L. Mani-gs: Gaussian splatting manipulation with triangular mesh. In Proceedings of the Computer Vision and Pattern Recognition Conference, Nashville, TN, USA, 10–17 June 2025; pp. 21392–21402. [Google Scholar]
- Wang, Z.; Xu, D. Pygs: Large-scale scene representation with pyramidal 3D gaussian splatting. arXiv 2024, arXiv:2405.16829. [Google Scholar]
- Kusnandar, T.; Santoso, J.; Surendro, K. Enhancing Color Selection in HSV Color Space. Ing. Syst. D’inf. 2024, 29, 1483. [Google Scholar] [CrossRef]
- Zhu, Z.; Fan, Z.; Jiang, Y.; Wang, Z. FSGS: Real-Time Few-Shot View Synthesis Using Gaussian Splatting. In Computer Vision—ECCV 2024; Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G., Eds.; Springer Nature: Cham, Switzerland, 2025; Volume 15097, pp. 145–163. [Google Scholar]
- He, Z.; Xiao, Z.; Chan, K.-C.; Zuo, Y.; Xiao, J.; Lam, K.-M. See In Detail: Enhancing Sparse-view 3D Gaussian Splatting with Local Depth and Semantic Regularization. In Proceedings of the ICASSP 2025—2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 6–11 April 2025; pp. 1–5. [Google Scholar]
- Yin, X.; Zhang, Q.; Chang, J.; Feng, Y.; Fan, Q.; Yang, X.; Pun, C.-M.; Zhang, H.; Cun, X. GSFixer: Improving 3D Gaussian Splatting with Reference-Guided Video Diffusion Priors. arXiv 2025. [Google Scholar] [CrossRef]











| 3D Reconstruction Method | Average Reconstruction Time/s | Average Number of Point Clouds |
|---|---|---|
| SFM-MVS | 757 | 77,416 |
| 3DGS-5000 | 624 | 182,404 |
| 3DGS-7000 | 694 | 198,203 |
| 3DGS-10000 | 804 | 228,321 |
| 3DGS-30000 | 1744 | 261,540 |
| 3D Reconstruction Method | Measurement | R2 | MAPE | RMSE |
|---|---|---|---|---|
| 3DGS | length | 0.9361 | 1.91 | 0.304 |
| 3DGS | width | 0.8889 | 3.99 | 0.464 |
| 3DGS | height | 0.946 | 3.66 | 0.34 |
| MVS | length | 0.812 | 2.97 | 0.501 |
| MVS | width | 0.777 | 4.35 | 0.554 |
| MVS | height | 0.8917 | 5.76 | 0.553 |
| Crop Variety | SSIM | PSNR | LPIPS |
|---|---|---|---|
| Zhengdan 958 | 0.9537 | 35.74 | 0.0528 |
| Tiangui Nuo 932 | 0.9628 | 37.13 | 0.0529 |
| Jimai 22 | 0.9629 | 35.66 | 0.0582 |
| Aikang 58 | 0.9587 | 35.87 | 0.057 |
| Suijing 18 | 0.9664 | 36.75 | 0.048 |
| Xiangya Xiangzhan | 0.9691 | 37.31 | 0.047 |
| Crop Variety | Measurement Area | R2 | MAPE | RMSE |
|---|---|---|---|---|
| Tiangui Nuo 932 | length | 0.9372 | 3.96 | 0.38 |
| Tiangui Nuo 932 | width | 0.9042 | 2.37 | 0.201 |
| Tiangui Nuo 932 | height | 0.9031 | 9.11 | 0.51 |
| Jimai 22 | length | 0.8527 | 1.45 | 0.118 |
| Jimai 22 | width | 0.8643 | 2.87 | 0.124 |
| Jimai 22 | height | 0.8661 | 3.38 | 0.137 |
| Aikang 58 | length | 0.9264 | 2 | 0.156 |
| Aikang 58 | width | 0.8452 | 4.01 | 0.199 |
| Aikang 58 | height | 0.8637 | 2.54 | 0.115 |
| Suijing 18 | length | 0.8998 | 2.31 | 0.216 |
| Suijing 18 | width | 0.8402 | 6.04 | 0.193 |
| Suijing 18 | height | 0.807 | 8.34 | 0.222 |
| Xiangya Xiangzhan | length | 0.9644 | 3.04 | 0.329 |
| Xiangya Xiangzhan | width | 0.8428 | 9.63 | 0.257 |
| Xiangya Xiangzhan | height | 0.8588 | 9.1 | 0.197 |
| Variety | Metric/Method | 3DGS-30000 | 3DGS-7000 | Instant-NGP |
|---|---|---|---|---|
| Zhengdan 958 | PSNR | 35.74 | 33.64 | 33.398 |
| Tiangui Nuo 932 | PSNR | 37.13 | 34.88 | 33.028 |
| Aikang 58 | PSNR | 35.66 | 34.94 | 33.376 |
| Jimai 22 | PSNR | 35.87 | 34.89 | 32.994 |
| Suijing 18 | PSNR | 36.75 | 33.9 | 32.954 |
| Xiangya Xiangzhan | PSNR | 37.31 | 34.13 | 33.586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Zhu, C.; Hu, J.; Deng, F.; Xu, Z.; Wang, X. Seed 3D Phenotyping Across Multiple Crops Using 3D Gaussian Splatting. Agriculture 2025, 15, 2329. https://doi.org/10.3390/agriculture15222329
Gao J, Zhu C, Hu J, Deng F, Xu Z, Wang X. Seed 3D Phenotyping Across Multiple Crops Using 3D Gaussian Splatting. Agriculture. 2025; 15(22):2329. https://doi.org/10.3390/agriculture15222329
Chicago/Turabian StyleGao, Jun, Chao Zhu, Junguo Hu, Fei Deng, Zhaoxin Xu, and Xiaomin Wang. 2025. "Seed 3D Phenotyping Across Multiple Crops Using 3D Gaussian Splatting" Agriculture 15, no. 22: 2329. https://doi.org/10.3390/agriculture15222329
APA StyleGao, J., Zhu, C., Hu, J., Deng, F., Xu, Z., & Wang, X. (2025). Seed 3D Phenotyping Across Multiple Crops Using 3D Gaussian Splatting. Agriculture, 15(22), 2329. https://doi.org/10.3390/agriculture15222329

