Automated 3D Reconstruction of Interior Structures from Unstructured Point Clouds
Abstract
1. Introduction
- A hybrid pipeline that combines DBSCAN room partitioning, density-based filtering, RandLA-Net semantic segmentation, and RANSAC plane fitting to reconstruct structural elements and wall-surface openings from unstructured point clouds—operating without RGB imagery or scanner trajectory data.
- Demonstrated robustness to non-Manhattan geometry and slanted ceilings through RANSAC-based plane interpolation and opening detection, supporting heavily cluttered scenes via prefiltering + semantics.
- Practical wall opening detection (doors/windows) from point density and semantic cues on wall-aligned coordinates—enabling opening localization even when RGB or full trajectories are unavailable.
- Extensive evaluation on seven datasets (Manhattan/non-Manhattan, slanted ceilings, high clutter) to show generalizability.
2. Point Cloud Automated Reconstruction Approach
2.1. Clustering
2.2. Segmentation
2.3. Three-D Reconstruction
3. Evaluation
3.1. Completeness
3.2. Correctness
3.3. Accuracy
4. Datasets
5. Discussion
5.1. Sensitivity Study
5.2. Ablation Study of Pipeline Components
- Density prefiltering before semantic segmentation (RandLA-Net).
- Semantic/density masking during planar fitting (RANSAC).
- Histogram-based refinement in wall-opening detection.
5.3. Opening Detection Evaluation
5.4. Overall Effectiveness of the Proposed Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Pseudocode of the Proposed 3D Reconstruction Pipeline
References
- Thomson, C.; Boehm, J. Automatic Geometry Generation from Point Clouds for BIM. Remote Sens. 2015, 7, 11753–11775. [Google Scholar] [CrossRef]
- Rocha, G.; Mateus, L.; Ferreira, V. Historical Heritage Maintenance via Scan-to-BIM Approaches: A Case Study of the Lisbon Agricultural Exhibition Pavilion. ISPRS Int. J. Geo-Inf. 2024, 13, 54. [Google Scholar] [CrossRef]
- Běloch, L.; Pavelka, K. Optimizing Mobile Laser Scanning Accuracy for Urban Applications: A Comparison by Strategy of Different Measured Ground Points. Appl. Sci. 2024, 14, 3387. [Google Scholar] [CrossRef]
- Wei, P.; Fu, K.; Villacres, J.; Ke, T.; Krachenfels, K.; Stofer, C.R.; Bayati, N.; Gao, Q.; Zhang, B.; Vanacker, E.; et al. A Compact Handheld Sensor Package with Sensor Fusion for Comprehensive and Robust 3D Mapping. Sensors 2024, 24, 2494. [Google Scholar] [CrossRef]
- Mahmoud, M.; Zhao, Z.; Chen, W.; Adham, M.; Li, Y. Automated Scan-to-BIM: A deep learning-based framework for indoor environments with complex furniture elements. J. Build. Eng. 2025, 106, 112596. [Google Scholar] [CrossRef]
- Xiang, Z.; Rashidi, A.; Ou, G. Integrating Inverse Photogrammetry and a Deep Learning–Based Point Cloud Segmentation Approach for Automated Generation of BIM Models. J. Constr. Eng. Manag. 2023, 149, 04023074. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Hu, D.; Wang, Y.; Zhai, R. Automated indoor 3D scene reconstruction with decoupled mapping using quadruped robot and LiDAR sensor. Comput.-Aided Civ. Infrastruct. Eng. 2025, 40, 2209–2226. [Google Scholar] [CrossRef]
- Okorn, B.; Xiong, X.; Akinci, B.; Huber, D. Toward Automated Modeling of Floor Plans. In Proceedings of the Symposium on 3D Data Processing, Visualization and Transmission, Paris, France, 17–20 May 2010. [Google Scholar]
- Ambrus, R.; Claici, S.; Wendt, A. Automatic Room Segmentation from Unstructured 3-D Data of Indoor Environments. IEEE Robot. Autom. Lett. 2017, 2, 749–756. [Google Scholar] [CrossRef]
- Jung, J.; Stachniss, C.; Kim, C. Automatic Room Segmentation of 3D Laser Data Using Morphological Processing. ISPRS Int. J. Geo-Inf. 2017, 6, 206. [Google Scholar] [CrossRef]
- Pouraghdam, M.H.; Saadatseresht, M.; Rastiveis, H.; Abzal, A.; Hasanlou, M. Building Floor Plan Reconstruction from SLAM-Based Point Cloud using RANSAC Algorithm. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W18, 483–488. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, C.; Liu, J. Walk&sketch: Create floor plans with an RGB-D camera. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, New York, NY, USA, 5–8 September 2012; pp. 461–470. [Google Scholar] [CrossRef]
- Previtali, M.; Barazzetti, L.; Brumana, R.; Scaioni, M. Towards automatic indoor reconstruction of cluttered building rooms from point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-5, 281–288. [Google Scholar] [CrossRef]
- Díaz-Vilariño, L.; Khoshelham, K.; Martínez-Sánchez, J.; Arias, P. 3D Modeling of Building Indoor Spaces and Closed Doors from Imagery and Point Clouds. Sensors 2015, 15, 3491–3512. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, V.; Zakhor, A. Planar 3D modeling of building interiors from point cloud data. In Proceedings of the 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012; pp. 1777–1780. [Google Scholar] [CrossRef]
- Oesau, S.; Lafarge, F.; Alliez, P. Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut. ISPRS J. Photogramm. Remote Sens. 2014, 90, 68–82. [Google Scholar] [CrossRef]
- Xiao, J.; Furukawa, Y. Reconstructing the World’s Museums. Int. J. Comput. Vis. 2014, 110, 243–258. [Google Scholar] [CrossRef]
- Prieto, S.A.; Quintana, B.; Adán, A.; Vázquez, A.S. As-is building-structure reconstruction from a probabilistic next best scan approach. Rob. Auton. Syst. 2017, 94, 186–207. [Google Scholar] [CrossRef]
- Zavar, H.; Arefi, H.; Malihi, S.; Maboudi, M. Topology-Aware 3D Modelling of Indoor Spaces from Point Clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B4-2, 267–274. [Google Scholar] [CrossRef]
- Mura, C.; Mattausch, O.; Pajarola, R. Piecewise-planar Reconstruction of Multi-room Interiors with Arbitrary Wall Arrangements. Comput. Graph. Forum 2016, 35, 179–188. [Google Scholar] [CrossRef]
- Ochmann, S.; Vock, R.; Wessel, R.; Klein, R. Automatic reconstruction of parametric building models from indoor point clouds. Comput. Graph. 2016, 54, 94–103. [Google Scholar] [CrossRef]
- Murali, S.; Speciale, P.; Oswald, M.R.; Pollefeys, M. Indoor Scan2BIM: Building information models of house interiors. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 6126–6133. [Google Scholar] [CrossRef]
- Shi, W.; Ahmed, W.; Li, N.; Fan, W.; Xiang, H.; Wang, M. Semantic Geometric Modelling of Unstructured Indoor Point Cloud. ISPRS Int. J. Geo-Inf. 2018, 8, 9. [Google Scholar] [CrossRef]
- Ochmann, S.; Vock, R.; Klein, R. Automatic reconstruction of fully volumetric 3D building models from oriented point clouds. ISPRS J. Photogramm. Remote Sens. 2019, 151, 251–262. [Google Scholar] [CrossRef]
- Biljecki, F.; Ledoux, H.; Stoter, J.; Zhao, J. Formalisation of the level of detail in 3D city modelling. Comput. Environ. Urban Syst. 2014, 48, 1–15. [Google Scholar] [CrossRef]
- Sánchez-Aparicio, L.J.; Castro, Á.B.-D.; Conde, B.; Carrasco, P.; Ramos, L.F. Non-destructive means and methods for structural diagnosis of masonry arch bridges. Autom. Constr. 2019, 104, 360–382. [Google Scholar] [CrossRef]
- Deng, D. DBSCAN Clustering Algorithm Based on Density. In Proceedings of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020; pp. 949–953. [Google Scholar] [CrossRef]
- Tran, H.; Khoshelham, K.; Kealy, A. Geometric comparison and quality evaluation of 3D models of indoor environments. ISPRS J. Photogramm. Remote Sens. 2019, 149, 29–39. [Google Scholar] [CrossRef]
- Senousi, A.M.; Ahmed, W.; Liu, X.; Darwish, W. Automated Digitization Approach for Road Intersections Mapping: Leveraging Azimuth and Curve Detection from Geo-Spatial Data. ISPRS Int. J. Geo-Inf. 2025, 14, 264. [Google Scholar] [CrossRef]
- Khoshelham, K.; Tran, H.; Acharya, D.; Vilariño, L.D.; Kang, Z.; Dalyot, S. The ISPRS Benchmark on Indoor Modelling-Preliminary Results. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B5-2, 207–211. [Google Scholar] [CrossRef]
- Maset, E.; Magri, L.; Fusiello, A. Improving Automatic Reconstruction of Interior Walls from Point Cloud Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 849–855. [Google Scholar] [CrossRef]
- Tran, H.; Khoshelham, K. A Stochastic Approach to Automated Reconstruction of 3D Models of Interior Spaces from Point Clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-2/W5, 299–306. [Google Scholar] [CrossRef]














| Approach | Non-Manhattan Structures | Multiple Rooms | Room Segmentation | Full 3D Models | Slanted Ceilings | DL | ||
|---|---|---|---|---|---|---|---|---|
| SE | D | W | ||||||
| Okorn et al. [8] | × | √ | × | × | × | × | × | × |
| Sanchez and Zakhor [15] | √ | √ | × | √ | × | × | × | × |
| Previtali et al. [13] | √ | × | × | √ | √ | √ | × | × |
| Xiao and Furukawa [17] | × | √ | × | √ | × | × | × | × |
| Diaz-Vilarino et al. [14] | √ | × | × | √ | √ | × | × | × |
| Mura et al. [20] | √ | √ | √ | √ | × | × | √ | × |
| Ochmann et al. [21] | √ | √ | √ | √ | × | × | × | × |
| Ambrus et al. [9] | √ | √ | √ | × | × | × | × | × |
| Jung et al. [10] | √ | √ | √ | × | × | × | × | × |
| S. A. Prieto et al. [18] | √ | √ | × | √ | √ | √ | × | × |
| Murali et al. [22] | × | √ | √ | √ | √ | × | × | × |
| Ochmann et al. [24] | √ | √ | √ | √ | × | × | × | √ |
| Proposed Approach | √ | √ | √ | √ | √ | √ | √ | √ |
| # | Dataset | Sensor | Resolution (mm) | # Rooms | Clutter | Manhattan World | Slanted Ceiling |
|---|---|---|---|---|---|---|---|
| 1 | Hallway | BLK360 | 0.5 | 1 | Low | Yes | No |
| 2 | Fire Brigade | Leica C10 | 3.7 | 9 | High | Yes | No |
| 3 | Room 2 | Faro Focus | 2.2 | 1 | High | Yes | No |
| 4 | Office 2 | 1.0 | 6 | High | No | No | |
| 5 | Cottage | 0.7 | 7 | Moderate | Yes | Yes | |
| 6 | Grainger Museum | Zeb Revo RT | 2.9 | 18 | High | No | No |
| 7 | CETL dataset | BLK360 | 0.5 | 5 | High | Yes | No |
| Coefficient | Completeness (%) | Correctness (%) | Accuracy (cm) |
|---|---|---|---|
| eps = 0.03 | 89.5 | 90.1 | 3.1 |
| eps = 0.06 (Chosen) | 97.6 | 98.2 | 2.4 |
| eps = 0.12 | 90.8 | 98.2 | 2.9 |
| Density radius = 0.04 | 94.2 | 95.1 | 2.8 |
| Density radius = 0.08 (Chosen) | 97.6 | 98.2 | 2.4 |
| Density radius = 0.16 | 92.7 | 93.5 | 2.7 |
| Opening projection = 0.5 m | 93.4 | 94.0 | 2.9 |
| Opening projection = 1.0 m (Chosen) | 97.6 | 98.2 | 2.4 |
| Opening projection = 2 m | 92.8 | 93.2 | 2.8 |
| Histogram threshold = 25 pts | 88.9 | 89.7 | 3.3 |
| Histogram threshold = 50 pts (Chosen) | 97.6 | 98.2 | 2.4 |
| Histogram threshold = 100 pts | 90.1 | 91.0 | 2.9 |
| Configuration | Completeness (%) | Correctness (%) | Accuracy (cm) | Remarks |
|---|---|---|---|---|
| (a) RandLA-Net only (no density prefilter) | 90.4 | 91.2 | 3.3 | Scene clutter and small isolated clusters reduce wall segmentation quality. |
| (b) Density-filtered + RandLA-Net (Proposed) | 97.6 | 98.1 | 2.4 | Prefiltering removes outliers and clutter, yielding smoother wall masks and improved ceiling detection. |
| (c) RANSAC without semantic/density masks | 91.0 | 92.3 | 3.1 | Unmasked fitting captures furniture and noisy patches as false planes. |
| (d) RANSAC with semantic + density masks (Proposed) | 97.3 | 97.9 | 2.5 | Masking confines plane fitting to valid structural points, increasing continuity of walls and ceilings. |
| (e) Opening detection without histogram refinement | 88.9 | 90.1 | 3.5 | Misses narrow openings and over-detects spurious voids in cluttered areas. |
| (f) Opening detection with histogram refinement (Proposed) | 96.7 | 97.6 | 2.6 | Histogram refinement removes noise while preserving genuine doors and windows. |
| Opening Type | Precision (%) | Recall (%) | F1-Score (%) |
|---|---|---|---|
| Doors | 96.5 | 94.2 | 95.3 |
| Windows | 94.1 | 92.8 | 93.4 |
| Scene | Door | Window | ||
|---|---|---|---|---|
| P (%) | R (%) | P (%) | R (%) | |
| CETL dataset | 97.2 | 95.6 | 95.1 | 94.3 |
| Hallway | 96.1 | 94.7 | 93.5 | 100 |
| Fire Brigade | 95.3 | 93.4 | 91.8 | 90.7 |
| Room 2 | 94.8 | 92.1 | 90.4 | 89.6 |
| Office 2 | 90.5 | 92.3 | 87.1 | 100 |
| Cottage | 93.8 | 91.5 | 89.4 | 88.6 |
| Grainger Museum | 89.1 | 87.9 | 86.8 | 85.4 |
| Dataset/Specs | Partitions | Completeness (%) | Correctness (%) | Accuracy |
|---|---|---|---|---|
| CETL dataset | 5 | 99.6 | 98.5 | 4.16 cm |
| Hallway | 1 | 95.4 | 98.1 | 7.5 cm |
| Fire Brigade | 3 | 98.6 | 96.6 | 9.6 cm |
| Room 2 | 1 | 98.2 | 97.5 | 8.4 cm |
| Office 2 | 6 | 97.6 | 98.1 | 2.4 cm |
| Cottage | 7 | 97.8 | 98.2 | 1.3 cm |
| Grainger Museum | 15 | 86.6 | 84.8 | 8.0 cm |
| Authors | Affiliation | Completeness | Correctness | Accuracy @10 cm |
|---|---|---|---|---|
| Maset et al. [31] | Udine University | 0.63 | 0.36 | 4.84 |
| Ochhmann et al. [24] | University of Bonn | 0.65 | 0.13 | 2.79 |
| Tran et al. [28] | University of Melbourne | 0.96 | 0.29 | 1.41 |
| Tran & Khoshelham [32] | University of Melbourne | 0.78 | 0.35 | 2.59 |
| Ours | Cairo University | 0.98 | 0.96 | 9.6 |
| Scene | Clustering (min) | DL Inference (min) | RANSAC Plane Fitting (min) | Total Runtime (min) | Peak Memory (GB) |
|---|---|---|---|---|---|
| Our dataset | 5 | 13.5 | 9.5 | 28.0 | 12.0 |
| Hallway | 1 | 2.5 | 2.5 | 6.0 | 6.0 |
| Fire Brigade | 3 | 8.5 | 6 | 17.5 | 10.0 |
| Room 2 | 1 | 2.5 | 2.5 | 6.0 | 6.0 |
| Office 2 | 6 | 16.2 | 11.8 | 34.0 | 13.0 |
| Cottage | 7 | 18.9 | 13.8 | 39.7 | 14.0 |
| Grainger Museum | 15 | 41 | 31 | 87.0 | 18.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hany, Y.; Ahmed, W.; Elshazly, A.; Senousi, A.M.; Darwish, W. Automated 3D Reconstruction of Interior Structures from Unstructured Point Clouds. ISPRS Int. J. Geo-Inf. 2025, 14, 428. https://doi.org/10.3390/ijgi14110428
Hany Y, Ahmed W, Elshazly A, Senousi AM, Darwish W. Automated 3D Reconstruction of Interior Structures from Unstructured Point Clouds. ISPRS International Journal of Geo-Information. 2025; 14(11):428. https://doi.org/10.3390/ijgi14110428
Chicago/Turabian StyleHany, Youssef, Wael Ahmed, Adel Elshazly, Ahmad M. Senousi, and Walid Darwish. 2025. "Automated 3D Reconstruction of Interior Structures from Unstructured Point Clouds" ISPRS International Journal of Geo-Information 14, no. 11: 428. https://doi.org/10.3390/ijgi14110428
APA StyleHany, Y., Ahmed, W., Elshazly, A., Senousi, A. M., & Darwish, W. (2025). Automated 3D Reconstruction of Interior Structures from Unstructured Point Clouds. ISPRS International Journal of Geo-Information, 14(11), 428. https://doi.org/10.3390/ijgi14110428

