Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,265)

Search Parameters:
Keywords = city-rating system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1165 KiB  
Article
Simulation of the Adsorption Bed Process of Activated Carbon with Zinc Chloride from Spent Coffee Grounds for the Removal of Parabens in Treatment Plants
by Wagner Vedovatti Martins, Adriele Rodrigues Dos Santos, Gideã Taques Tractz, Lucas Bonfim-Rocha, Ana Paula Peron and Osvaldo Valarini Junior
Processes 2025, 13(8), 2481; https://doi.org/10.3390/pr13082481 - 6 Aug 2025
Abstract
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human [...] Read more.
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human homeostasis and the endocrine system. This study conducted a transport and dimensional analysis through simulation of the adsorption process for these parabens, using zinc chloride-activated carbon derived from spent coffee grounds (ACZnCl2) as the adsorbent, implemented via Aspen Properties® and Aspen Adsorption®. Simulations were performed for two inlet concentrations (50 mg/L and 100 mg/L) and two adsorption column heights (3 m and 4 m), considering a volumetric flow rate representative of a medium-sized city with approximately 100,000 inhabitants. The results showed that both density and surface tension of the parabens varied linearly with increasing temperature, and viscosity exhibited a marked reduction above 30 °C. Among the tested conditions, the configuration with 50 mg∙L−1 inlet concentration and a 4 m column height demonstrated the highest adsorption capacity and better performance under adsorption–desorption equilibrium. These findings indicate that the implementation of adsorption beds on an industrial scale in water and wastewater treatment systems is both environmentally and socially viable. Full article
Show Figures

Figure 1

26 pages, 6220 KiB  
Article
Estimating Urbanization’s Impact on Soil Erosion: A Global Comparative Analysis and Case Study of Phoenix, USA
by Ara Jeong, Dylan S. Connor, Ronald I. Dorn and Yeong Bae Seong
Land 2025, 14(8), 1590; https://doi.org/10.3390/land14081590 - 4 Aug 2025
Viewed by 172
Abstract
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization [...] Read more.
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization frequently leads to soil erosion. Despite recognition of this tension, the rate at which the urban growth boundary accelerates soil erosion above natural background levels has not yet been determined. Our goal here is to provide a first broad estimate of urbanization’s impact of soil erosion. By combining data on modern erosion levels with techniques for estimating long-term natural erosion rates through cosmogenic nuclide 10Be analysis, we modeled the impact of urbanization on erosion across a range of cities in different global climates, revealing an acceleration of soil erosion ~7–19x in environments with mean annual precipitation <1500 mm; growth in wetter urban centers accelerated soil erosion ~23–72x. We tested our statistical model by comparing natural erosion rates to decades of monitoring soil erosion on the margins of Phoenix, USA. A century-long expansion of Phoenix accelerated soil erosion by ~12x, an estimate that is roughly at the mid-point of model projections for drier global cities. In addition to urban planning implications of being able to establish a baseline target of natural rates of soil erosion, our findings support the urban cycle of soil erosion theory for the two USA National Science Foundation urban long-term ecological research areas of Baltimore and Phoenix. Full article
Show Figures

Figure 1

25 pages, 7131 KiB  
Article
Spatiotemporal Patterns of Non-Communicable Disease Mortality in the Metropolitan Area of the Valley of Mexico, 2000–2019
by Constantino González-Salazar, Kathia Gasca-Gómez and Omar Cordero-Saldierna
Diseases 2025, 13(8), 241; https://doi.org/10.3390/diseases13080241 - 1 Aug 2025
Viewed by 324
Abstract
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal [...] Read more.
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal patterns of NCD mortality in the Metropolitan Area of the Valley of Mexico (MAVM) from 2000 to 2019 for five International Classification of Diseases chapters (4, 5, 6, 9, and 10) at two spatial scales: the municipal level and metropolitan region. Methods: Mortality rates were calculated for the total population and stratified by sex and age groups at both spatial scales. In addition, the relative risk (RR) of mortality was estimated to identify vulnerable population groups and regions with a high risk of mortality, using women and the 25–34 age group as reference categories for population-level analysis, and the overall MAVM mortality rate as the reference for municipal-level analysis. Results: Mortality trends showed that circulatory-system diseases (Chapter 9) are emerging as a concerning health issue, with 45 municipalities showing increasing mortality trends, especially among older adults. Respiratory-system diseases (Chapter 10), mental and behavioral disorders (Chapter 5) and nervous-system diseases (Chapter 6) predominantly did not exhibit a consistent general mortality trend. However, upon disaggregating by sex and age groups, specific negative or positive trends emerged at the municipal level for some of these chapters or subgroups. Endocrine, nutritional, and metabolic diseases (Chapter 4) showed a complex pattern, with some age groups presenting increasing mortality trends, and 52 municipalities showing increasing trends overall. The RR showed men and older age groups (≥35 years) exhibiting higher mortality risks. The temporal trend of RR allowed us to identify spatial mortality hotspots mainly in chapters related to circulatory, endocrine, and respiratory diseases, forming four geographical clusters in Mexico City that show persistent high risk of mortality. Conclusions: The spatiotemporal analysis highlights municipalities and vulnerable populations with a consistently elevated mortality risk. These findings emphasize the need for monitoring NCD mortality patterns at both the municipal and metropolitan levels to address disparities and guide the implementation of health policies aimed at reducing mortality risk in vulnerable populations. Full article
Show Figures

Figure 1

17 pages, 2601 KiB  
Article
Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach
by Juntao Liu, Zhexiu Yu, Xihui Li, Ling Zhou, Ruihui Wang and Weihua Zhang
Plants 2025, 14(15), 2351; https://doi.org/10.3390/plants14152351 - 30 Jul 2025
Viewed by 332
Abstract
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from [...] Read more.
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from seedling forests grown in the Suxian District of Chenzhou City in southern Hunan Province, we conducted pre-selection, primary selection, and re-selection of Vernicia montana forest stands and took the nine trait indices of single-plant fruiting quantity, single-plant fruit yield, disease and pest resistance, fruit ripening consistency, fruit aggregation, fresh fruit single-fruit weight, fresh fruit seed rate, dry seed kernel rate, and seed kernel oil content rate as the optimal evaluation indexes and carried out cluster analysis and a comprehensive evaluation in order to establish a comprehensive evaluation system for superior Vernicia montana trees. The results demonstrated that a three-stage selection process—consisting of pre-selection, primary selection, and re-selection—was conducted using a comprehensive analytical approach. The pre-selection phase relied primarily on sensory evaluation criteria, including fruit count per plant, tree size, tree morphology, and fruit clustering characteristics. Through this rigorous screening process, 60 elite plants were selected. The primary selection was based on phenotypic traits, including single-plant fruit yield, pest and disease resistance, and uniformity of fruit ripening. From this stage, 36 plants were selected. Twenty plants were then selected for re-selection based on key performance indicators, such as fresh fruit weight, fresh fruit seed yield, dry seed kernel yield, and oil content of the seed kernel. Then the re-selected optimal trees were clustered and analyzed into three classes, with 10 plants in class I, 7 plants in class II, and 3 plants in class III. In class I, the top three superior plants exhibited outstanding performance across key traits: their fresh fruit weight per fruit, fresh fruit seed yield, dry seed yield, and seed kernel oil content reached 41.61 g, 42.80%, 62.42%, and 57.72%, respectively. Compared with other groups, these figures showed significant advantages: 1.17, 1.09, 1.12, and 1.02 times the average values of the 20 reselected superior trees; 1.22, 1.19, 1.20, and 1.08 times those of the 36 primary-selected superior trees; and 1.24, 1.25, 1.26, and 1.19 times those of the 60 pre-selected trees. Fruits counts per plant and the number of fruits produced per plant of the best three plants in class I were 885 and 23.38 kg, respectively, which were 1.13 and 1.18 times higher than the average of 20 re-selected superior trees, 1.25 and 1.30 times higher than the average of 36 first-selected superior trees, and 1.51 and 1.58 times higher than the average of 60 pre-selected superior trees. Class I superior trees, especially the top three genotypes, are suitable for use as mother trees for scion collection in grafting. The findings of this study provide a crucial foundation for developing superior clonal varieties of Vernicia montana through selective breeding. Full article
Show Figures

Figure 1

25 pages, 3868 KiB  
Article
From Research to Design: Enhancing Mental Well-Being Through Quality Public Green Spaces in Beirut
by Mariam Raad, Georgio Kallas, Falah Assadi, Nina Zeidan, Victoria Dawalibi and Alessio Russo
Land 2025, 14(8), 1558; https://doi.org/10.3390/land14081558 - 29 Jul 2025
Viewed by 244
Abstract
The global rise in urban-related health issues poses significant challenges to public health, particularly in cities facing socio-economic crises. In Lebanon, 70% of the population is experiencing financial hardship, and healthcare costs have surged by 172%, exacerbating the strain on medical services. Given [...] Read more.
The global rise in urban-related health issues poses significant challenges to public health, particularly in cities facing socio-economic crises. In Lebanon, 70% of the population is experiencing financial hardship, and healthcare costs have surged by 172%, exacerbating the strain on medical services. Given these conditions, improving the quality and accessibility of green spaces offers a promising avenue for alleviating mental health issues in urban areas. This study investigates the psychological impact of nine urban public spaces in Beirut through a comprehensive survey methodology, involving 297 participants (locals and tourists) who rated these spaces using Likert-scale measures. The findings reveal location-specific barriers, with Saanayeh Park rated highest in quality and Martyr’s Square rated lowest. The analysis identifies facility quality as the most significant factor influencing space quality, contributing 73.6% to the overall assessment, while activity factors have a lesser impact. The study further highlights a moderate positive association (Spearman’s rho = 0.30) between public space quality and mental well-being in Beirut. This study employs a hybrid methodology combining Research for Design (RfD) and Research Through Designing (RTD). Empirical data informed spatial strategies, while iterative design served as a tool for generating context-specific knowledge. Design enhancements—such as sensory plantings, shading systems, and social nodes—aim to improve well-being through better public space quality. The proposed interventions support mental health, life satisfaction, climate resilience, and urban inclusivity. The findings offer actionable insights for cities facing public health and spatial equity challenges in crisis contexts. Full article
Show Figures

Figure 1

19 pages, 3492 KiB  
Article
Deep Learning-Based Rooftop PV Detection and Techno Economic Feasibility for Sustainable Urban Energy Planning
by Ahmet Hamzaoğlu, Ali Erduman and Ali Kırçay
Sustainability 2025, 17(15), 6853; https://doi.org/10.3390/su17156853 - 28 Jul 2025
Viewed by 253
Abstract
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is [...] Read more.
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is estimated using deep learning models. In order to identify roof areas, high-resolution open-source images were manually labeled, and the training dataset was trained with DeepLabv3+ architecture. The developed model performed roof area detection with high accuracy. Model outputs are integrated with a user-friendly interface for economic analysis such as cost, profitability, and amortization period. This interface automatically detects roof regions in the bird’s-eye -view images uploaded by users, calculates the total roof area, and classifies according to the potential of the area. The system, which is applied in 81 provinces of Turkey, provides sustainable energy projections such as PV installed capacity, installation cost, annual energy production, energy sales revenue, and amortization period depending on the panel type and region selection. This integrated system consists of a deep learning model that can extract the rooftop area with high accuracy and a user interface that automatically calculates all parameters related to PV installation for energy users. The results show that the DeepLabv3+ architecture and the Adam optimization algorithm provide superior performance in roof area estimation with accuracy between 67.21% and 99.27% and loss rates between 0.6% and 0.025%. Tests on 100 different regions yielded a maximum roof estimation accuracy IoU of 84.84% and an average of 77.11%. In the economic analysis, the amortization period reaches the lowest value of 4.5 years in high-density roof regions where polycrystalline panels are used, while this period increases up to 7.8 years for thin-film panels. In conclusion, this study presents an interactive user interface integrated with a deep learning model capable of high-accuracy rooftop area detection, enabling the assessment of sustainable PV energy potential at the city scale and easy economic analysis. This approach is a valuable tool for planning and decision support systems in the integration of renewable energy sources. Full article
Show Figures

Figure 1

12 pages, 277 KiB  
Article
Risk Factors for Latent Tuberculosis Identified Using Epidemiological Investigation in Congregate Settings of Gyeongsan City, Republic of Korea (2014–2023)
by Seonyeong Park and Kwan Lee
Pathogens 2025, 14(8), 740; https://doi.org/10.3390/pathogens14080740 - 27 Jul 2025
Viewed by 374
Abstract
Latent tuberculosis infection (LTBI) remains an important public health issue, as individuals can harbor Mycobacterium tuberculosis without symptoms and later develop active disease. This study aimed to assess the prevalence and risk factors associated with LTBI positivity among tuberculosis (TB) contacts in congregate [...] Read more.
Latent tuberculosis infection (LTBI) remains an important public health issue, as individuals can harbor Mycobacterium tuberculosis without symptoms and later develop active disease. This study aimed to assess the prevalence and risk factors associated with LTBI positivity among tuberculosis (TB) contacts in congregate settings in Gyeongsan City, the Republic of Korea (ROK), from 2014 to 2023. A total of 213 index cases and 3666 contacts were analyzed using data from the Korea Tuberculosis Infection Control System (KTB-NET). Overall, 20.7% of contacts tested positive for LTBI, with the highest rates observed among contacts aged ≥65 years (50.4%) and in healthcare facilities (34.8%). Binary logistic regression analyses revealed that age ≥65 years (OR: 2.93; 95% CI: 1.95–4.39; p < 0.001), social welfare facilities (OR: 2.75; 95% CI: 2.10–3.58; p < 0.001), workplaces (OR: 2.42; 95% CI: 1.88–3.10; p < 0.001), and healthcare facilities (OR: 3.42; 95% CI: 2.63–4.43; p < 0.001) were significantly associated with increased LTBI risk. These findings highlight the importance of targeted interventions and prevention strategies focused on older adults and high-risk groups to prevent future TB outbreaks by reducing the burden of LTBI. Full article
(This article belongs to the Special Issue Feature Papers on the Epidemiology of Infectious Diseases)
Show Figures

Figure 1

26 pages, 1234 KiB  
Article
Joint Optimization of DCCR and Energy Efficiency in Active STAR-RIS-Assisted UAV-NOMA Networks
by Yan Zhan, Yi Hong, Deying Li, Chuanwen Luo and Xin Fan
Drones 2025, 9(8), 520; https://doi.org/10.3390/drones9080520 - 24 Jul 2025
Viewed by 204
Abstract
This paper investigated the issues of unstable data collection links and low efficiency in IoT data collection for smart cities by combining active STAR-RIS with UAVs to enhance channel quality, achieving efficient data collection in complex environments. To this end, we propose an [...] Read more.
This paper investigated the issues of unstable data collection links and low efficiency in IoT data collection for smart cities by combining active STAR-RIS with UAVs to enhance channel quality, achieving efficient data collection in complex environments. To this end, we propose an active simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted UAV-enabled NOMA data collection system that jointly optimizes active STAR-RIS beamforming, SN power allocation, and UAV trajectory to maximize the system energy efficiency (EE) and the data complete collection rate (DCCR). We apply block coordinate ascent (BCA) to decompose the non-convex problem into three alternating subproblems: combined beamforming optimization of phase shift and amplification gain matrices, power allocation, and trajectory optimization, which are iteratively processed through successive convex approximation (SCA) and fractional programming (FP) methods, respectively. Simulation results demonstrate the proposed algorithm’s rapid convergence and significant advantages over conventional NOMA and OMA schemes in both throughput rate and DCCR. Full article
Show Figures

Figure 1

24 pages, 4108 KiB  
Article
Examination of the Coordination and Impediments of Rural Socio-Economic-Spatial Coupling in Western Hunan from the Standpoint of Sustainable Development
by Chengjun Tang, Tian Qiu, Shaoyao He, Wei Zhang, Huizi Zeng and Yiling Li
Sustainability 2025, 17(15), 6691; https://doi.org/10.3390/su17156691 - 22 Jul 2025
Viewed by 208
Abstract
Clarifying the coordination and impediments of social, economic, and spatial connection in rural areas is essential for advancing rural revitalization, urban-rural integration, and regional coordinated development. Utilizing the 24 counties and districts in western Hunan as case studies, we developed an evaluation index [...] Read more.
Clarifying the coordination and impediments of social, economic, and spatial connection in rural areas is essential for advancing rural revitalization, urban-rural integration, and regional coordinated development. Utilizing the 24 counties and districts in western Hunan as case studies, we developed an evaluation index system for sustainable rural development across three dimensions: social, economic, and spatial. We employed the coupling model, coordination model, and obstacle factor model to investigate the comprehensive development level, coupling and coordination status, and obstacle factors of the villages in the study area at three temporal points: 2002, 2012, and 2022. The findings indicate the following: (1) The degree of rural development in western Hunan has escalated swiftly throughout the study period, transitioning from relative homogeneity to a heterogeneous developmental landscape, accompanied by issues such as inadequate development and regional polarization. (2) The overall rural social, economic, and spatial indices are low, and the degree of coupling has increased variably across different study periods; the average coordination degree has gradually improved over time, yet the level of coordination remains low, and spatial development is unbalanced. (3) The criterion-level impediments hindering the sustainable development of rural society, economy, and space are, in descending order, social factors, spatial factors, and economic factors. The urbanization rate, total fixed investment rate, and arable land change rate are the primary impediments in most counties and cities. The study’s findings will inform the planning of rural development in ethnic regions, promote sustainable social and spatial advancement in the countryside, and serve as a reference for rural revitalization efforts. Full article
Show Figures

Figure 1

29 pages, 6649 KiB  
Article
Optimizing Kang-to-Room Area Ratios for Thermal Comfort in Traditional Chinese Architecture: An Empirical and Simulation-Based Approach
by Ning Li, Zhihua Zhao, Dongxu Wang, Qian Zhang and Lin Li
Buildings 2025, 15(15), 2593; https://doi.org/10.3390/buildings15152593 - 22 Jul 2025
Viewed by 223
Abstract
Traditional Chinese Kang heating systems have been used for over two millennia in northern China, yet their thermal efficiency and optimal design parameters lack scientific validation. This study aims to establish evidence-based guidelines for Kang-to-room area ratios to enhance thermal comfort and energy [...] Read more.
Traditional Chinese Kang heating systems have been used for over two millennia in northern China, yet their thermal efficiency and optimal design parameters lack scientific validation. This study aims to establish evidence-based guidelines for Kang-to-room area ratios to enhance thermal comfort and energy efficiency in rural architecture. We conducted direct measurements in a controlled experimental house (24 m2) in Huludao City, collecting temperature and humidity data from Kang surfaces and interior spaces over five-day periods. A benchmark curve for heat flux density was developed based on specific fuelwood consumption rates (1 kg/m2). TRNSYS simulations were employed to validate experimental data and analyze thermal performance in the historical Qingning Palace (352 m2) at Shenyang Imperial Palace. The benchmark curve demonstrated high accuracy with a Mean Absolute Error of 0.46 °C and Root Mean Square Error of 0.53 °C when compared to measured temperatures over the 48 h validation period; these values are well within acceptable ranges for calibrated thermal models. Simulations revealed optimal thermal comfort conditions when heat dissipation parameters were scaled appropriately for building size. The optimal Kang-to-room area ratio ranges from 0.28 to 0.69, with the existing Qingning Palace ratio (0.34) falling within this range, validating traditional design wisdom. This research provides a scientific foundation for sustainable architectural practices, bridging traditional knowledge with contemporary thermal engineering principles for both heritage preservation and modern rural construction applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 6510 KiB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 365
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

23 pages, 433 KiB  
Article
An Empirical Investigation on How Population Aging Affects Economic Development: A Panel Data Analysis of 16 Prefecture-Level Cities in Anhui, China
by Shaolong Zeng, Yun Ding, Chenfang Fu, Wenbo Lv and Fanghao Yu
Sustainability 2025, 17(14), 6578; https://doi.org/10.3390/su17146578 - 18 Jul 2025
Viewed by 296
Abstract
In recent years, studies that examine the relationship between economic development and population change have drawn more attention from the academic community. The intrinsic links between changes in age structure and economic development rates at the macro-national level as well as specific regional [...] Read more.
In recent years, studies that examine the relationship between economic development and population change have drawn more attention from the academic community. The intrinsic links between changes in age structure and economic development rates at the macro-national level as well as specific regional aspects have been the subject of extensive theoretical analysis and empirical investigations by numerous academics. Using panel data from 16 prefecture-level cities in Anhui Province between 2010 and 2023, this study investigates the impact of population aging on economic growth and its underlying mechanisms. This is obtained by using benchmark regression, the instrumental variable method (2SLS), mediation effect testing, and regional heterogeneity analysis. The study’s main conclusions are as follows: (1) Anhui Province’s population aging has a negative impact on economic growth; (2) the income gap between urban and rural areas is a significant mediating factor in the relationship between population aging and economic growth; and (3) there is significant regional variation among the 16 prefectural-level cities in Anhui Province. To lessen the negative effects of population aging on economic growth, Anhui Province must implement coordinated and integrated efforts to improve the social security system, accelerate industrial development, and lessen the gap between urban and rural areas. Full article
(This article belongs to the Special Issue Demographic Change and Sustainable Development)
Show Figures

Figure 1

21 pages, 4414 KiB  
Article
Rural Renewable Energy Resources Assessment and Electricity Development Scenario Simulation Based on the LEAP Model
by Hai Jiang, Haoshuai Jia, Yong Qiao, Wenzhi Liu, Yijun Miao, Wuhao Wen, Ruonan Li and Chang Wen
Energies 2025, 18(14), 3724; https://doi.org/10.3390/en18143724 - 14 Jul 2025
Viewed by 271
Abstract
This study combines convolutional neural network (CNN) recognition technology, Greenwich engineering software, and statistical yearbook methods to evaluate rural solar, wind, and biomass energy resources in pilot cities in China, respectively. The CNN method enables the rapid identification of the available roof area, [...] Read more.
This study combines convolutional neural network (CNN) recognition technology, Greenwich engineering software, and statistical yearbook methods to evaluate rural solar, wind, and biomass energy resources in pilot cities in China, respectively. The CNN method enables the rapid identification of the available roof area, and Greenwich software provides wind resource simulation with local terrain adaptability. The results show that the capacity of photovoltaic power generation reaches approximately 15.63 GW, the potential of wind power is 458.3 MW, and the equivalent of agricultural waste is 433,900 tons of standard coal. The city is rich in wind, solar, and biomass resources. By optimizing the hybrid power generation system through genetic algorithms, wind energy, solar energy, biomass energy, and coal power are combined to balance the annual electricity demand in rural areas. The energy trends under different demand growth rates were predicted through the LEAP model, revealing that in the clean coal scenario of carbon capture (WSBC-CCS), clean coal power and renewable energy will dominate by 2030. Carbon dioxide emissions will peak in 2024 and return to the 2020 level between 2028 and 2029. Under the scenario of pure renewable energy (H_WSB), SO2/NOx will be reduced by 23–25%, and carbon dioxide emissions will approach zero. This study evaluates the renewable energy potential, power system capacity optimization, and carbon emission characteristics of pilot cities at a macro scale. Future work should further analyze the impact mechanisms of data sensitivity on these assessment results. Full article
(This article belongs to the Special Issue Recent Advances in Renewable Energy and Hydrogen Technologies)
Show Figures

Figure 1

14 pages, 355 KiB  
Article
Distribution and Determinants of Antibiotic Self-Medication: A Cross-Sectional Study in Chinese Residents
by Guo Huang, Pu Ge, Mengyun Sui, He Zhu, Sheng Han and Luwen Shi
Antibiotics 2025, 14(7), 701; https://doi.org/10.3390/antibiotics14070701 - 12 Jul 2025
Viewed by 475
Abstract
Antimicrobial resistance (AMR) represents a critical global health threat, with inappropriate antibiotic self-medication (ASM) being a key contributor. China—as the world’s largest antibiotic consumer—faces significant challenges despite regulatory efforts, compounded by limited contemporary data during the COVID-19 pandemic. A nationwide cross-sectional study was [...] Read more.
Antimicrobial resistance (AMR) represents a critical global health threat, with inappropriate antibiotic self-medication (ASM) being a key contributor. China—as the world’s largest antibiotic consumer—faces significant challenges despite regulatory efforts, compounded by limited contemporary data during the COVID-19 pandemic. A nationwide cross-sectional study was conducted using the 2021 China Family Health Index Survey (n = 11,031 participants across 120 cities). Trained investigators administered face-to-face questionnaires assessing ASM practices, decision-making factors, and sociodemographic characteristics. Multivariate logistic regression identified determinants of ASM. Overall, ASM prevalence was 33.7% (n = 3717), with no urban-rural difference (p > 0.05). Physician advice (78.2%), drug safety (67.1%), and efficacy (64.2%) were primary selection criteria; rural residents prioritized drug price and salesperson recommendations more than their urban counterparts (p < 0.01). Key predictors included higher ASM odds among females (OR = 1.30, 95%CI:1.18–1.43), middle-aged adults (46–59 years; OR = 1.20, 95%CI:1.02–1.42), those with health insurance (resident: OR = 1.33; commercial: OR = 1.62), and individuals with drinking histories (OR = 1.20, 95%CI:1.10–1.31). Lower odds were associated with primary education (OR = 0.69, 95%CI:0.58–0.81), unemployment (OR = 0.88, 95%CI:0.79–0.98), and absence of chronic diseases (OR = 0.56, 95%CI:0.47–0.67). One-third of Chinese residents engaged in ASM during the pandemic, driven by intersecting demographic and behavioral factors. Despite converging urban-rural prevalence rates, distinct decision-making drivers necessitate context-specific interventions, including strengthened pharmacy regulation in rural areas, tailored education programs for high-risk groups, and insurance system reforms to disincentivize self-medication. Full article
(This article belongs to the Special Issue Antibiotic Use in the Communities—2nd Edition)
Show Figures

Figure 1

10 pages, 2030 KiB  
Proceeding Paper
Enhancing Urban Resource Management Through Urban and Peri-Urban Agriculture
by Asmaa Moussaoui, Hicham Bahi, Imane Sebari and Kenza Ait El Kadi
Eng. Proc. 2025, 94(1), 6; https://doi.org/10.3390/engproc2025094006 - 10 Jul 2025
Viewed by 266
Abstract
Urbanization is one of the most important challenges contributing to the trend of replacing agricultural land with high-value land uses, such as housing, as well as industrial and commercial activities, as a result of significant population growth. To face these challenges and improve [...] Read more.
Urbanization is one of the most important challenges contributing to the trend of replacing agricultural land with high-value land uses, such as housing, as well as industrial and commercial activities, as a result of significant population growth. To face these challenges and improve urban sustainability, integrating an embedded concept of spatial planning, taking into account urban and peri-urban agriculture, will contribute to mitigating food security issues and the negative impact of climate change, while improving social and economic development. This project aims to analyze land use/cover changes in the Casablanca metropolitan area and its surrounding cities, which are undergoing rapid urban growth. To achieve this, time series of remote sensing data were analyzed in order to investigate the spatio-temporal changes in LU/LC and to evaluate the dynamics and spatial pattern of the city’s expansion over the past three decades, which has come at the expense of agricultural land. The study will also examine the relationship between urbanization and agricultural land use change over time. The results of this study show that Casablanca and its outskirts experience significant urban expansion and a decline in arable lands, with rates of 45% and 42%, respectively. The analysis of SDG indicator 11.3.1 has also shown that land consumption in the provinces of Mediouna, Mohammadia, and Nouaceur has exceeded population growth, due to rapid, uncontrolled urbanization at the expense of agricultural land, which highlights the need to develop a new conceptual framework for regenerating land systems based on the implementation of urban and peri-urban agriculture in vacant sites within urban and peri-urban areas. This will offer valuable insights for policymakers to investigate measures that can ensure sustainable land use planning strategies that effectively integrate agriculture into urban development. Full article
Show Figures

Figure 1

Back to TopTop