Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,908)

Search Parameters:
Keywords = city nature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2523 KiB  
Technical Note
A Technical Note on AI-Driven Archaeological Object Detection in Airborne LiDAR Derivative Data, with CNN as the Leading Technique
by Reyhaneh Zeynali, Emanuele Mandanici and Gabriele Bitelli
Remote Sens. 2025, 17(15), 2733; https://doi.org/10.3390/rs17152733 - 7 Aug 2025
Abstract
Archaeological research fundamentally relies on detecting features to uncover hidden historical information. Airborne (aerial) LiDAR technology has significantly advanced this field by providing high-resolution 3D terrain maps that enable the identification of ancient structures and landscapes with improved accuracy and efficiency. This technical [...] Read more.
Archaeological research fundamentally relies on detecting features to uncover hidden historical information. Airborne (aerial) LiDAR technology has significantly advanced this field by providing high-resolution 3D terrain maps that enable the identification of ancient structures and landscapes with improved accuracy and efficiency. This technical note comprehensively reviews 45 recent studies to critically examine the integration of Machine Learning (ML) and Deep Learning (DL) techniques, particularly Convolutional Neural Networks (CNNs), with airborne LiDAR derivatives for automated archaeological feature detection. The review highlights the transformative potential of these approaches, revealing their capability to automate feature detection and classification, thus enhancing efficiency and accuracy in archaeological research. CNN-based methods, employed in 32 of the reviewed studies, consistently demonstrate high accuracy across diverse archaeological features. For example, ancient city walls were delineated with 94.12% precision using U-Net, Maya settlements with 95% accuracy using VGG-19, and with an IoU of around 80% using YOLOv8, and shipwrecks with a 92% F1-score using YOLOv3 aided by transfer learning. Furthermore, traditional ML techniques like random forest proved effective in tasks such as identifying burial mounds with 96% accuracy and ancient canals. Despite these significant advancements, the application of ML/DL in archaeology faces critical challenges, including the scarcity of large, labeled archaeological datasets, the prevalence of false positives due to morphological similarities with natural or modern features, and the lack of standardized evaluation metrics across studies. This note underscores the transformative potential of LiDAR and ML/DL integration and emphasizes the crucial need for continued interdisciplinary collaboration to address these limitations and advance the preservation of cultural heritage. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Cultural Heritage Research II)
Show Figures

Figure 1

21 pages, 4581 KiB  
Article
Spatiotemporal Variations and Drivers of the Ecological Footprint of Water Resources in the Yangtze River Delta
by Aimin Chen, Lina Chang, Peng Zhao, Xianbin Sun, Guangsheng Zhang, Yuanping Li, Haojun Deng and Xiaoqin Wen
Water 2025, 17(15), 2340; https://doi.org/10.3390/w17152340 - 6 Aug 2025
Abstract
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial [...] Read more.
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial and temporal scales. In this study, we collected the data and information from the 2005–2022 Statistical Yearbook and Water Resources Bulletin of the Yangtze River Delta Urban Agglomeration (YRDUA), and calculated evaluation indicators: WREF, water resources ecological carrying capacity (WRECC), water resources ecological pressure (WREP), and water resources ecological surplus and deficit (WRESD). We primarily analyzed the temporal and spatial variation in the per capita WREF and used the method of Geodetector to explore factors driving its temporal and spatial variation in the YRDUA. The results showed that: (1) From 2005 to 2022, the per capita WREF (total water, agricultural water, and industrial water) of the YRDUA generally showed fluctuating declining trends, while the per capita WREF of domestic water and ecological water showed obvious growth. (2) The per capita WREF and the per capita WRECC were in the order of Jiangsu Province > Anhui Province > Shanghai City > Zhejiang Province. The spatial distribution of the per capita WREF was similar to those of the per capita WRECC, and most areas effectively consume water resources. (3) The explanatory power of the interaction between factors was greater than that of a single factor, indicating that the spatiotemporal variation in the per capita WREF of the YRDUA was affected by the combination of multiple factors and that there were regional differences in the major factors in the case of secondary metropolitan areas. (4) The per capita WREF of YRDUA was affected by natural resources, and the impact of the ecological condition on the per capita WREF increased gradually over time. The impact factors of secondary metropolitan areas also clearly changed over time. Our results showed that the ecological situation of per capita water resources in the YRDUA is generally good, with obvious spatial and temporal differences. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

26 pages, 2126 KiB  
Systematic Review
Interlinking Urban Sustainability, Circular Economy and Complexity: A Systematic Literature Review
by Walter Antonio Abujder Ochoa, Angela Gabriela Torrico Arce, Alfredo Iarozinski Neto, Mayara Regina Munaro, Oriana Palma Calabokis and Vladimir A. Ballesteros-Ballesteros
Sustainability 2025, 17(15), 7118; https://doi.org/10.3390/su17157118 - 6 Aug 2025
Abstract
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of [...] Read more.
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of 71 peer-reviewed articles published between 2015 and 2025, we analyze conceptual, methodological, and practical articulations across multiple thematic axes, including circular governance, urban metabolism, regenerative design, adaptive planning, digital integration, and environmental justice. Bibliometric and content analyses were conducted using Scopus metadata, VOSviewer for thematic clustering, and the StArt software (Version 3.4) to structure article selection. The findings reveal that circular economy provides practical tools for resource efficiency and regeneration, while complexity theory offers an adaptive framework to navigate uncertainty, emergent behaviors, and feedback dynamics. The synthesis suggests that their integration enables a more holistic and resilient approach to urban transformation. However, gaps remain in social inclusivity, long-term assessment, and the operationalization of complexity-informed planning. This study contributes to advancing a transdisciplinary agenda for circular and adaptive urban futures, offering insights for scholars, planners, and policymakers aiming to reconfigure cities within planetary boundaries. Full article
Show Figures

Figure 1

11 pages, 1226 KiB  
Proceeding Paper
Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing
by Paloma C. Toscan, Alcindo Neckel, Emanuelle Goellner, Marcos L. S. Oliveira and Eduardo N. B. Pereira
Eng. Proc. 2025, 94(1), 15; https://doi.org/10.3390/engproc2025094015 - 5 Aug 2025
Abstract
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first [...] Read more.
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first phase involves mapping pollutants and assessing European guidelines, traditional monitoring methods, and emerging tools such as sensors and satellite data. The findings indicate gaps in spatial coverage, emphasizing the importance of integrating data from Sentinel-3, Sentinel-5P, local sensors, and drones. These insights establish a foundation for the next phase, which involves predictive modeling of NBS, LST, and pollutants using machine learning techniques to support data-driven policy-making. Full article
Show Figures

Figure 1

22 pages, 338 KiB  
Article
Configuration of Subjectivities and the Application of Neoliberal Economic Policies in Medellin, Colombia
by Juan David Villa-Gómez, Juan F. Mejia-Giraldo, Mariana Gutiérrez-Peña and Alexandra Novozhenina
Soc. Sci. 2025, 14(8), 482; https://doi.org/10.3390/socsci14080482 - 5 Aug 2025
Viewed by 200
Abstract
(1) Background: This article aims to understand the forms and elements through which the inhabitants of the city of Medellin have configured their subjectivity in the context of the application of neoliberal policies in the last two decades. In this way, we can [...] Read more.
(1) Background: This article aims to understand the forms and elements through which the inhabitants of the city of Medellin have configured their subjectivity in the context of the application of neoliberal policies in the last two decades. In this way, we can approach the frameworks of understanding that constitute a fundamental part of the individuation processes in which the incorporation of their subjectivities is evidenced in neoliberal contexts that, in the historical process, have been converging with authoritarian, antidemocratic and neoconservative elements. (2) Method: A qualitative approach with a hermeneutic-interpretative paradigm was used. In-depth semi-structured interviews were conducted with 41 inhabitants of Medellín who were politically identified with right-wing or center-right positions. Data analysis included thematic coding to identify patterns of thought and points of view. (3) Results: Participants associate success with individual effort and see state intervention as an obstacle to development. They reject redistributive policies, arguing that they generate dependency. In addition, they justify authoritarian models of government in the name of security and progress, from a moral superiority, which is related to a negative and stigmatizing perception of progressive sectors and a negative view of the social rule of law and public policies with social sense. (4) Conclusions: The naturalization of merit as a guiding principle, the perception of themselves as morally superior based on religious values that grant a subjective place of certainty and goodness; the criminalization of expressions of political leftism, mobilizations and redistributive reforms and support for policies that establish authoritarianism and perpetuate exclusion and structural inequalities, closes roads to a participatory democracy that enables social and economic transformations. Full article
14 pages, 3622 KiB  
Article
Environmental DNA Metabarcoding as a Tool for Fast Fish Assessment in Post-Cleanup Activities: Example from Two Urban Lakes in Zagreb, Croatia
by Matej Vucić, Thomas Baudry, Dušan Jelić, Ana Galov, Željko Pavlinec, Lana Jelić, Biljana Janev Hutinec, Göran Klobučar, Goran Slivšek and Frédéric Grandjean
Fishes 2025, 10(8), 375; https://doi.org/10.3390/fishes10080375 - 4 Aug 2025
Viewed by 149
Abstract
This study evaluated the effectiveness of eDNA metabarcoding in assessing fish communities in two urban lakes (First Lake and Second Lake) in Zagreb, Croatia, following IAS removal. Water samples were collected in April and June 2024 and analyzed using MiFish primers targeting the [...] Read more.
This study evaluated the effectiveness of eDNA metabarcoding in assessing fish communities in two urban lakes (First Lake and Second Lake) in Zagreb, Croatia, following IAS removal. Water samples were collected in April and June 2024 and analyzed using MiFish primers targeting the 12S rRNA gene. The results indicated that the cleanup efforts were largely successful, as several IAS previously recorded in these lakes were not detected (Ameiurus melas, Lepomis gibbosus, and Hypophthalmichthys spp.). However, some others persisted in low relative abundances, such as grass carp (Ctenopharyngodon idella), topmouth gudgeon (Pseudorasbora parva), and prussian/crucian carp (Carassius sp.). Species composition differed between lakes, with common carp (Cyprinus carpio) dominating Maksimir First Lake, while chub (Squalius cephalus) was prevalent in Maksimir Second Lake. Unexpected eDNA signals from salmonid and exotic species suggest potential input from upstream sources, human activity, or the nearby Zoo Garden. These findings underscore the utility of eDNA metabarcoding in biodiversity monitoring and highlight the need for continuous surveillance and adaptive management strategies to ensure long-term IAS control. Full article
Show Figures

Figure 1

26 pages, 6220 KiB  
Article
Estimating Urbanization’s Impact on Soil Erosion: A Global Comparative Analysis and Case Study of Phoenix, USA
by Ara Jeong, Dylan S. Connor, Ronald I. Dorn and Yeong Bae Seong
Land 2025, 14(8), 1590; https://doi.org/10.3390/land14081590 - 4 Aug 2025
Viewed by 172
Abstract
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization [...] Read more.
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization frequently leads to soil erosion. Despite recognition of this tension, the rate at which the urban growth boundary accelerates soil erosion above natural background levels has not yet been determined. Our goal here is to provide a first broad estimate of urbanization’s impact of soil erosion. By combining data on modern erosion levels with techniques for estimating long-term natural erosion rates through cosmogenic nuclide 10Be analysis, we modeled the impact of urbanization on erosion across a range of cities in different global climates, revealing an acceleration of soil erosion ~7–19x in environments with mean annual precipitation <1500 mm; growth in wetter urban centers accelerated soil erosion ~23–72x. We tested our statistical model by comparing natural erosion rates to decades of monitoring soil erosion on the margins of Phoenix, USA. A century-long expansion of Phoenix accelerated soil erosion by ~12x, an estimate that is roughly at the mid-point of model projections for drier global cities. In addition to urban planning implications of being able to establish a baseline target of natural rates of soil erosion, our findings support the urban cycle of soil erosion theory for the two USA National Science Foundation urban long-term ecological research areas of Baltimore and Phoenix. Full article
Show Figures

Figure 1

23 pages, 857 KiB  
Article
Study of the Impact of Agricultural Insurance on the Livelihood Resilience of Farmers: A Case Study of Comprehensive Natural Rubber Insurance
by Jialin Wang, Yanglin Wu, Jiyao Liu and Desheng Zhang
Agriculture 2025, 15(15), 1683; https://doi.org/10.3390/agriculture15151683 - 4 Aug 2025
Viewed by 219
Abstract
Against the backdrop of increasingly frequent extreme weather events and heightened market price volatility, investigating the relationship between agricultural insurance and farmers’ livelihood resilience is crucial for ensuring rural socioeconomic stability. This study utilizes field survey data from 1196 households across twelve county-level [...] Read more.
Against the backdrop of increasingly frequent extreme weather events and heightened market price volatility, investigating the relationship between agricultural insurance and farmers’ livelihood resilience is crucial for ensuring rural socioeconomic stability. This study utilizes field survey data from 1196 households across twelve county-level divisions (three cities and nine counties) from China’s Hainan and Yunnan provinces, specifically in natural rubber-producing regions. Using propensity score matching (PSM), we empirically examine agricultural insurance’s impact on household livelihood resilience. The results demonstrate that agricultural insurance increased the effect on farmers’ livelihood resilience by 1%. This effect is particularly pronounced among recently poverty-alleviated households and large-scale farming operations. Furthermore, the analysis highlights the mediating roles of credit availability, adoption of agricultural production technologies, and production initiative in strengthening insurance’s positive impact. Therefore, policies should be refined and expanded, combining agricultural insurance with credit support and agricultural technology extension to leverage their value and ensure the sustainable development of farm households. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

17 pages, 1783 KiB  
Article
Nature-Based Solutions in Sustainable Cities: Trace Metal Accumulation in Urban Forests of Vienna (Austria) and Krakow (Poland)
by Mateusz Jakubiak, Ewa Panek, Krzysztof Urbański, Sónia Silva Victória, Stanisław Lach, Kamil Maciuk and Marek Kopacz
Sustainability 2025, 17(15), 7042; https://doi.org/10.3390/su17157042 - 3 Aug 2025
Viewed by 239
Abstract
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective [...] Read more.
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective capturing of particulate matter is one of the ecosystem services provided by urban forests. These ecosystems function as efficient biological filters. Plants accumulate pollutants passively via their leaves. Therefore, another ecosystem service provided by city forests could be the use of tree organs as bioindicators of pollution. This paper aims to estimate differences in trace metal pollution between the wooded urban areas of Vienna and Krakow using leaves of evergreen and deciduous trees as biomonitors. An additional objective of the research was to assess the ability of the applied tree species to act as biomonitors. Plant samples of five species—Norway spruce, Scots pine, European larch, common white birch, and common beech—were collected within both areas, in seven locations: four in the “Wienerwald” Vienna forest (Austria) and three in the “Las Wolski” forest in Krakow (Poland). Concentrations of Cr, Cu, Cd, Pb, and Zn in plant material were determined. Biomonitoring studies with deciduous and coniferous tree leaves showed statistically higher heavy metal contamination in the “Las Wolski” forest compared to the “Wienerwald” forest. Based on the conducted analyses and the literature study, it can be concluded that among the analyzed tree species, only two: European beech and common white birch can be considered potential indicators in environmental studies. These species appear to be suitable bioindicators, as both are widespread in urban woodlands of Central Europe and have shown the highest accumulation levels of trace metals. Full article
Show Figures

Figure 1

15 pages, 428 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 487
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

25 pages, 1529 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 - 2 Aug 2025
Viewed by 177
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 242
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

29 pages, 3508 KiB  
Article
Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea
by Grzegorz Augustyn, Jerzy Mikulik, Wojciech Lewicki and Mariusz Niekurzak
Energies 2025, 18(15), 4079; https://doi.org/10.3390/en18154079 - 1 Aug 2025
Viewed by 203
Abstract
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a [...] Read more.
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City. Full article
Show Figures

Figure 1

22 pages, 2120 KiB  
Article
Machine Learning Algorithms and Explainable Artificial Intelligence for Property Valuation
by Gabriella Maselli and Antonio Nesticò
Real Estate 2025, 2(3), 12; https://doi.org/10.3390/realestate2030012 - 1 Aug 2025
Viewed by 214
Abstract
The accurate estimation of urban property values is a key challenge for appraisers, market participants, financial institutions, and urban planners. In recent years, machine learning (ML) techniques have emerged as promising tools for price forecasting due to their ability to model complex relationships [...] Read more.
The accurate estimation of urban property values is a key challenge for appraisers, market participants, financial institutions, and urban planners. In recent years, machine learning (ML) techniques have emerged as promising tools for price forecasting due to their ability to model complex relationships among variables. However, their application raises two main critical issues: (i) the risk of overfitting, especially with small datasets or with noisy data; (ii) the interpretive issues associated with the “black box” nature of many models. Within this framework, this paper proposes a methodological approach that addresses both these issues, comparing the predictive performance of three ML algorithms—k-Nearest Neighbors (kNN), Random Forest (RF), and the Artificial Neural Network (ANN)—applied to the housing market in the city of Salerno, Italy. For each model, overfitting is preliminarily assessed to ensure predictive robustness. Subsequently, the results are interpreted using explainability techniques, such as SHapley Additive exPlanations (SHAPs) and Permutation Feature Importance (PFI). This analysis reveals that the Random Forest offers the best balance between predictive accuracy and transparency, with features such as area and proximity to the train station identified as the main drivers of property prices. kNN and the ANN are viable alternatives that are particularly robust in terms of generalization. The results demonstrate how the defined methodological framework successfully balances predictive effectiveness and interpretability, supporting the informed and transparent use of ML in real estate valuation. Full article
Show Figures

Figure 1

Back to TopTop