Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing †
Abstract
1. Introduction
- (1)
- Which air pollutants are mandatorily monitored in Guimarães, and what regulations govern this process?
- (2)
- What approaches and sensors, including those based on remote sensing, are available to measure air pollutants in urban areas, and which are most suitable for small-scale analysis?
- (1)
- What is the impact of small-scale NBS on urban air quality, and how is it related to variations in LST?
2. Materials and Methods
2.1. Study Area
2.2. Regulatory, Technical, and Methodological Survey of Applicable Sensors and Approaches
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Sustainable Development Goal Indicator 3.9.1: Mortality Attributed to Air Pollution; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Ioannidis, G.; Tremper, P.; Li, C.; Riedel, T.; Rapkos, N.; Boikos, C.; Ntziachristos, L. Evaluating the Spatial Coverage of Air Quality Monitoring Stations Using Computational Fluid Dynamics. Atmosphere 2025, 16, 326. [Google Scholar] [CrossRef]
- Ramon, M.; Ribeiro, A.P.; Theophilo, C.Y.S.; Moreira, E.G.; De Camargo, P.B.; De Bragança Pereira, C.A.; Saraiva, E.F.; Dos Reis Tavares, A.; Dias, A.G.; Nowak, D.; et al. Assessment of Four Urban Forest as Environmental Indicator of Air Quality: A Study in a Brazilian Megacity. Urban Ecosyst. 2023, 26, 197–207. [Google Scholar] [CrossRef]
- Moreno, R.; Nery, A.; Zamora, R.; Lora, Á.; Galán, C. Contribution of Urban Trees to Carbon Sequestration and Reduction of Air Pollutants in Lima, Peru. Ecosyst. Serv. 2024, 67, 101618. [Google Scholar] [CrossRef]
- Pritipadmaja, G.R.; Sharma, A. Assessing the Cooling Effect of Blue-Green Spaces: Implications for Urban Heat Island Mitigation. Water 2023, 15, 2983. [Google Scholar] [CrossRef]
- Gobatti, L.; Bach, P.M.; Scheidegger, A.; Leitão, J.P. Using Satellite Imagery to Investigate Blue-Green Infrastructure Establishment Time for Urban Cooling. Sustain. Cities Soc. 2023, 97, 104768. [Google Scholar] [CrossRef]
- Agathangelidis, I.; Blougouras, G.; Cartalis, C.; Polydoros, A.; Tzanis, C.G.; Philippopoulos, K. Global Climatology of the Daytime Surface Cooling of Urban Parks Using Satellite Observations. Geophys. Res. Lett. 2025, 52, e2024GL112887. [Google Scholar] [CrossRef]
- Koc, C.B.; Osmond, P.; Peters, A. Evaluating the Cooling Effects of Infrastructure: A Systematic Review of Methods, Indicators and Data Sources. Solar Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- Instituto Nacional de Estatística Ine. Censos XVI Recenseamento Geral Da População; VI Recenseamento Geral da Habitação: Resultados definitivos; INE: Lisboa, Portugal, 2022; ISBN 978-989-25-0619-7. [Google Scholar]
- Loureiro, I.; Ribeiro, C.A.; Sepúlveda, D. Guimarães 2030: A Governance Ecosystem. Euro-Mediterr. J. Environ. Integr. 2022, 7, 319–328. [Google Scholar] [CrossRef]
- IPMA Instituto Português Do Mar e Da Atmosfera. Boletim Sazonal Verão, 2023; Instituto Português do e da Atmosfera: Lisboa, Portugal, 2023.
- Secretariat of the Green City Accord and the European Green Capital and Green Leaf Awards. European Commission, Directorate-General for the Environment Green City Accord—1st Report 2020–2023; European Commission: Brussels, Belgium, 2025. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- EN 12341:2023; Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter. European Committee for Standardization CEN: Brussels, Belgium, 2023.
- Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on Ambient Air Quality and Cleaner Air for Europe (Recast); European Parliament and Council of the European Union: Strasbourg, France, 2024; Volume L, pp. 1–70.
- EN 14211:2012; Ambient Air—Standard Method for the Measurement of the Concentration of Nitrogen Dioxide and Nitrogen Monoxide by Chemiluminescence. European Committee for Standardization CEN: Brussels, Belgium, 2012.
- De Vito, S.; Del Giudice, A.; D’Elia, G.; Esposito, E.; Fattoruso, G.; Ferlito, S.; Formisano, F.; Loffredo, G.; Massera, E.; D’Auria, P.; et al. Future Low-Cost Urban Air Quality Monitoring Networks: Insights from the EU’s AirHeritage Project. Atmosphere 2024, 15, 1351. [Google Scholar] [CrossRef]
- Fleischmann, G.; Aigner, P.; Ciais, P.; Denier Van Der Gon, H.; Droge, R.; Lian, J.; Narvaez Rincon, M.A.; Utard, H.; Lauvaux, T. From Political Pledges to Quantitative Mapping of Climate Mitigation Plans: Comparison of Two European Cities. Carbon Balance Manag. 2023, 18, 18. [Google Scholar] [CrossRef]
- Correia, C.; Santana, P.; Martins, V.; Mariano, P.; Almeida, A.; Almeida, S.M. Advancing Air Quality Monitoring: A Low-Cost Sensor Network in Motion—Part I. J. Environ. Manag. 2024, 360, 121179. [Google Scholar] [CrossRef]
- Fameli, K.-M.; Kladakis, A.; Efthymiou, C.; Charalampidou, C.; Sotiropoulou, M.; Antoniou, I.-M.; Papadaki, D.; Assimakopoulos, M.-N.; Assimakopoulos, V. Insights from the Development of an Innovative Air Quality Monitoring System. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, XLVIII-4/W10-2024, 65–70. [Google Scholar] [CrossRef]
- Ahmad, O.; Khalid, Z.; Tahir, M.; Uppal, M. Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features. arXiv 2025, arXiv:2501.11270. [Google Scholar]
- Seesaard, T.; Kamjornkittikoon, K.; Wongchoosuk, C. A Comprehensive Review on Advancements in Sensors for Air Pollution Applications. Sci. Total Environ. 2024, 951, 175696. [Google Scholar] [CrossRef]
- Kunjir, G.M.; Tikle, S.; Das, S.; Karim, M.; Roy, S.K.; Chatterjee, U. Assessing Particulate Matter (PM2.5) Concentrations and Variability across Maharashtra Using Satellite Data and Machine Learning Techniques. Discov. Sustain. 2025, 6, 238. [Google Scholar] [CrossRef]
- Relvas, H.; Lopes, D.; Armengol, J.M. Empowering Communities: Advancements in Air Quality Monitoring and Citizen Engagement. Urban Clim. 2025, 60, 102344. [Google Scholar] [CrossRef]
- Geng, G.; Xiao, Q.; Liu, S.; Liu, X.; Cheng, J.; Zheng, Y.; Xue, T.; Tong, D.; Zheng, B.; Peng, Y.; et al. Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from Multisource Data Fusion. Environ. Sci. Technol. 2021, 55, 12106–12115. [Google Scholar] [CrossRef]
- Moazami, T.N.; Svendsen, K.V.H.; Buhagen, M.; Jørgensen, R.B. Comparing PM2.5, Respirable Dust, and Total Dust Fractions Using Real-Time and Gravimetric Samples in an Exposure Chamber Study. Heliyon 2023, 9, e16127. [Google Scholar] [CrossRef] [PubMed]
- Fathy, A.; Gnambodoe-Capochichi, M.; Sabry, Y.M.; Anwar, M.; Ghoname, A.O.; Saeed, A.; Leprince-Wang, Y.; Khalil, D.; Bourouina, T. Potential of a Miniature Spectral Analyzer for District-Scale Monitoring of Multiple Gaseous Air Pollutants. Sensors 2023, 23, 6343. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.A.; Sajid, H.; Gilani, M.A.; Ahmed, E.; Arshad, M.; Mahmood, T. Sensing of SO3, SO2, H2S, NO2 and N2O Toxic Gases through Aza-Macrocycle via DFT Calculations. Comput. Theor. Chem. 2022, 1209, 113606. [Google Scholar] [CrossRef]
- Papaconstantinou, R.; Demosthenous, M.; Bezantakos, S.; Hadjigeorgiou, N.; Costi, M.; Stylianou, M.; Symeou, E.; Savvides, C.; Biskos, G. Field Evaluation of Low-Cost Electrochemical Air Quality Gas Sensors under Extreme Temperature and Relative Humidity Conditions. Atmos. Meas. Tech. 2023, 16, 3313–3329. [Google Scholar] [CrossRef]
- Zuidema, C.; Schumacher, C.S.; Austin, E.; Carvlin, G.; Larson, T.V.; Spalt, E.W.; Zusman, M.; Gassett, A.J.; Seto, E.; Kaufman, J.D.; et al. Deployment, Calibration, and Cross-Validation of Low-Cost Electrochemical Sensors for Carbon Monoxide, Nitrogen Oxides, and Ozone for an Epidemiological Study. Sensors 2021, 21, 4214. [Google Scholar] [CrossRef] [PubMed]
- Maeso-García, M.D.; Esteve-Turrillas, F.A.; Verdú-Andrés, J. Applications of the Photoionization Detector (PID) in Occupational Hygiene. Estimation of Air Changes per Hour in Premises with Natural Ventilation. Chemosensors 2021, 9, 331. [Google Scholar] [CrossRef]
- Algamili, A.S.; Khir, M.H.M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Ba Hashwan, S.S.; Junaid, M.M. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, S.N.; Williams, R.; Hagler, G.; Low, J.; Smith, L.; Brown, R.; Garver, D.; Davis, M.; Morton, M.; Schaefer, J.; et al. Examining Spatiotemporal Variability of Urban Particulate Matter and Application of High-Time Resolution Data from a Network of Low-Cost Air Pollution Sensors. Atmos. Environ. 2019, 213, 579–584. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Karimian, H.; Wang, S.; Fang, S. The Relationship between Air Quality and MODIS Aerosol Optical Depth in Major Cities of the Yangtze River Delta. Chemosphere 2022, 308, 136301. [Google Scholar] [CrossRef]
- Karbach, N.; Bobrowski, N.; Hoffmann, T. Observing Volcanoes with Drones: Studies of Volcanic Plume Chemistry with Ultralight Sensor Systems. Sci. Rep. 2022, 12, 17890. [Google Scholar] [CrossRef]
- Wang, G.; Yu, C.; Guo, K.; Guo, H.; Wang, Y. Research of Low-Cost Air Quality Monitoring Models with Different Machine Learning Algorithms. Atmos. Meas. Tech. 2024, 17, 181–196. [Google Scholar] [CrossRef]
- Sneep, M. Sentinel-5P Level 2 Input Output Data Definition (Issue 20.0.0, Document No. S5P-KNMI-L2-0009-SD); European Space Agency: Paris, France, 2024. [Google Scholar]
- Lindsey, R.; Herring, D. MODIS Brochure; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2001.
- OMI Team Ozone Monitoring Instrument (OMI) Data User’s Guide; NASA: Washington, DC, USA, 2012.
- Aublanc, J.; Féménias, P.; Catapano, F.; Chamayou, A. Sentinel-3 SRAL/MWR Land User Handbook (Issue 1.2, Document Ref. S3MPC-STM_RP_0038); European Space Agency: Paris, France, 2024. [Google Scholar]
- Jubaer, A.; Hossain, R.; Ahmed, A.; Hossain, M.S. Factors Influencing Spatiotemporal Variability of NO2 Concentration in Urban Area: A GIS and Remote Sensing–Based Approach. Environ. Monit. Assess. 2025, 197, 167. [Google Scholar] [CrossRef]
- Savenets, M.; Oreshchenko, A.; Nadtochii, L. The System for Near-Real Time Air Pollution Monitoring over Cities Based on the Sentinel-5P Satellite Data. Visnyk V.N. Karazin Kharkiv Natl. Univ. Ser. Geol. Geogr. Ecol. 2022, 57, 195–205. [Google Scholar] [CrossRef]
- Reyes-Muñoz, P.; Kovács, D.D.; Berger, K.; Pipia, L.; Belda, S.; Rivera-Caicedo, J.P.; Verrelst, J. Inferring Global Terrestrial Carbon Fluxes from the Synergy of Sentinel 3 & 5P with Gaussian Process Hybrid Models. Remote Sens. Environ. 2024, 305, 114072. [Google Scholar] [CrossRef]
- Dhankar, S.; Singh, G.; Kumar, K. Impacts of Urbanization on Land Use, Air Quality, and Temperature Dynamics in Dehradun District of Uttarakhand, India: A Comprehensive Analysis. Front. Environ. Sci. 2024, 12, 1324186. [Google Scholar] [CrossRef]
- Al-Rawabdeh, A.; Alzu’bi, F.; Almagbile, A. Quantitative Assessment of Spatiotemporal Variability in Air Quality within the Amman-Zarqa Urban Area, Jordan. Egypt. J. Remote Sens. Space Sci. 2025, 28, 395–410. [Google Scholar] [CrossRef]
- Jaroń, A.; Borucka, A.; Deliś, P.; Sekrecka, A. An Assessment of the Possibility of Using Unmanned Aerial Vehicles to Identify and Map Air Pollution from Infrastructure Emissions. Energies 2024, 17, 577. [Google Scholar] [CrossRef]
- Yadav, P.; Porwal, T.; Jha, V.; Indu, S. Emerging Low-Cost Air Quality Monitoring Techniques for Smart Cities with UAV. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July 2020; pp. 1–6. [Google Scholar]
- Bakirci, M. Smart City Air Quality Management through Leveraging Drones for Precision Monitoring. Sustain. Cities Soc. 2024, 106, 105390. [Google Scholar] [CrossRef]
- Thakral, I.; Kumari, S.; Singh, K.K.; Aggarwal, N. Drone-Assisted Air Quality Monitoring in Urban Areas. AIP Conf. Proc. AIP Publ. 2025, 3224, 020002. [Google Scholar]
Pollutant | Measure | Limit Value | ||
---|---|---|---|---|
Current EU Directive (2008/50/EC) | Revised EU Directive (2024/2881) | WHO Guidelines | ||
PM2.5 | Highest annual mean | 25 μg/m3 | 10 µg/m3 | 5 μg/m3 |
PM10 | 24 h mean | 50 μg/m3 not to be exceeded for more than 35 days per calendar year | 45 μg/m3 not to be exceeded for more than 18 days per calendar year | 45 μg/m3 not to be exceeded for more than 3–4 days per calendar year |
Nitrogen dioxide (NO2) | Daily concentration | 40 μg/m3 | 20 μg/m3 | 10 μg/m3 |
Approach | Main Pollutants | Advantages | Disadvantages |
---|---|---|---|
Air quality monitoring stations | CO, NOx, SO2, O3, PM2.5, PM10, VOCs, and heavy metals | Capable of measuring many pollutants with high accuracy and high temporal resolution | Low spatial coverage, high cost, requirement of regular maintenance and advanced technical expertise |
Sensors/micro-sensors | CO, NO2, O3, PM2.5, PM10 | High temporal and spatial resolution, simple mechanism, and easy-to-operate training requirements | Low accuracy, low sensitivity, and susceptibility to environmental changes |
Passive samplers | NO2, SO2, O3, VOCs | Portability, low cost, flexible placement, energy independence, ease of use, and minimal training requirements | Low temporal resolution, sensitivity to environmental changes, and labor-intensive analysis and deployment |
Satellites | CO, NO2, SO2, O3, AOD | High temporal and spatial coverage | Weather conditions affect data quality; frequent validation is required |
Drones | CO, SO2, NO, NO2, O3, VOCs, CO2, CH4, PM2.5, PM10, TSP/PM100 | Capability to measure many pollutants, high spatial coverage, and easy mobility | Limited autonomy, weather dependence, and requirement of specialized expertise for operation |
Air quality modeling | NOx, SO2, O3, PM2.5, PM10 | High temporal, spatial, and resolution coverage | Depends on accuracy of input data |
Source | Sensor | Coverage Period | Spatial Coverage and Frequency | Spatial Resolution | Pollutants |
---|---|---|---|---|---|
Sentinel-3 | OLCI | 2016–present | Global, revisit every 2 days | 300 m | AOD |
Sentinel-5P | TROPOMI | 2018–present | Global, daily revisit | 5.5 km × 3.5 km | NO2, SO2, CO, O3, CH4, HCHO, AOD |
Terra (EOS AM-1) | MODIS | 2000–present | Global, revisit every 1–2 days | 1 km | AOD |
Aqua (EOS PM-1) | MODIS | 2002–present | Global, revisit every 1–2 days | 1 km | AOD |
Aura | OMI | 2004–present | Global, daily revisit | 13 km × 24 km | NO2, SO2, O3, AOD |
MetOp-A | GOME-2 | 2007–2021 | Global, revisit every 1–5 days | 80 km × 40 km | NO2, O3, SO2, HCHO, AOD |
MetOp-B | GOME-2 | 2013–present | 1.5 days | 80 km × 40 km | NO2, O3, SO2, HCHO, AOD |
MetOp-C | GOME-2 | 2019–present | 1.5 days | 80 km × 40 km | NO2, O3, SO2, HCHO, AOD |
Suomi NPP | VIIRS | 2012–present | Global, daily revisit | 750 m to 375 m | AOD |
NOAA-20 (JPSS-1) | VIIRS | 2018–present | Global, daily revisit | 750 m to 375 m | AOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toscan, P.C.; Neckel, A.; Goellner, E.; Oliveira, M.L.S.; Pereira, E.N.B. Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing. Eng. Proc. 2025, 94, 15. https://doi.org/10.3390/engproc2025094015
Toscan PC, Neckel A, Goellner E, Oliveira MLS, Pereira ENB. Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing. Engineering Proceedings. 2025; 94(1):15. https://doi.org/10.3390/engproc2025094015
Chicago/Turabian StyleToscan, Paloma C., Alcindo Neckel, Emanuelle Goellner, Marcos L. S. Oliveira, and Eduardo N. B. Pereira. 2025. "Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing" Engineering Proceedings 94, no. 1: 15. https://doi.org/10.3390/engproc2025094015
APA StyleToscan, P. C., Neckel, A., Goellner, E., Oliveira, M. L. S., & Pereira, E. N. B. (2025). Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing. Engineering Proceedings, 94(1), 15. https://doi.org/10.3390/engproc2025094015