Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = citrus honey

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 847 KiB  
Article
Exploring the Influence of Different Saccharomyces cerevisiae Strains and Hop Varieties on Beer Composition and Sensory Profiles
by Antonella Costantini, Maurizio Petrozziello, Christos Tsolakis, Andriani Asproudi, Enrico Vaudano, Laura Pulcini, Federica Bonello, Katya Carbone and Maria Carla Cravero
Foods 2025, 14(13), 2357; https://doi.org/10.3390/foods14132357 - 2 Jul 2025
Viewed by 336
Abstract
The influence of different Saccharomyces cerevisiae (Sc) strains and hop varieties on the physical, chemical and sensory properties of beer was investigated. ISE77, an oenological Sc strain screened for the IRC7 gene and β-lyase activity, and a commercial yeast, as a [...] Read more.
The influence of different Saccharomyces cerevisiae (Sc) strains and hop varieties on the physical, chemical and sensory properties of beer was investigated. ISE77, an oenological Sc strain screened for the IRC7 gene and β-lyase activity, and a commercial yeast, as a control, were experimented with two hops (dry hopping), Mosaic® (M) and Hallertau Mittelfrüh (HM). Both hop variety and yeast strain exerted a considerable influence on the organoleptic profile of the beer. Samples with M hops exhibited elevated levels of specific volatile compounds (e.g., limonene and linalool). ISE77 generated higher levels of esters, irrespective of the hop variety employed, imparting fruity and floral characteristics. Moreover, the beers fermented with ISE77 showed herbal and spicy notes. Regardless of the hop variety, samples brewed with the control yeast showed higher honey and caramel note levels. Beers fermented with ISE77 and HM exhibited remarkable similarities to those produced with ISE77 and M, particularly for some odour attributes (citrus, exotic fruits, and aromatic herbs). These attributes were more intense than in beers fermented with the control yeast and HM. This study demonstrated the potential of oenological Sc strains to achieve innovative brewing outcomes when combined with selected hops. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 2055 KiB  
Article
Extract of Tangerine Peel as a Botanical Insecticide Candidate for Smallholder Potato Cultivation
by José-Manuel Pais-Chanfrau, Lisbeth J. Quiñonez-Montaño, Jimmy Núñez-Pérez, Julia K. Prado-Beltrán, Magali Cañarejo-Antamba, Jhomaira L. Burbano-García, Andrea J. Chiliquinga-Quispe and Hortensia M. Rodríguez Cabrera
Insects 2025, 16(7), 680; https://doi.org/10.3390/insects16070680 - 29 Jun 2025
Viewed by 829
Abstract
Background: Contemporary agriculture heavily relies on synthetic chemicals to ensure high yields and food security; however, their overuse has led to health issues and the development of pesticide resistance in pests. Researchers are now exploring natural, eco-friendly alternatives for pest control. Methods: This [...] Read more.
Background: Contemporary agriculture heavily relies on synthetic chemicals to ensure high yields and food security; however, their overuse has led to health issues and the development of pesticide resistance in pests. Researchers are now exploring natural, eco-friendly alternatives for pest control. Methods: This study evaluated two ethanol-based formulations (1.25% and 2.50%, v/v) derived from the tangerine peel (Citrus reticulata L. var. Clementina) against conventional chemical treatments and an untreated control group in the cultivation of potatoes (Solanum tuberosum L. var. Capiro). A randomised block design was used, with three blocks per treatment containing 45 plants. The experiment was conducted during the wet season (February–April 2023). Results: According to visual inspections and yellow traps, following weekly application from days 30 to 105 post-planting to monitor pest (e.g., Frankliniella occidentalis, Aphididae) and beneficial insect (e.g., Coccinellidae, Apis mellifera) populations, the 2.50% formulation performed similarly to chemical treatments against pests, whilst being harmless to beneficial insects. Post-harvest analysis showed that the formulations achieved 73% of conventional yields, with comparable tuber damage and levels of Premnotrypes vorax larvae. Conclusions: Toxicological tests confirmed the eco-friendliness of the formulations, making them suitable for small-scale Andean ‘chakras’ in organic farming and honey production, without the use of chemicals. Full article
Show Figures

Graphical abstract

14 pages, 1742 KiB  
Article
Italian Honeydew Honey Characterization by 1H NMR Spectroscopy
by Dalila Iannone, Laura Ruth Cagliani and Roberto Consonni
Foods 2025, 14(13), 2234; https://doi.org/10.3390/foods14132234 - 25 Jun 2025
Viewed by 352
Abstract
Honeydew honey represents a bee-derived product with different organoleptic characteristics and distinct properties with respect to floral honey. The market interest in honeydew honey has been growing in recent years due to its higher bioactive characteristics with respect to floral honey. The need [...] Read more.
Honeydew honey represents a bee-derived product with different organoleptic characteristics and distinct properties with respect to floral honey. The market interest in honeydew honey has been growing in recent years due to its higher bioactive characteristics with respect to floral honey. The need for a deeper chemical characterization aimed to evaluate a possible botanical differentiation attracted the use of different analytical approaches. The present work aims to distinguish the botanical honeydew origin by using Nuclear Magnetic Resonance (NMR) spectroscopy and a multivariate approach. Two different data pretreatments have been considered to obtain the best sample discrimination. The saccharide content significantly affects the differentiation of the botanical variety consisting of fir, oak, citrus fruits, eucalyptus, and forest mainly by using a classification approach taking advantage of the Orthogonal Signal Correction filters. Notwithstanding the botanical diversity of the honeydew honey (HDH) samples, fir honeydew (F-HDH), oak honeydew (O-HDH), and eucalyptus honeydew (E-HDH) resulted always well discriminated among all the botanical varieties investigated, while citrus fruits honeydew (CF-HD) and forest honeydew (FO-HDH) did not. In particular, F-HDH resulted characterized by sucrose, erlose, maltose, maltotriose, maltotetraose, and melezitose, E-HDH resulted enriched in α, β-glucose and β-fructose in furanosidic form, and O-HDH enriched in β-fructose in furanosidic form, isomaltose. Full article
(This article belongs to the Special Issue Application of NMR Spectroscopy in Food Analysis)
Show Figures

Figure 1

24 pages, 4684 KiB  
Article
Distribution and Health Risk Assessment of Triclosan and Other Typical Endocrine Disruptors in Honey
by Jianing Wang, Meiqi Gao, Hongmei Li, Xinyan Hou, Aijun Gong and Yanqiu Cao
Foods 2025, 14(12), 2006; https://doi.org/10.3390/foods14122006 - 6 Jun 2025
Viewed by 642
Abstract
Endocrine disruptors (EDCs) in food pose a significant threat to health. This study developed a method for detecting seven EDCs (triclosan (TCS), triclocarban (TCC), methyltriclosan (MTCS), methylparaben (MeP), propylparaben (PrP), bisphenol F (BPF), and 4-hydroxybenzophenone-3-ethylcarboxylate (4HBP)) in honey. The method combines ultrasonic-assisted dispersive [...] Read more.
Endocrine disruptors (EDCs) in food pose a significant threat to health. This study developed a method for detecting seven EDCs (triclosan (TCS), triclocarban (TCC), methyltriclosan (MTCS), methylparaben (MeP), propylparaben (PrP), bisphenol F (BPF), and 4-hydroxybenzophenone-3-ethylcarboxylate (4HBP)) in honey. The method combines ultrasonic-assisted dispersive liquid–liquid microextraction with high-performance liquid chromatography. It achieved a recovery rate of 89.70–102.2%, with an RSD value of 1.1–3.9%. Additionally, this study tested 47 honey samples from seven countries, revealing detection rates of TCS at 29.79%, TCC at 19.15%, BPF at 97.87%, 4HBP at 36.17%, MeP at 82.98%, and PrP at 80.85%. Among the 12 nectar sources, citrus flower nectar had the highest TCS detection rate, mother grass nectar had the highest TCC detection rate, and multi-flower nectar had the highest 4HBP detection rate. Moreover, imported honey samples showed higher levels of TCS, BPF, and MeP contamination compared to domestic samples. Honey stored in PET bottles contained the highest levels of EDCs. Finally, health risk assessments indicated that, while the risk for adults is lower, monitoring EDC contamination in food should be strengthened to ensure consumer safety. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

23 pages, 1448 KiB  
Article
Portuguese Monofloral Honeys: Molecular Insights and Biochemical Characterization
by Mariana Silva, Miguel Maia, Márcia Carvalho and Ana Novo Barros
Molecules 2025, 30(8), 1808; https://doi.org/10.3390/molecules30081808 - 17 Apr 2025
Cited by 1 | Viewed by 1168
Abstract
Honey is a multifaceted substance whose composition is intricately affected by various biotic and abiotic elements generated in the bee colony’s surroundings, including botanical and geographical origins, climatic conditions, soil characteristics, and beekeeping techniques. Monofloral honeys are identified by pollen analysis and are [...] Read more.
Honey is a multifaceted substance whose composition is intricately affected by various biotic and abiotic elements generated in the bee colony’s surroundings, including botanical and geographical origins, climatic conditions, soil characteristics, and beekeeping techniques. Monofloral honeys are identified by pollen analysis and are derived from the nectar of a predominant plant species, exhibiting rich sensory and nutritional profiles, making them food matrices with unique characteristics and excellent qualities. To explore the monofloral honey potential harvested in different regions of Portugal, a comprehensive study was conducted including the determination of phenolic composition and the assessment of biological activities. In addition to this evaluation, the inter simple sequence repeat (ISSR) was used to help differentiate honeys by botanical origin. The phenolic content and the antioxidant capacity were evaluated by spectrophotometric methods, observing, in general, differences between monofloral honeys. The honey from Citrus sinensis (Silves) exhibited the lowest phenolic content, including total phenols, ortho-diphenols, and flavonoids, whereas honeydew (Vinhais) showed the highest values. Regarding the antioxidant capacity, honey from Lavandula stoechas (Almodôvar) presented the lowest values, while honeydew (Vinhais) displayed the highest values for both DPPH and FRAP assays. In relation to the ABTS assay, the honey from Metrosideros excelsa (Aveiro) exhibited the lowest values, whereas the honey from Eucalyptus spp. (Arouca) showed the highest. The ISSR marker analysis allows the distribution of the samples based on the honey’s botanical origin, suggesting its potential role in honey authentication. Full article
Show Figures

Figure 1

36 pages, 3365 KiB  
Review
Advances in Mead Aroma Research: A Comprehensive Bibliometric Review and Insights into Key Factors and Trends
by Amanda Felipe Reitenbach, Adriana Sturion Lorenzi, Grace Ferreira Ghesti, Paula Christina Mattos dos Santos, Igor Murilo Teixeira Rodrigues, Ananda Dos Santos Barbosa, Rodrigo Ribeiro Arnt Sant’Ana, Carlise Beddin Fritzen-Freire, Bahareh Nowruzi and Vívian Maria Burin
Fermentation 2025, 11(4), 226; https://doi.org/10.3390/fermentation11040226 - 17 Apr 2025
Viewed by 1847
Abstract
This article examines the key factors influencing the aromatic profile of mead, which is increasingly popular in artisanal markets worldwide. Based on a bibliometric review of 44 scientific studies, the analysis highlights the significant role of honey type in shaping mead’s sensory characteristics. [...] Read more.
This article examines the key factors influencing the aromatic profile of mead, which is increasingly popular in artisanal markets worldwide. Based on a bibliometric review of 44 scientific studies, the analysis highlights the significant role of honey type in shaping mead’s sensory characteristics. Acacia honey contributes subtle floral notes, while eucalyptus honey brings bolder, resinous aromas. The bibliometric analysis also emphasizes fermentation conditions, such as temperature and yeast selection, as crucial factors. Lower fermentation temperatures help preserve volatile compounds, enhancing fruity and floral aromas, while higher temperatures lead to increased concentrations of undesirable higher alcohols. Additionally, aging mead in oak barrels for 6 to 12 months adds complexity by introducing vanilla, coconut, and spice notes from the wood’s phenolic compounds. The maturation process, including its duration and storage conditions, also enables the flavors to blend and develop over time. Moreover, the addition of herbs and fruits during fermentation or maturation has been proven to introduce new layers of aroma and flavor, with ingredients like citrus, berries, and aromatic herbs enhancing the final product with fresh, lively notes. The potential of non-Saccharomyces yeasts is also explored as an alternative for enriching aromatic profiles, with the capacity to introduce unique sensory characteristics, including diverse flavor profiles and regional or terroir-based variations. Finally, the bibliometric review reinforces the importance of selecting appropriate ingredients and controlling fermentation processes to improve mead quality. It also suggests exploring microbiomes, exotic honey varieties, and the use of herbs and fruits for even more distinct aromatic profiles. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

21 pages, 5794 KiB  
Article
Coffee Biotransformation in Volcanic Process: A Chemical and Sensory Analysis
by Renata A. R. Rocha, Lívia C. F. Silva, Marcelo A. D. da Cruz, Luiza M. A. B. Cardoso, Arlley de B. M. Sousa, Laila Alonso, Marcela V. C. Machado, Gisele X. R. Costa, Laurence R. Amaral, Pedro L. L. Bertarini, Matheus S. Gomes and Líbia D. Santos
Foods 2025, 14(8), 1368; https://doi.org/10.3390/foods14081368 - 16 Apr 2025
Cited by 1 | Viewed by 681
Abstract
Volcanic fermentation is an innovative technique in post-harvest coffee processing that involves forming conical mounds, called “volcanoes”, to create specific biotransformation conditions. This study investigates the impact of different volcano fermentation methods on the chemical composition and sensory attributes of coffee. Four methods [...] Read more.
Volcanic fermentation is an innovative technique in post-harvest coffee processing that involves forming conical mounds, called “volcanoes”, to create specific biotransformation conditions. This study investigates the impact of different volcano fermentation methods on the chemical composition and sensory attributes of coffee. Four methods were evaluated: asphalt patio (E1), on pallets (E2), in steel containers under the sun (E3), and in steel containers in the shade (E4). The chemical composition was analyzed in terms of sugars (sucrose, glucose, fructose), organic acids (citric, malic, succinic, lactic, acetic) and alcohols (glycerol, ethanol). In addition, color differences (ΔE) and sensory analysis of the fermented coffees were evaluated. The results of this study reveal that volcanic fermentation produces high-quality specialty coffees, but with divergent profiles of acids and alcohols, thus influencing the sensory characteristics of the resulting beverage. However, the different methods of volcanic fermentation did not significantly affect pH and soluble solids, indicating that the microbiota developed an efficient and consistent fermentation regardless of the solar exposure conditions. The most frequently mentioned sensory descriptors were chocolate, citrus fruits, honey/molasses, caramel, floral, and brown sugar. These findings highlight the significant influence of the volcanic fermentation method on the chemical and sensory quality of coffee fermented. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

21 pages, 2304 KiB  
Article
The Effects of Flocculant Yeast or Spontaneous Fermentation Strategies Supplemented with an Organic Nitrogen-Rich Additive on the Volatilome and Organoleptic Profile of Wines from a Neutral Grape Variety
by Raquel Muñoz-Castells, Fernando Sánchez-Suárez, Juan Moreno, José Manuel Álvarez-Gil and Jaime Moreno-García
Appl. Sci. 2025, 15(8), 4196; https://doi.org/10.3390/app15084196 - 10 Apr 2025
Cited by 1 | Viewed by 540
Abstract
The effects of spontaneous fermentation and the inoculation of grape must with a flocculant yeast starter culture, together with the supplementation of must with a commercial organic nitrogen compound (ONC), were analyzed. The microbiome during fermentation was tracked, and volatile compounds in the [...] Read more.
The effects of spontaneous fermentation and the inoculation of grape must with a flocculant yeast starter culture, together with the supplementation of must with a commercial organic nitrogen compound (ONC), were analyzed. The microbiome during fermentation was tracked, and volatile compounds in the resulting wines were identified and quantified using gas chromatography and mass spectrometry (GC-MS). Volatile compound concentrations were then subjected to statistical analysis. No significant differences in pH, titratable and volatile acidity, and ethanol and lactic acid were observed among the four wines analyzed. However, the musts supplemented with the ONC slightly increased the fermentation rate of the flocculant yeast, and, also, this additive reduced the volume of lees in the spontaneous fermentation and flocculant yeast by 1.2% and 0.6%, respectively. The concentrations of 11 major and 28 minor volatiles were significantly influenced (p-value ≤ 0.05) by the inoculation strategy, while 8 major and 28 minor volatiles were affected by ONC supplementation. This supplementation significantly decreased the Odor Activity Values and, consequently, the values of the odorant series established in wines from spontaneous fermentation. On the contrary, those from flocculant yeast showed a significant increase in all the odorant series except for the waxy series, leading to a more balanced aroma profile. Additionally, lower scores were recorded for the green, creamy, citrus, chemical, and honey series compared to wines from spontaneous fermentation. Overall, the commercial ONC extract contributed to a content increase in volatiles that provided desirable aromatic notes to the wines made with flocculant yeast, although the organoleptic evaluation showed no significant statistical differences in the attributes evaluated at the 95% confidence level. Full article
(This article belongs to the Special Issue Wine Technology and Sensory Analysis)
Show Figures

Figure 1

17 pages, 1716 KiB  
Article
Influence of Terroir on Microbial Diversity and Wine Volatilome
by María Trinidad Alcalá-Jiménez, Teresa García-Martínez, Juan Carlos Mauricio, Juan Moreno and Rafael A. Peinado
Appl. Sci. 2025, 15(6), 3237; https://doi.org/10.3390/app15063237 - 16 Mar 2025
Cited by 3 | Viewed by 1427
Abstract
In this research, the differences between two terroirs belonging to the Protected Designation of Origin (PDO) Montilla–Moriles (Spain) were analyzed. Both areas share soil and climate characteristics, grape varieties, viticultural practices, and winemaking processes. Therefore, the objective of this study was to establish [...] Read more.
In this research, the differences between two terroirs belonging to the Protected Designation of Origin (PDO) Montilla–Moriles (Spain) were analyzed. Both areas share soil and climate characteristics, grape varieties, viticultural practices, and winemaking processes. Therefore, the objective of this study was to establish differences between both areas based on the microbiome of the must, the oenological parameters, and the majority and minority volatile compounds of the wines, thus determining the identity traits that make the wines from both areas so different. The results obtained are quite revealing, since at the microbiome level qualitative differences were established between the various areas. In the quality area, the predominant species is Torulaspora delbrueckii while in the production area it is Hanseniaspora opuntiae. Regarding the volatilome, it was observed that the aromatic profile of the wines from the production area has more citrus-fruity aromas and the quality area has honey-floral aromas, thus producing unique wines from each of the areas. Full article
(This article belongs to the Special Issue Wine Technology and Sensory Analysis)
Show Figures

Figure 1

17 pages, 2379 KiB  
Article
New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy
by Andrea Mara, Federica Mainente, Vasiliki Soursou, Yolanda Picó, Iratxe Perales, Asma Ghorab, Gavino Sanna, Isabel Borrás-Linares, Gianni Zoccatelli and Marco Ciulu
Molecules 2025, 30(2), 410; https://doi.org/10.3390/molecules30020410 - 19 Jan 2025
Cited by 4 | Viewed by 1454
Abstract
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, [...] Read more.
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, palynological, functional, and food safety properties of a large sampling of honeydew honeys collected throughout Italy. The honeydew elements, conductivity, color, antioxidant properties, total polyphenol content, hydroxymethylfurfural, major and trace elements, toxic and rare earth elements, and pesticide residues were measured in 59 samples of honeydew honey from forest, eucalyptus, fir, oak, and citrus sources. Physico-chemical and antioxidant properties were unable to differentiate the botanical origin of Italian honeydew honeys. Similarly, the mineral composition did not vary significantly, whereas rare earth elements appeared to be promising markers for classifying their origin. Multivariate analysis allowed discriminating fir honeydews from the other varieties. Concerning safety aspects, pesticide residues were detected in 90% of the samples, with fir honeydews exhibiting the lowest contamination levels, probably due to its production in less industrialized areas. Acetamiprid and imidacloprid were the most prevalent pesticide residues, but their concentrations were below the limit indicated by the EFSA. These findings suggest the need for a continuous monitoring program for contaminants to ensure safety and to assess risk. Full article
Show Figures

Graphical abstract

21 pages, 3851 KiB  
Article
Kluyveromyces lactis and Saccharomyces cerevisiae for Fermentation of Four Different Coffee Varieties
by Danilo José Machado de Abreu, Denis Henrique Silva Nadaleti, Rafaela Pereira Andrade, Tamara Leite dos Santos, Dérica Gonçalves Tavares, Cesar Elias Botelho, Mário Lúcio Vilela de Resende and Whasley Ferreira Duarte
Foods 2025, 14(1), 111; https://doi.org/10.3390/foods14010111 - 3 Jan 2025
Cited by 1 | Viewed by 1950
Abstract
One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of Saccharomyces cerevisiae LNFCA11 and Kluyveromyces lactis B10 as starter cultures on the quality of four different wet-fermented [...] Read more.
One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of Saccharomyces cerevisiae LNFCA11 and Kluyveromyces lactis B10 as starter cultures on the quality of four different wet-fermented coffee varieties. Microbiological, molecular, and chemical analyses were carried out to identify yeast, bacteria, volatile compounds, carbohydrates and bioactive compounds in coffee. Sensory analysis was performed by Q-graders certified in coffee. Starter yeasts affected bioactive and volatile compounds as well as sensory descriptors in the coffee varieties. S. cerevisiae CA11 allowed a higher content of trigonelline and chlorogenic acid in MGS Paraíso 2 (P2) and Catuai Amarelo IAC62 (CA62) varieties. K. lactis B10 fermentation resulted in higher chlorogenic acid only on the P2 cultivar and MGS Catucaí Pioneira (CP). In addition, 5-methyl-2-furfuryl alcohol and n-hexadecanoic acid were produced exclusively by yeast fermentation compared to spontaneous fermentation. The coffee cultivars P2 presented more complex sensory descriptors and the attributes of aroma, acidity, and balance when fermented with S. cerevisiae CA11. Sensory descriptors such as lemongrass, citrus, and lemon with honey were related to K. lactis B10. Starter cultures allowed the coffees to be classified as specialty coffees. The fermentation showed that the choice of starter yeast depends on the desired sensory descriptors in the final product. Full article
Show Figures

Graphical abstract

20 pages, 2939 KiB  
Article
From Waste to Taste: Coffee By-Products as Starter Cultures for Sustainable Fermentation and Improved Coffee Quality
by Anna María Polanía Rivera, Jhennifer López Silva, Laura Torres-Valenzuela and José Luis Plaza-Dorado
Sustainability 2024, 16(23), 10763; https://doi.org/10.3390/su162310763 - 8 Dec 2024
Cited by 2 | Viewed by 2024
Abstract
Utilizing coffee by-products in the fermentation process of coffee offers a sustainable strategy by repurposing agricultural waste and enhancing product quality. This study evaluates the effect of applying a starter culture, derived from coffee residues, on the dynamics of reducing and total sugars [...] Read more.
Utilizing coffee by-products in the fermentation process of coffee offers a sustainable strategy by repurposing agricultural waste and enhancing product quality. This study evaluates the effect of applying a starter culture, derived from coffee residues, on the dynamics of reducing and total sugars during coffee fermentation, as well as the composition of aromatic compounds, organic acids, and the sensory profile of coffee inoculated with yeast (Saccharomyces cerevisiae) and lactic acid bacteria (Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus), in comparison to a spontaneously fermented sample. Volatile compounds were identified and quantified using dynamic headspace gas chromatography-mass spectrometry (HS/GC-MS), with predominant detection of 2-furancarboxaldehyde, 5-methyl; 2-furanmethanol; and furfural—compounds associated with caramel, nut, and sweet aromas from the roasting process. A reduction in sugars (glucose, fructose, and sucrose) occurred over the 36 h fermentation period. Lactic acid (2.79 g/L) was the predominant organic acid, followed by acetic acid (0.69 g/L). The application of the inoculum improved the sensory quality of the coffee, achieving a score of 86.6 in evaluations by Q-graders, compared to 84 for the control sample. Additionally, descriptors such as red apple, honey, and citrus were prominent, contributing to a uniform and balanced flavor profile. These findings indicate that controlled fermentation with starter cultures derived from coffee by-products enhances sustainability in coffee production. It achieves this by supporting a circular economy, reducing reliance on chemical additives, and improving product quality. This approach aligns with sustainable development goals by promoting environmental stewardship, economic viability, and social well-being within the coffee industry. Full article
Show Figures

Figure 1

18 pages, 675 KiB  
Article
Functional Properties of Rapeseed Honey Enriched with Lyophilized Fruits
by Aleksandar Marić, Marijana Sakač, Pavle Jovanov, Branislava Đermanović, Nemanja Teslić, Dragana Plavšić and Dimitar Jakimov
Agriculture 2024, 14(12), 2117; https://doi.org/10.3390/agriculture14122117 - 22 Nov 2024
Viewed by 1248
Abstract
This study evaluates the physicochemical characteristics, antioxidant, antibacterial, and antiproliferative properties of rapeseed honey collected from Vojvodina, Serbia, as well as rapeseed honey-based products enriched with 10% fruit lyophilizate, including sour cherry (Prunus cerasus), strawberry (Fragaria), blueberry (Vaccinium [...] Read more.
This study evaluates the physicochemical characteristics, antioxidant, antibacterial, and antiproliferative properties of rapeseed honey collected from Vojvodina, Serbia, as well as rapeseed honey-based products enriched with 10% fruit lyophilizate, including sour cherry (Prunus cerasus), strawberry (Fragaria), blueberry (Vaccinium myrtillus), raspberry (Rubus idaeus), blackberry (Rubus fruticosus), orange (Citrus sinensis), and pineapple (Ananas comosus). Honey-based products with lyophilizates were developed to enhance the relatively limited therapeutic potential of rapeseed honey by incorporating fruit lyophilizates known to possess bioactive compounds. The moisture content, pH, electrical conductivity, free acidity, hydroxymethylfurfural (HMF), and mineral composition were analyzed. Sour cherry-enriched honey exhibited the highest total phenolic content (TPC = 102 ± 0.18 mg GAE/100 g), while blueberry-enriched honey had the highest total flavonoid content (TFC = 34.9 ± 0.89 mg CAE/100 g) and total anthocyanin content (TAC = 299 ± 3.14 mg EC/100 g), with the greatest relative scavenging capacity (81.0 ± 0.46% of DPPH inhibition). Polyphenol profiling identified phenolic acids and flavonoids, with raspberry-enriched honey showing the highest total polyphenol content (47.0 ± 0.98 mg/kg) due to its high ellagic acid content (38.4 ± 1.11 mg/kg). All honey-based products demonstrated moderate antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis. Significant antiproliferative effects against breast (MCF-7), cervix (HeLa), and colon (HT-29) cancer cell lines were observed, particularly in pineapple and blueberry-enriched honey, with IC50 values as 9.04 ± 0.16 mg/mL and 9.95 ± 0.24 mg/mL for MCF-7 cells, respectively. Based on all the obtained results, it can be concluded that the enrichment of rapeseed honey with fruit lyophilizates at a 10% level contributed to an increase in the antioxidant, antibacterial, and antiproliferative properties of rapeseed honey. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

16 pages, 1849 KiB  
Article
Eudermic Properties and Chemical–Physical Characterization of Honeys of Different Botanical Origin
by Elisabetta Miraldi, Giorgio Cappellucci, Cecilia Del Casino, Emanuele Giordano, Massimo Guarnieri, Massimo Nepi, Marco Biagi and Giulia Baini
Nutrients 2024, 16(21), 3647; https://doi.org/10.3390/nu16213647 - 26 Oct 2024
Cited by 2 | Viewed by 1518
Abstract
Background: Honey is a natural product that, thanks to its composition, particularly the high sugar content, is highly appreciated as an energy nourishment. In addition to sugars, it contains many other substances (carbohydrates, free amino acids, enzymatic proteins, organic acids, polyphenols) from which [...] Read more.
Background: Honey is a natural product that, thanks to its composition, particularly the high sugar content, is highly appreciated as an energy nourishment. In addition to sugars, it contains many other substances (carbohydrates, free amino acids, enzymatic proteins, organic acids, polyphenols) from which the therapeutic properties of honey arise: hydrating and osmotic activity, antimicrobial action, and antioxidant and anti-inflammatory power. Objectives: The present work aims to deepen our knowledge/understanding of the activity of skin protection exerted by honey, as a synergic result of its multiple therapeutic effects. Moreover, this study wants to find possible correlations between biological properties and the chemical–physical traits of honey. Methods: To carry out this research, five varieties of citrus honey, one of acacia honey, one of chestnut honey, and one of multifloral honey were used. The honeys were first characterized by chemical–physical analysis and then were subjected to qualitative melissopalynological analysis. Tests were also carried out to evaluate both their antioxidant power and the effect on collagenase, an enzyme involved in the degradation of collagen present in the extracellular matrix and, therefore, in the processes of skin aging. Finally, honey samples were then used in in vitro experiments to assess their action in stimulating cell viability and proliferation on human keratinocytes. Results: Chemical–physical analysis demonstrated a good water content (about 17%), an important sugar content (with the monosaccharides glucose and fructose being the most represented in all the honey samples), various amino acids (with proline remarkably being the highest in all honeys), and a high concentration of polyphenols and total flavonoids (the maximum in chestnut honey, 762 mg/kg and 514 mg/kg, respectively). Conclusions The results obtained in this work confirm the ethnopharmacological use of honey in wound care, bring new scientific knowledge on the use of honey in dermatology, and highlight two fields of excellence, particularly incitrus and chestnut honey. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

17 pages, 3541 KiB  
Article
Reduced Fertilization and Magnesium Supplementation: Modulating Fruit Quality in Honey Pomelo (Citrus maxima (Burm.) Merr.)
by Da Su, Yunfei Jiang, Biao Song, Zhaozheng Wu, Xiaojun Yan, Zhiyuan He, Delian Ye, Jie Ou, Yingzhe Zeng and Liangquan Wu
Plants 2024, 13(19), 2757; https://doi.org/10.3390/plants13192757 - 1 Oct 2024
Cited by 1 | Viewed by 1864
Abstract
The excessive use of chemical fertilizers in the Guanxi honey pomelo production area has led to severe soil acidification and magnesium (Mg) deficiency, adversely affecting pomelo fruit quality. To address this issue, an integrated nutrient optimization model crucial for ensuring the sustainable and [...] Read more.
The excessive use of chemical fertilizers in the Guanxi honey pomelo production area has led to severe soil acidification and magnesium (Mg) deficiency, adversely affecting pomelo fruit quality. To address this issue, an integrated nutrient optimization model crucial for ensuring the sustainable and environmentally friendly development of the Guanxi honey pomelo industry has been explored. In a three-year experiment, two fertilizer treatments were implemented: a farmer fertilizer practice (FP) and an NPK reduction plus foliar Mg fertilizer (OPT + fMg). We investigated the impact of this integrated optimized fertilization measure on pomelo fruit quality from three aspects: flavor (sugars and organic acids), nutrition (vitamin C and mineral elements), and antioxidant properties (phenolics, flavonoids, and phytic acid). The results revealed that the OPT + fMg treatment improved fruit flavor by reducing acidity (titratable acid, citric acid, and quinine), while having a minimal impact on sugar components (sucrose, fructose, and glucose). Additionally, the OPT + fMg treatment increased the total phenolics, total flavonoids, and phytic acid in the fruit peel, enhancing its potential antioxidant quality. However, the OPT + fMg treatment reduced the mineral nutrient quality (excluding calcium) in the fruit. As for the fruit developmental period, the OPT + fMg treatment significantly increased the total flavonoid concentration in the peel from the mid-expansion fruit stage, followed by notable increases in phytic acid in the peel during the mid-to-late expansion fruit stage. The total phenolic concentration in the peel significantly rose only during the late fruit development stage. The most pronounced effect was observed on phytic acid in both peel and pulp. The influence of the OPT + fMg treatment on the mineral nutrients (excluding calcium) primarily occurred during the mid-to-late expansion fruit stage. Overall, the OPT + fMg treatment significantly improved the comprehensive nutritional quality of pomelo fruit, providing valuable insights for scientifically reducing fertilizer application while enhancing fruit quality. Full article
Show Figures

Graphical abstract

Back to TopTop