Portuguese Monofloral Honeys: Molecular Insights and Biochemical Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical and Antioxidant Capacity Determination
2.2. Evaluation of Antioxidant Capacity
2.3. Discrimination of Honey Samples by ISSR Marker
2.4. Integrative and Correlation Analysis of All Parameters
3. Materials and Methods
3.1. Sampling
3.2. Phytochemical and Antioxidant Capacity Determination
3.2.1. Sample Preparation
3.2.2. Phenolic Content of Honey
3.2.3. Evaluation of the Antioxidant Capacity of Honey
3.3. Evaluation of Honey Sample’s Genetic Diversity
3.3.1. DNA Extraction and Quantification
3.3.2. ISSR-PCR
3.3.3. Data Analysis
Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A.; Hannan, M.A. Mineral Content and Physical Properties of Local and Imported Honeys in Saudi Arabia. J. Saudi Chem. Soc. 2014, 18, 618–625. [Google Scholar] [CrossRef]
- Balkanska, R.; Stefanova, K.; Stoikova–Grigorova, R. Main Honey Botanical Components and Techniques for Identification: A Review. J. Apic. Res. 2020, 59, 852–861. [Google Scholar] [CrossRef]
- González-Miret, M.L.; Terrab, A.; Hernanz, D.; Fernández-Recamales, M.Á.; Heredia, F.J. Multivariate Correlation between Color and Mineral Composition of Honeys and by Their Botanical Origin. J. Agric. Food Chem. 2005, 53, 2574–2580. [Google Scholar] [CrossRef] [PubMed]
- Bobis, O.; Moise, A.R.; Ballesteros, I.; Reyes, E.S.; Durán, S.S.; Sánchez-Sánchez, J.; Cruz-Quintana, S.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Eucalyptus Honey: Quality Parameters, Chemical Composition and Health-Promoting Properties. Food Chem. 2020, 325, 126870. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composición y Propiedades de La Miel de Apis mellifera: Una Revisión. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Olas, B. Honey and Its Phenolic Compounds as an Effective Natural Medicine for Cardiovascular Diseases in Humans? Nutrients 2020, 12, 283. [Google Scholar] [CrossRef]
- Trifković, J.; Andrić, F.; Ristivojević, P.; Guzelmeric, E.; Yesilada, E. Analytical Methods in Tracing Honey Authenticity. J. AOAC Int. 2017, 100, 827–839. [Google Scholar] [CrossRef]
- Hossen, M.S.; Ali, M.Y.; Jahurul, M.H.A.; Abdel-Daim, M.M.; Gan, S.H.; Khalil, M.I. Beneficial Roles of Honey Polyphenols against Some Human Degenerative Diseases: A Review. Pharmacol. Rep. 2017, 69, 1194–1205. [Google Scholar] [CrossRef]
- Campone, L.; Piccinelli, A.L.; Pagano, I.; Carabetta, S.; Di Sanzo, R.; Russo, M.; Rastrelli, L. Determination of Phenolic Compounds in Honey Using Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A 2014, 1334, 9–15. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the Phenolic Content, Antioxidant Activity and Colour of Slovenian Honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Dimou, M.; Liolios, V.; Kanelis, D.; Gounari, S. Legislación de Criterios y Normas de Miel. J. Apic. Res. 2018, 57, 88–96. [Google Scholar] [CrossRef]
- Mureșan, C.I.; Cornea-Cipcigan, M.; Suharoschi, R.; Erler, S.; Mărgăoan, R. Honey Botanical Origin and Honey-Specific Protein Pattern: Characterization of Some European Honeys. LWT 2022, 154, 112883. [Google Scholar] [CrossRef]
- Feás, X.; Pires, J.; Iglesias, A.; Estevinho, M.L. Characterization of Artisanal Honey Produced on the Northwest of Portugal by Melissopalynological and Physico-Chemical Data. Food Chem. Toxicol. 2010, 48, 3462–3470. [Google Scholar] [CrossRef]
- Federação Nacional de Apicultores de Portugal (FNAP). The Beekeeping Sector in Numbers: Analysis and Evaluation of the Situation in Portugal in the European Union and in the World Honey Market; Federação Nacional de Apicultores de Portugal (FNAP): Lisboa, Portugal, 2017. [Google Scholar]
- Bruni, I.; Galimberti, A.; Caridi, L.; Scaccabarozzi, D.; De Mattia, F.; Casiraghi, M.; Labra, M. A DNA Barcoding Approach to Identify Plant Species in Multiflower Honey. Food Chem. 2015, 170, 308–315. [Google Scholar] [CrossRef]
- Soares, S.; Grazina, L.; Costa, J.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. Botanical Authentication of Lavender (Lavandula spp.) Honey by a Novel DNA-Barcoding Approach Coupled to High Resolution Melting Analysis. Food Control 2018, 86, 367–373. [Google Scholar] [CrossRef]
- Utzeri, V.J.; Ribani, A.; Schiavo, G.; Bertolini, F.; Bovo, S.; Fontanesi, L. Application of next Generation Semiconductor Based Sequencing to Detect the Botanical Composition of Monofloral, Polyfloral and Honeydew Honey. Food Control 2018, 86, 342–349. [Google Scholar] [CrossRef]
- Soares, S.; Rodrigues, F.; Delerue-Matos, C. Towards DNA-Based Methods Analysis for Honey: An Update. Molecules 2023, 28, 2106. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey Authenticity: Analytical Techniques, State of the Art and Challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef]
- Mondini, L.; Noorani, A.; Pagnotta, M.A. Assessing Plant Genetic Diversity by Molecular Tools. Diversity 2009, 1, 19–35. [Google Scholar] [CrossRef]
- Bornet, B.; Branchard, M. Nonanchored Inter Simple Sequence Repeat (ISSR) Markers: Reproducible and Specific Tools for Genome Fingerprinting. Plant Mol. Biol. Report. 2001, 19, 209–215. [Google Scholar] [CrossRef]
- Reddy, M.P.; Sarla, N.; Siddiq, E.A. Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Plant Breeding. Euphytica 2002, 128, 9–17. [Google Scholar] [CrossRef]
- Carvalho, M.; Matos, M.; Carnide, V. Identification of Cultivated and Wild Vaccinium Species Grown in Portugal. Span. J. Agric. Res. 2018, 16, e07SC01. [Google Scholar] [CrossRef]
- Al-Otaibi, S.A. Genetic Variability in Mite-Resistant Honey Bee Using ISSR Molecular Markers. Arab J. Biotechnol. 2008, 11, 241–252. [Google Scholar]
- Alves, A.; Ramos, A.; Gonçalves, M.M.; Bernardo, M.; Mendes, B. Antioxidant Activity, Quality Parameters and Mineral Content of Portuguese Monofloral Honeys. J. Food Compos. Anal. 2013, 30, 130–138. [Google Scholar] [CrossRef]
- Fernandes, L.; Ribeiro, H.; Oliveira, A.; Sanches Silva, A.; Freitas, A.; Henriques, M.; Rodrigues, M.E. Portuguese Honeys as Antimicrobial Agents against Candida Species. J. Tradit. Complement. Med. 2021, 11, 130–136. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant Activity of Portuguese Honey Samples: Different Contributions of the Entire Honey and Phenolic Extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Soares, S.; Pinto, D.; Rodrigues, F.; Alves, R.C.; Oliveira, M.B.P.P. Portuguese Honeys from Different Geographical and Botanical Origins: A 4-Year Stability Study Regarding Quality Parameters and Antioxidant Activity. Molecules 2017, 22, 1338. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Antunes, D.; Miguel, M.G. Physicochemical Characterization and Antioxidant Activity of Commercial Portuguese Honeys. J. Food Sci. 2013, 78, C1159–C1165. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Maruška, A.; Kornyšova, O.; Charczun, N.; Ligor, M.; Buszewski, B. Quantitative and Qualitative Determination of Phenolic Compounds in Honey. Cheminè Technol. 2009, 52, 74–80. [Google Scholar]
- Can, Z.; Yildiz, O.; Sahin, H.; Akyuz Turumtay, E.; Silici, S.; Kolayli, S. An Investigation of Turkish Honeys: Their Physico-Chemical Properties, Antioxidant Capacities and Phenolic Profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Vasić, V.; Gašić, U.; Stanković, D.; Lušić, D.; Vukić-Lušić, D.; Milojković-Opsenica, D.; Tešić, Ž.; Trifković, J. Towards Better Quality Criteria of European Honeydew Honey: Phenolic Profile and Antioxidant Capacity. Food Chem. 2019, 274, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Shakoori, Z.; Salaseh, E.; Mehrabian, A.R.; Tehrani, D.M.; Dardashti, N.F.; Salmanpour, F. The Amount of Antioxidants in Honey Has a Strong Relationship with the Plants Selected by Honey Bees. Sci. Rep. 2024, 14, 351. [Google Scholar] [CrossRef] [PubMed]
- Schaffel, I.d.F.; dos Santos, G.F.S.; Damm, B.M.; Santos, R.A.d.S.; Almeida, J.G.L.; Resende, H.C.; Matos, V.R.; Gaglianone, M.C.; da S. Oliveira, E.C.; Aroucha, E.M.M.; et al. Physicochemical Properties and Antioxidant Capacity of Honey from Honey Bee (Apis mellifera): Spectrophotometric and Electrochemical Assay. ACS Omega 2025, 10, 10653–10661. [Google Scholar] [CrossRef]
- Yangoua, H.; Dibacto, R.E.K.; Tchuente, B.R.T.; Nyobe, E.C.; Wandji Nguedjo, M.; Alex Dimitri, T.K.; Kamini, M.F.G. Physicochemical Properties and Antioxidant Potential of Honey from Cameroon Agroecological Zones. Heliyon 2024, 10, e40232. [Google Scholar] [CrossRef]
- Jaśkiewicz, K.; Szczęsna, T.; Jachuła, J. How Phenolic Compounds Profile and Antioxidant Activity Depend on Botanical Origin of Honey—A Case of Polish Varietal Honeys. Molecules 2025, 30, 360. [Google Scholar] [CrossRef]
- Zaldivar-Ortega, A.K.; de Jesús Cenobio-Galindo, A.; Morfin, N.; Aguirre-Álvarez, G.; Campos-Montiel, R.G.; Esturau-Escofet, N.; Garduño-García, A.; Angeles-Hernandez, J.C. The Physicochemical Parameters, Phenolic Content, and Antioxidant Activity of Honey from Stingless Bees and Apis mellifera: A Systematic Review and Meta-Analysis. Antioxidants 2024, 13, 1539. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Vîjan, L.E.; Mazilu, I.C.; Enache, C.; Enache, S.; Topală, C.M. Botanical Origin Influence on Some Honey Physicochemical Characteristics and Antioxidant Properties. Foods 2023, 12, 2134. [Google Scholar] [CrossRef]
- Gonçalves, J.; Ribeiro, I.; Marçalo, J.; Rijo, P.; Faustino, C.; Pinheiro, L. Physicochemical, Antioxidant and Antimicrobial Properties of Selected Portuguese Commercial Monofloral Honeys. J. Food Nutr. Res. 2018, 6, 645–654. [Google Scholar] [CrossRef]
- Escuredo, O.; Míguez, M.; Fernández-González, M.; Carmen Seijo, M. Nutritional Value and Antioxidant Activity of Honeys Produced in a European Atlantic Area. Food Chem. 2013, 138, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. A Comparative Study on Phenolic Profile, Vitamin C Content and Antioxidant Activity of Italian Honeys of Different Botanical Origin. Int. J. Food Sci. Technol. 2013, 48, 1899–1908. [Google Scholar] [CrossRef]
- Sant’Ana, L.D.O.; Sousa, J.P.L.M.; Salgueiro, F.B.; Lorenzon, M.C.A.; Castro, R.N. Characterization of Monofloral Honeys with Multivariate Analysis of Their Chemical Profile and Antioxidant Activity. J. Food Sci. 2012, 77, C135–C140. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Stefano, M.; Astolfi, P.; Carloni, P. Chemometric Approach to the Analysis of Antioxidant Properties and Colour of Typical Italian Monofloral Honeys. Int. J. Food Sci. Technol. 2017, 52, 1138–1146. [Google Scholar] [CrossRef]
- Jerković, I.; Radonić, A.; Kranjac, M.; Zekić, M.; Marijanović, Z.; Gudić, S.; Kliškić, M. Red Clover (Trifolium pratense L.) Honey: Volatiles Chemical-Profiling and Unlocking Antioxidant and Anticorrosion Capacity. Chem. Pap. 2016, 70, i–xi. [Google Scholar] [CrossRef]
- Dzugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef]
- Honey, A.L.; Ulloa, P.A.; Maia, M.; Brigas, A.F. Expression of Concern on “Physicochemical Parameters and Bioactive Compounds of Strawberry Tree (Arbutus unedo L.) Honey”. J. Chem. 2018, 2018, 9301245. [Google Scholar] [CrossRef]
- Carvalho, M.; Matos, M.; Carnide, V. Fingerprinting of Vaccinium Corymbosum Cultivars Using DNA of Fruits. Hortic. Sci. 2014, 41, 175–184. [Google Scholar] [CrossRef]
- Serrote, C.M.L.; Reiniger, L.R.S.; Silva, K.B.; dos Santos Rabaiolli, S.M.; Stefanel, C.M. Determining the Polymorphism Information Content of a Molecular Marker. Gene 2020, 726, 144175. [Google Scholar] [CrossRef]
- Hmissi, S.; Chograni, H.; Yangui, I.; Riahi, L.; Boussaid, M.; Messaoud, C. Genetic Diversity and Population Structure Patterns in Lavandula stoechas L. Wild Germplasms Using ISSR and EST-SSRs Markers and Implications for Conservation. Genet. Resour. Crop Evol. 2024, 71, 2859–2876. [Google Scholar] [CrossRef]
- Coutinho, J.P.; Carvalho, A.; Lima-Brito, J. Genetic Diversity Assessment and Estimation of Phylogenetic Relationships among 26 Fagaceae Species Using ISSRs. Biochem. Syst. Ecol. 2014, 54, 247–256. [Google Scholar] [CrossRef]
- Abdelhamid, S.; Lê, C.L.; Conedera, M.; Küpfer, P. The Assessment of Genetic Diversity of Castanea Species by RAPD, AFLP, ISSR, and SSR Markers. Turk. J. Bot. 2014, 38, 835–850. [Google Scholar] [CrossRef]
- Teixeira, G.C.; Konzen, E.R.; FariaIII, J.C.T.; Gonçalves, D.S.; de Carvalho, D.; Brondani, G.E. Genetic Diversity Analysis of Two Eucalyptus Species Using ISSR Markers Diversidade Genética de Duas Espécies de Eucalyptus Usando Marcadores ISSR Resumo. Ciênc. Florest. 2020, 30, 270–278. [Google Scholar] [CrossRef]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic Acids and Flavonoids Profiles of Commercial Honey from Different Floral Sources and Geographic Sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Giampieri, F.; González-Paramás, A.M.; Damiani, E.; Astolfi, P.; Martinez-Sanchez, G.; Bompadre, S.; Quiles, J.L.; Santos-Buelga, C.; Battino, M. Phenolics from Monofloral Honeys Protect Human Erythrocyte Membranes against Oxidative Damage. Food Chem. Toxicol. 2012, 50, 1508–1516. [Google Scholar] [CrossRef]
- Artanti, N.; Endrawati, S.; Maryati, Y.; Melanie, H.; Susilowati, A.; Hanafi, M. Inhibition of α-Glucosidase Activity and Comparison of ABTS and DPPH Assays for Antioxidant Activity of Unfermented and Kombucha Fermented Katuk and Kelor Leaves. AIP Conf. Proc. 2024, 2970, 060009. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical Evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu Assays to Assess the Antioxidant Capacity of Lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Park, H.R.; Seo, J.H.; Kang, B.K.; Kim, J.H.; Heo, S.V.; Lee, Y.H.; Han, W.Y. Plant Breeding and Biotechnology Comparison of Antioxidant Components and Activities of Korean Black Soybeans. Plant Breed. Biotechnol. 2024, 2024, 175–192. [Google Scholar]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH Assays to Measure Antioxidant Capacity in Popular Antioxidant-Rich US Foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M. How to Express the Antioxidant Properties of Substances Properly? Chem. Pap. 2021, 75, 6157–6167. [Google Scholar] [CrossRef]
- Silva, F.; Veiga, F.; Cardoso, C.; Dias, F.; Cerqueira, F.; Medeiros, R.; Cláudia Paiva-Santos, A. A Rapid and Simplified DPPH Assay for Analysis of Antioxidant Interactions in Binary Combinations. Microchem. J. 2024, 202, 110801. [Google Scholar] [CrossRef]
- von Der Ohe, W.; Oddo, L.; Piana, M.; Morlot, M.; Martin, P. Harmonized Methods of Melissopalynology. Apidologie 2004, 35, S18–S25. [Google Scholar] [CrossRef]
- Valdes, B.; Diez, M.J.; Fernadez, I. (Eds.) Atlas Polinico de Adalucia Occidental; Instituto de Desarrolo Regional N° 43; Universidad de Sevilla: Sevilla, Spain, 1987. [Google Scholar]
- Santos, S.; Maia, M.; Barros, A.; Gouvinhas, I. Assessment of Phenolic Content, Antioxidant and Anti-Aging Activities of Honey from Pittosporum Undulatum Vent. Naturalized in the Azores Archipelago (Portugal). Appl. Sci. 2023, 13, 1788. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Domínguez-Perles, R.; Rodrigues, M.; Barros, A.I.R.N.A. Monitoring the Antioxidant and Antimicrobial Power of Grape (Vitis vinifera L.) Stems Phenolics over Long-Term Storage. Ind. Crops Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
- Barros, J.G.L.; Fernandes, R.; Abraão, A.; Costa, R.D.; Aires, A.; Gouvinhas, I.; Granato, D.; Barros, A.N. Characterization of Azorean Plant Leaves for Sustainable Valorization and Future Advanced Applications in the Food, Cosmetic, and Pharmaceutical Industries. Antioxidants 2024, 13, 325. [Google Scholar] [CrossRef]
- Costa, C.; Campos, J.; Gouvinhas, I.; Pinto, A.R.; Saavedra, M.J.; Novo Barros, A. Unveiling the Potential of Unexplored Winery By-Products from the Dão Region: Phenolic Composition, Antioxidants, and Antimicrobial Properties. Appl. Sci. 2023, 13, 20. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. Improving DNA Isolation from Honey for the Botanical Origin Identification. Food Control 2015, 48, 130–136. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Paleontol. Electron. 2001, 4, 4. [Google Scholar]
Botanical Origin | Sample | TPC mg GAE/100 g | ODC mg GAE/100 g | FC mg CE/100 g |
---|---|---|---|---|
Lavandula stoechas | Lav1 | 42.15 ± 0.87 m | 53.30 ± 1.14 kl | 3.87 ± 0.48 g–j |
Lav2 | 40.97 ± 0.55 mn | 58.35 ± 0.39 jk | 3.52 ± 0.19 h–j | |
Lav3 | 28.88 ± 0.40 qr | 41.59 ± 0.35 m–o | 3.09 ± 0.12 i–k | |
Lav4 | 48.14 ± 1.13 l | 41.51 ± 0.17 m–o | 2.70 ± 0.087 j–l | |
Lav5 | 24.61 ± 0.60 rs | 35.75 ± 0.51 op | 3.05 ± 0.34 i–k | |
Lav6 | 34.34 ± 0.21 op | 40.78 ± 0.94 m–o | 3.73 ± 0.34 g–j | |
Castanea sativa | Cast1 | 53.75 ± 1.35 k | 61.18 ± 0.28 i–k | 4.04 ± 0.23 g–j |
Cast2 | 62.02 ± 2.31 ij | 65.25 ± 0.51 g–j | 3.70 ± 0.31 h–j | |
Cast3 | 71.01 ± 0.64 h | 88.09 ± 0.90 d | 4.19 ± 0.32 f–j | |
Cast4 | 77.36 ± 3.44 fg | 64.38 ± 2.63 h–j | 4.48 ± 0.31 f–i | |
Cast5 | 86.68 ± 0.81 de | 72.95 ± 1.29 fg | 4.75 ± 0.78 e–h | |
Tilia spp. | Til1 | 35.06 ± 2.11 op | 40.94 ± 2.98 m-o | 3.60 ± 0.21 h–j |
Til2 | 31.48 ± 0.02 pq | 35.78 ± 0.54 op | 4.30 ± 0.20 f–i | |
Citrus sinensis | Cit1 | 20.13 ± 0.37 s | 19.73 ± 0.59 q | 1.40 ± 0.18 l |
Cit2 | 27.05 ± 0.15 qr | 30.56 ± 0.75 p | 1.92 ± 0.76 kl | |
Eucalyptus spp. | Euc1 | 36.61 ± 0.36 no | 45.83 ± 0.40 l–n | 3.71 ± 1.01 h–j |
Euc2 | 49.59 ± 0.32 kl | 39.70 ± 0.46 no | 4.42 ± 0.43 f–i | |
Trifolium spp. | Tri1 | 34.41 ± 0.43 op | 48.09 ± 0.66 lm | 3.55 ± 0.10 h–j |
Tri2 | 45.32 ± 1.35 lm | 48.34 ± 1.40 lm | 3.45 ± 0.10 h–j | |
Erica umbellata | Eri1 | 95.72 ± 1.19 c | 120.22 ± 6.39 b | 8.68 ± 0.37 d |
Honeydew | Mel1 | 105.10 ± 0.96 b | 98.14 ± 0.88 c | 14.49 ± 0.24 b |
Mel2 | 126.00 ± 0.29 a | 188.73 ± 1.07 a | 19.43 ± 0.42 a | |
Arbutus unedo | Arb | 91.42 ± 0.48 cd | 70.34 ± 0.83 gh | 10.76 ± 0.67 c |
Metrosíderos excelsa | Met | 27.48 ± 1.38 qr | 33.92 ± 0.08 op | 1.66 ± 0.15 kl |
Multifloral | Mul1 | 59.70 ± 0.24 j | 66.89 ± 1.10 g–i | 5.70 ± 0.31 ef |
Mul2 | 74.02 ± 0.91 gh | 78.91 ± 0.42 ef | 10.45 ± 1.17 c | |
Mul3 | 65.14 ± 2.34 i | 80.27 ± 10.87 d–f | 5.24 ± 0.28 e–g | |
Mul4 | 82.89 ± 0.13 e | 82.56 ± 1.36 de | 6.16 ± 0.11 e | |
Mul5 | 82.10 ± 5.23 ef | 97.48 ± 2.02 c | 10.05 ± 0.88 cd |
Botanical Origin | Sample | ABTS | ABTS (%) | DPPH | DPPH (%) | FRAP |
---|---|---|---|---|---|---|
mmol Trolox/100 g | mmol Trolox/100 g | mmol Trolox/100 g | ||||
Lavandula stoechas | Lav1 | 0.38 ± 0.02 d | 14.44 | 0.058 ± 0.00 o | 7.15 | 0.11 ± 0.001 jk |
Lav2 | 0.30 ± 0.019 e | 11.61 | 0.11 ± 0.011 kl | 10.30 | 0.15 ± 0.006 j | |
Lav3 | 0.15 ± 0.004 h–k | 28.95 | 0.036 ± 0.002 p | 5.87 | 0.064 ± 0.002 l | |
Lav4 | 0.16 ± 0.004 g–j | 31.24 | 0.041 ± 0.003 p | 6.13 | 0.063 ± 0.001 l | |
Lav5 | 0.10 ± 0.003 lm | 19.23 | 0.022 ± 0.002 q | 5.07 | 0.046 ± 0.002 l | |
Lav6 | 0.15 ± 0.004 h–k | 28.41 | 0.14 ± 0.002 h | 13.09 | 0.11 ± 0 jk | |
Castanea sativa | Cast1 | 0.11 ± 0.005 lm | 17.88 | 0.081 ± 0.003 n | 7.38 | 0.32 ± 0.006 gh |
Cast2 | 0.14 ± 0.013 j–l | 23.09 | 0.093 ± 0.00 mn | 8.17 | 0.34 ± 0.018 fg | |
Cast3 | 0.15 ± 0.008 i–k | 24.45 | 0.14 ± 0.004 gh | 11.81 | 0.47 ± 0.009 de | |
Cast4 | 0.16 ± 0.003 g–j | 27.20 | 0.13 ± 0.005 hi | 11.42 | 0.38 ± 0.053 f | |
Cast5 | 0.53 ± 0.021 c | 18.91 | 0.18 ± 0.002 f | 17.03 | 0.22 ± 0.005 i | |
Tilia spp. | Til1 | 0.095 ± 0.007 mn | 15.09 | 0.09 ± 0.002 n | 7.87 | 0.20 ± 0.018 i |
Til2 | 0.24 ± 0.001 f | 47.77 | 0.14 ± 0.004 gh | 13.47 | 0.15 ± 0.001 j | |
Citrus sinensis | Cit1 | 0.059 ± 0.001 no | 8.79 | 0.028 ± 0.002 pq | 2.22 | 0.046 ± 0.003 l |
Cit2 | 0.12 ± 0.01 k–m | 20.93 | 0.12 ± 0.005 i–k | 11.56 | 0.081 ± 0.001 kl | |
Eucalyptus spp. | Euc1 | 0.24 ± 0.003 f | 49.11 | 0.062 ± 0.002 o | 5.63 | 0.12 ± 0 jk |
Euc2 | 0.80 ± 0.028 a | 31.13 | 0.15 ± 0.005 g | 14.56 | 0.15 ± 0.003 j | |
Trifolium spp. | Tri1 | 0.19 ± 0.01 gh | 36.62 | 0.12 ± 0.007 j–l | 10.59 | 0.13 ± 0.008 j |
Tri2 | 0.19 ± 0.01 g | 37.39 | 0.061 ± 0.002 o | 7.32 | 0.083 ± 0.004 kl | |
Erica umbellata | Eri | 0.24 ± 0.012 f | 6.27 | 0.24 ± 0.003 d | 23.21 | 0.36 ± 0.013 fg |
Honeydew | Mel1 | 0.69 ± 0.024 b | 26.28 | 0.39 ± 0.005 b | 38.23 | 0.66 ± 0.002 b |
Mel2 | 0.19 ± 0.012 g–i | 3.91 | 0.47 ± 0.004 a | 45.83 | 0.77 ± 0.025 a | |
Arbutus unedo | Arb | 0.40 ± 0.01 d | 13.39 | 0.37 ± 0.006 c | 35.85 | 0.50 ± 0.005 cd |
Metrosíderos excelsa | Met | 0.038 ± 0.004 o | 5.31 | 0.11 ± 0.002 lm | 9.06 | 0.15 ± 0.002 j |
Multifloral | Mul1 | 0.33 ± 0.018 e | 10.58 | 0.11 ± 0.002 lm | 9.98 | 0.23 ± 0.002 i |
Mul2 | 0.40 ± 0.011 d | 13.52 | 0.20 ± 0.001 e | 19.72 | 0.36 ± 0.003 f | |
Mul3 | 0.18 ± 0.002 g–j | 31.70 | 0.18 ± 0.002 f | 15.68 | 0.44 ± 0.03 e | |
Mul4 | 0.38 ± 0.018 d | 12.71 | 0.13 ± 0.001 h–j | 12.30 | 0.28 ± 0.004 h | |
Mul5 | 0.18 ± 0.009 g-i | 29.89 | 0.20 ± 0.01 e | 16.35 | 0.51 ± 0.006 c |
Primer | Sequence | TNB | NPB | NUB | %P | Size Range (bp) | Rp | PIC | MI |
---|---|---|---|---|---|---|---|---|---|
UBC-810 | (GA)8T | 10 | 10 | 1 | 100 | 800–200 | 6.93 | 0.34 | 34.31 |
UBC-811 | (GA)8C | 12 | 12 | 2 | 100 | 1000–350 | 6.64 | 0.35 | 34.80 |
UBC-824 | (TC)8G | 9 | 9 | 1 | 100 | 1600–350 | 5.43 | 0.36 | 36.05 |
UBC-826 | (AC)8T | 9 | 9 | 0 | 100 | 1800–400 | 7.64 | 0.42 | 41.58 |
UBC-836 | (AG)8YA | 14 | 14 | 0 | 100 | 1000–300 | 7.57 | 0.32 | 32.29 |
UBC-840 | (GA)8YT | 12 | 9 | 0 | 75 | 1500–300 | 6.86 | 0.29 | 22.00 |
UBC-856 | (AC)8YA | 13 | 13 | 0 | 100 | 1700–300 | 8.07 | 0.37 | 36.79 |
UBC-857 | (AC)8YG | 10 | 10 | 2 | 100 | 2000–300 | 4.29 | 0.27 | 26.73 |
UBC-873 | (GACA)4 | 9 | 9 | 1 | 100 | 1600–400 | 6.86 | 0.31 | 31.29 |
UBC-888 | BDB(CA)7 | 11 | 11 | 0 | 100 | 2000–390 | 9.71 | 0.43 | 42.72 |
UBC-891 | HVH (TG)7 | 9 | 9 | 0 | 100 | 1800–300 | 6.29 | 0.39 | 39.00 |
Average | 10.73 | 10.45 | 0.64 | 97.73 | 6.94 | 0.35 | 34.33 |
Botanical Origin | Codification | Geographical Origin | District |
---|---|---|---|
Lavandula stoechas | Lav1 | Sines | Setúbal |
Lav2 | Chamusca | Santarém | |
Lav3 | Messines | Faro | |
Lav4 | Mirandela | Bragança | |
Lav5 | Almodôvar | Beja | |
Lav6 | Tavira | Faro | |
Castanea sativa | Cast1 | Viseu | Viseu |
Cast2 | Satão | Viseu | |
Cast3 | Viseu | Viseu | |
Cast4 | Vila Pouca Aguiar | Vila Real | |
Cast5 | Cinfães | Viseu | |
Tilia spp. | Til1 | Tondela | Viseu |
Til2 | Oliveira do Hospital | Coimbra | |
Citrus sinensis | Cit1 | Silves | Faro |
Cit2 | Tavira | Faro | |
Eucalyptus spp. | Euc1 | Espinho | Aveiro |
Euc2 | Arouca | Aveiro | |
Trifolium spp. | Tri1 | Alcains | Castelo Branco |
Tri2 | Castelo Branco | Castelo Branco | |
Erica umbellata | Eri1 | Seia | Guarda |
Honeydew | Mel1 | Almeida | Guarda |
Mel2 | Vinhais | Bragança | |
Metrosíderos excelsa | Met1 | Aveiro | Aveiro |
Arbutus unedo | Arb1 | Monchique | Faro |
Multifloral | Mul1 | Freamunde | Porto |
Mul2 | Celorico da Beira | Guarda | |
Mul3 | Chaves | Vila Real | |
Mul4 | Gois | Coimbra | |
Mul5 | Mirandela | Bragança |
Sample | Main Pollen Types (%) |
---|---|
Mul1 | Castanea sativa (65%); Rubus spp. (15%); Eucalyptus globulus (10%) |
Mul2 | Echium plantagineum (46%); Trifolium spp. (11%) |
Mul3 | Castanea sativa (53%); Echium plantagineum (18%); Rubus spp. (14%) |
Mul4 | Castanea sativa (77%); Erica spp. (9%); Rubus spp. (6%) |
Mul5 | Castanea sativa (59%); Rubus spp. (38%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.; Maia, M.; Carvalho, M.; Barros, A.N. Portuguese Monofloral Honeys: Molecular Insights and Biochemical Characterization. Molecules 2025, 30, 1808. https://doi.org/10.3390/molecules30081808
Silva M, Maia M, Carvalho M, Barros AN. Portuguese Monofloral Honeys: Molecular Insights and Biochemical Characterization. Molecules. 2025; 30(8):1808. https://doi.org/10.3390/molecules30081808
Chicago/Turabian StyleSilva, Mariana, Miguel Maia, Márcia Carvalho, and Ana Novo Barros. 2025. "Portuguese Monofloral Honeys: Molecular Insights and Biochemical Characterization" Molecules 30, no. 8: 1808. https://doi.org/10.3390/molecules30081808
APA StyleSilva, M., Maia, M., Carvalho, M., & Barros, A. N. (2025). Portuguese Monofloral Honeys: Molecular Insights and Biochemical Characterization. Molecules, 30(8), 1808. https://doi.org/10.3390/molecules30081808