Distribution and Health Risk Assessment of Triclosan and Other Typical Endocrine Disruptors in Honey
Abstract
1. Introduction
2. Experimental Procedure
2.1. Reagents and Chemicals
2.2. Sample Collection and Preparation
2.3. Instrumentation
2.4. DLLME Procedure
2.5. Calculations and Data Processing
3. Results and Discussion
3.1. Optimization of DLLME Operation Parameters
3.1.1. Selection of Extractant Type and Dosage
3.1.2. Selection of Extraction Time and Extraction Temperature
3.1.3. Selection of Inorganic Salt Type and Dosage
3.1.4. pH
3.1.5. Selection of Centrifugal Speed and Duration
3.2. Method Validation
3.3. Real Sample Analysis
3.3.1. Analysis of the Distribution of EDCs in Honey from Different Nectar Sources
3.3.2. Analysis of Honey Contamination by EDCs in Packaging Made of Different Materials
3.3.3. Comparison of Contamination of Honey at Home and Abroad
3.4. Daily Intake and Health Risk Assessment
Daily Intake and Health Risk Assessment for Adults
EDCs | Maximum Detectable Concentration (μg/kg) | RfD (ng/kg bw/d) | EDI (ng/kg bw/d) | HQ | Reference Measurements a and Uncertainty Factors |
---|---|---|---|---|---|
TCS | 144.6 | 1.3 × 104 | 28.92 | 2.2 × 10−3 | HED derived from mature rats: 4.0 × 106 ng/kg bw/day Uncertainty factor for infants: 3 (inter-) × 10 (intraspecies) × 10 (DBU b) |
TCC | 8 | 1.3 × 104 | 1.60 | 1.2 × 10−4 | HED derived from mature rats: 4.0 × 106 ng/kg bw/day Uncertainty factor for infants: 3 (inter-) × 10 (intraspecies) × 10 (DBU b) |
BPF | 1193 | 1.1 × 104 | 238.6 | 2.2 × 10−2 | HED derived from mature rats: 3.2 × 106 ng/kg bw/day Uncertainty factor for infants: 3 (inter-) × 10 (intraspecies) × 10 (DBU b) |
4HBP | 294.9 | 5.3 × 104 | 58.98 | 1.1 × 10−3 | HED derived from mature rats: 1.6 × 107 ng/kg bw/day Uncertainty factor for infants: 3 (inter-) × 10 (intraspecies) × 10 (DBU b) |
MeP | 439.5 | 1.0 × 107 | 87.90 | 8.79 × 10−6 | EDI: 1.0 × 107 ng/kg bw/day for total MeP and EtP |
PrP | 136.7 | 1.77 × 102 | 27.34 | 0.15 | HED derived from immature mice: 5.3 × 105 ng/kg bw/day Uncertainty factor for infants: 3 (inter-) × 10 (intraspecies) × 10 (DBU b) × 10 (for adults) |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, K.; Chen, R.; Xu, S.; Ding, Y.; Wu, Z.; Bao, M.; He, B.; Li, S. Environmental endocrine disruptor-induced mitochondrial dysfunction: A potential mechanism underlying diabetes and its complications. Front. Endocrinol. 2024, 15, 1422752. [Google Scholar] [CrossRef] [PubMed]
- Kloas, W.; Stöck, M.; Lutz, I.; Ziková-Kloas, A. Endocrine disruption in teleosts and amphibians is mediated by anthropogenic and natural environmental factors: Implications for risk assessment. Philos. Trans. R. Soc. B 2024, 379, 20220505. [Google Scholar] [CrossRef] [PubMed]
- Dalamaga, M.; Kounatidis, D.; Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Psallida, S.; Papavassiliou, A.G. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int. J. Mol. Sci. 2024, 25, 675. [Google Scholar] [CrossRef] [PubMed]
- Bocato, M.Z.; Cesila, C.A.; Lataro, B.F.; de Oliveira, A.R.M.; Campíglia, A.D.; Barbosa, F., Jr. A fast-multiclass method for the determination of 21 endocrine disruptors in human urine by using vortex-assisted dispersive liquid-liquid microextraction (VADLLME) and LC-MS/MS. Environ. Res. 2020, 189, 109883. [Google Scholar] [CrossRef]
- Gee, R.H.; Charles, A.; Taylor, N.; Darbre, P.D. Oestrogenic and androgenic activity of triclosan in breast cancer cells. J. Appl. Toxicol. 2008, 28, 78–91. [Google Scholar] [CrossRef]
- Fang, J.L.; Stingley, R.L.; Beland, F.A.; Harrouk, W.; Lumpkins, D.L.; Howard, P. Occurrence, efficacy, metabolism, and toxicity of triclosan. J. Environ. Sci. Health Part C 2010, 28, 147–171. [Google Scholar] [CrossRef]
- Geer, L.A.; Pycke, B.F.; Waxenbaum, J.; Sherer, D.M.; Abulafia, O.; Halden, R.U. Association of birth outcomes with fetal exposure to parabens, triclosan and triclocarban in an immigrant population in Brooklyn, New York. J. Hazard. Mater. 2017, 323 Pt A, 177–183. [Google Scholar] [CrossRef]
- Higashihara, N.; Shiraishi, K.; Miyata, K.; Oshima, Y.; Minobe, Y.; Yamasaki, K. Subacute oral toxicity study of bisphenol F based on the draft protocol for the “Enhanced OECD Test Guideline no. 407”. Arch. Toxicol. 2007, 81, 825–832. [Google Scholar] [CrossRef]
- Xu, G.; Huang, M.; Hu, J.; Liu, S.; Yang, M. Bisphenol A and its structural analogues exhibit differential potential to induce mitochondrial dysfunction and apoptosis in human granulosa cells. Food Chem. Toxicol. 2024, 188, 114713. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, M.; Liu, S.; Yang, M. Bisphenol F and bisphenol S induce metabolic perturbations in human ovarian granulosa cells. Arab. J. Chem. 2024, 17, 105904. [Google Scholar] [CrossRef]
- Choi, S.-I.; Kwon, H.-Y.; Han, X.; Men, X.; Choi, Y.-E.; Jang, G.-W.; Park, K.-T.; Han, J.; Lee, O.-H. Environmental obesogens (bisphenols, phthalates and parabens) and their impacts on adipogenic transcription factors in the absence of dexamethasone in 3T3-L1 cells. J. Steroid Biochem. Mol. Biol. 2021, 214, 105994. [Google Scholar] [CrossRef] [PubMed]
- Witorsch, R.J.; Thomas, J.A. Personal care products and endocrine disruption: A critical review of the literature. Crit. Rev. Toxicol. 2010, 40 (Suppl. S3), 1–30. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.T.; Yoo, Y.M.; Choi, K.C.; Jeung, E.B. Potential estrogenic effect(s) of parabens at the prepubertal stage of a postnatal female rat model. Reprod. Toxicol. 2010, 29, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ahn, K.C.; Gee, N.A.; Gee, S.J.; Hammock, B.D.; Lasley, B.L. Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicol. Appl. Pharmacol. 2007, 221, 278–284. [Google Scholar] [CrossRef]
- Shariatifar, N.; Dadgar, M.; Fakhri, Y.; Shahsavari, S.; Moazzen, M.; Ahmadloo, M.; Kiani, A.; Aeenehvand, S.; Nazmara, S.; Khanegah, A.M. Levels of polycyclic aromatic hydrocarbons in milk and milk powder samples and their likely risk assessment in Iranian population. J. Food Compos. Anal. 2020, 85, 103331. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Wang, X.; Du, L.; Chu, F.; Ding, W.; Gu, H.; Wang, H. A novel naphthalene carboxylic acid-based ionic liquid mixed disperser combined with ultrasonic-enhanced in-situ metathesis reaction for preconcentration of triclosan and methyltriclosan in milk and eggs. Ultrason. Sonochemistry 2018, 47, 57–67. [Google Scholar] [CrossRef]
- Yao, L.; Lv, Y.-Z.; Zhang, L.-J.; Liu, W.-R.; Zhao, J.-L.; Liu, Y.-S.; Zhang, Q.-Q.; Ying, G.-G. Determination of 24 personal care products in fish bile using hybrid solvent precipitation and dispersive solid phase extraction cleanup with ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. J. Chromatogr. A 2018, 1551, 29–40. [Google Scholar] [CrossRef]
- Wu, H.; Wu, L.-H.; Wang, F.; Gao, C.-J.; Chen, D.; Guo, Y. Several environmental endocrine disruptors in beverages from South China: Occurrence and human exposure. Environ. Sci. Pollut. Res. 2019, 26, 5873–5884. [Google Scholar] [CrossRef]
- Zapata, N.I.; Peñuela, G.A. Modified QuEChERS/UPLC-MS/MS method to monitor triclosan, ibuprofen, and diclofenac in fish Pseudoplatystoma magdaleniatum. Food Anal. Methods 2021, 14, 1289–1304. [Google Scholar] [CrossRef]
- Gentili, A.; Marchese, S.; Perret, D. MS techniques for analyzing phenols, their metabolites and transformation products of environmental interest. TrAC Trends Anal. Chem. 2008, 27, 888–903. [Google Scholar] [CrossRef]
- Manav, Ö.G.; Dinç-Zor, Ş.; Alpdoğan, G. Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchem. J. 2019, 144, 124–129. [Google Scholar] [CrossRef]
- Bemrah, N.; Jean, J.; Rivière, G.; Sanaa, M.; Leconte, S.; Bachelot, M.; Deceuninck, Y.; Le Bizec, B.; Dauchy, X.; Roudot, A.-C.; et al. Assessment of dietary exposure to bisphenol A in the French population with a special focus on risk characterisation for pregnant French women. Food Chem. Toxicol. 2014, 72, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Tang, Y.; Liu, X.; Wang, L.; Qin, L.; Li, D.; Shen, X.; Kong, C.; Zhai, W.; Fodjo, E.K.; et al. Determination of Free Glycidol and Total Free Monochloropropanediol in Fish and Krill Oil with Simple Aqueous Derivatization and High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2024, 13, 2340. [Google Scholar] [CrossRef]
- Wang, K.; Meng, X.; Yan, X.; Fan, K. Nanozyme-based point-of-care testing: Revolutionizing environmental pollutant detection with high efficiency and low cost. Nano Today 2024, 54, 102145. [Google Scholar] [CrossRef]
- Zheng, J.; Kuang, Y.; Zhou, S.; Gong, X.; Ouyang, G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal. Chem. 2023, 95, 218–237. [Google Scholar] [CrossRef]
- Guo, W.; Tao, H.; Tao, H.; Shuai, Q.; Huang, L. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal. Chim. Acta 2024, 1287, 341953. [Google Scholar] [CrossRef]
- Baghaei, P.A.M.; Mogaddam, M.R.A.; Farajzadeh, M.A.; Mohebbi, A.; Sorouraddin, S.M. Application of deep eutectic solvent functionalized cobalt ferrite nanoparticles in dispersive micro solid phase extraction of some heavy metals from aqueous samples prior to ICP-OES. J. Food Compos. Anal. 2023, 117, 105125. [Google Scholar] [CrossRef]
- Huo, S.; Deng, X.; Yang, N.; Qin, M.; Zhang, X.; Yao, X.; An, C.; Zhou, P.; Lu, X. A durable hydrophobicity hydrazone covalent organic framework coating for solid phase microextraction of polycyclic aromatic hydrocarbons in food and environmental sample. Chem. Eng. J. 2024, 481, 148562. [Google Scholar] [CrossRef]
- Chirani, M.R.; Kowsari, E.; Teymourian, T.; Ramakrishna, S. Environmental impact of increased soap consumption during COVID-19 pandemic: Biodegradable soap production and sustainable packaging. Sci. Total. Environ. 2021, 796, 149013. [Google Scholar] [CrossRef]
- Sidor, A.; Rzymski, P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Wu, H.; Zong, X.; Zhu, Z.; Pan, Y.; Li, J.; Zheng, X.; Wei, M.; Tong, M.; et al. The 5th national survey on the physical growth and development of children in the nine cities of China: Anthropometric measurements of Chinese children under 7 years in 2015. Am. J. Phys. Anthropol. 2017, 163, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. Human Health Risk Assessment Protocol, Chapter 7: Characterizing Risk and Hazard; US EPA Archive Document; Environmental Protection Agency: Washington, DC, USA, 2005.
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on food additives flavourings processing aids materials in contact with food (AFC) related to para hydroxybenzoates (E214–219). EFSA J. 2004, 2, 83. [Google Scholar] [CrossRef]
- Minnesota Department of Health. Incoporation of human equivalent dose calculations into derivation of oral reference doses. In MDH Health Risk Assessment Methods; Minnesota Department of Health: Sao Paulo, MN, USA, 2017. [Google Scholar]
- Environmental Protection Agency. Recommendations for and Documentation of Biological Values for Use in Risk Assessment; Environmental Protection Agency: Washington, DC, USA, 2011.
- Minnesota Department of Health. Toxicological summary for triclosan. In Human Health-Based Water Guidance Table; Minnesota Department of Health: Sao Paulo, MN, USA, 2015. [Google Scholar]
- Minnesota Department of Health. Toxicological summary for triclocarban. In Human Health-Based Water Guidance Table; Minnesota Department of Health: Sao Paulo, MN, USA, 2013. [Google Scholar]
- Chen, M.L.; Chen, C.H.; Huang, Y.F.; Chen, H.C.; Chang, J.W. Cumulative Dietary Risk Assessment of Benzophenone-Type Photoinitiators from Packaged Foodstuffs. Foods 2022, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Boberg, J.; Taxvig, C.; Christiansen, S.; Hass, U. Possible endocrine disrupting effects of parabens and their metabolites. Reprod. Toxicol. 2010, 30, 301–312. [Google Scholar] [CrossRef]
- Lemini, C.; Jaimez, R.; Ávila, M.E.; Franco, Y.; Larrea, F.; Lemus, A.E. In vivo and in vitro estrogen bioactivities of alkyl parabens. Toxicol. Ind. Health 2003, 19, 69–79. [Google Scholar] [CrossRef]
- Wei, F.; Mortimer, M.; Cheng, H.; Sang, N.; Guo, L.-H. Parabens as chemicals of emerging concern in the environment and humans: A review. Sci. Total. Environ. 2021, 778, 146150. [Google Scholar] [CrossRef]
- Bereketoglu, C.; Pradhan, A. Comparative transcriptional analysis of methylparaben and propylparaben in zebrafish. Sci. Total. Environ. 2019, 671, 129–139. [Google Scholar] [CrossRef]
- Li, M.; Zhou, S.; Wu, Y.; Li, Y.; Yan, W.; Guo, Q.; Xi, Y.; Chen, Y.; Li, Y.; Wu, M.; et al. Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice. Environ. Pollut. 2021, 285, 117254. [Google Scholar] [CrossRef]
- Tan, J.; Kuang, H.; Wang, C.; Liu, J.; Pang, Q.; Xie, Q.; Fan, R. Human exposure and health risk assessment of an increasingly used antibacterial alternative in personal care products: Chloroxylenol. Sci. Total. Environ. 2021, 786, 147524. [Google Scholar] [CrossRef]
- Freire, C.; Molina-Molina, J.-M.; Iribarne-Durán, L.M.; Jiménez-Díaz, I.; Vela-Soria, F.; Mustieles, V.; Arrebola, J.P.; Fernández, M.F.; Artacho-Cordón, F.; Olea, N. Concentrations of bisphenol A and parabens in socks for infants and young children in Spain and their hormone-like activities. Environ. Int. 2019, 127, 592–600. [Google Scholar] [CrossRef]
Nectar Source | Detection Rate (%) | Range (μg/kg) | |
---|---|---|---|
4HBP | acacia honey | 22.22 (2/9) | ND a-50.62 |
jujube honey | 25 (1/4) | ND- < LOQ b | |
vitex honey | 33.33 (1/3) | ND-172.3 | |
linden flower | 0 (0/4) | ND | |
rape flower honey | 33.33 (1/3) | ND- < LOQ | |
citrus honey | 33.33 (1/3) | ND-94.43 | |
loquat honey | 0 (0/1) | ND | |
multifloral honey | 69.23 (9/13) | ND-294.9 | |
sunflower honey | 33.33 (1/3) | ND- < LOQ | |
motherwort honey | 0 (0/1) | ND | |
wolfberry honey | 50 (1/2) | ND- < LOQ | |
milk vetch honey | 0 (0/1) | ND |
Analyte | TCS | TCC | MTCS | BPF | 4HBP | MeP | PrP | |
---|---|---|---|---|---|---|---|---|
Linear range (μg L−1) | 200–1500 | 25–500 | 500–3000 | 200–3000 | 50–1000 | 10–2000 | 50–1000 | |
Correlation coefficient R2 | 0.9995 | 0.9996 | 0.9991 | 0.9996 | 0.9994 | 0.9999 | 0.9994 | |
Limit of detection (μg L−1) | 55 | 8 | 127 | 43 | 15 | 10 | 11 | |
Limit of quantification (μg L−1) | 184 | 25 | 422 | 143 | 50 | 36 | 38 | |
Standard recovery(%) | Low spiked level | 96.82 | 98.90 | 90.02 | 89.70 | 99.52 | 98.27 | 98.99 |
Mean spiked level | 100.4 | 98.31 | 97.59 | 95.81 | 95.77 | 94.44 | 100.7 | |
High spiked level | 100.2 | 102.2 | 95.98 | 98.48 | 100.0 | 97.54 | 94.11 | |
Relative standard deviation (n = 9) (%) | 1.7–2.2 | 1.3–2.8 | 1.1–2.7 | 1.4–3.2 | 1.8–3.9 | 1.3–3.4 | 1.2–2.4 | |
Inter-day variability (n = 6) (%) | 0.8 | 1.5 | 0.6 | 1.1 | 1.1 | 0.9 | 1.6 | |
Intra-day variability (n = 6) (%) | 1.2 | 0.5 | 0.5 | 0.9 | 0.3 | 0.2 | 0.3 |
Nectar Source | Detection Rate (%) | Range (μg/kg) | |
---|---|---|---|
TCS | acacia honey | 44.44 | ND a- < LOQ b |
jujube honey | 50 | ND- < LOQ | |
vitex honey | 0 | ND | |
linden flower | 50 | ND-144.6 | |
rape flower honey | 33.33 | ND-121 | |
citrus honey | 66.67 | ND- < LOQ | |
loquat honey | 0 | ND | |
multifloral honey | 15.38 | ND- < LOQ | |
sunflower honey | 0 | ND | |
motherwort honey | 0 | ND | |
wolfberry honey | 50 | ND- < LOQ | |
milk vetch honey | 0 | ND |
Nectar Source | Detection Rate (%) | Range (μg/kg) | |
---|---|---|---|
TCC | acacia honey | 33.33 (3/9) | ND a- < LOQ b |
jujube honey | 25 (1/4) | ND- < LOQ | |
vitex honey | 0 (0/3) | ND | |
linden flower | 0 (0/4) | ND | |
rape flower honey | 0 (0/3) | ND | |
citrus honey | 0 (0/3) | ND | |
loquat honey | 0 (0/1) | ND | |
multifloral honey | 15.38 (2/13) | ND- < LOQ | |
sunflower honey | 33.3 3(1/3) | ND- < LOQ | |
motherwort honey | 100 (1/1) | <LOQ | |
wolfberry honey | 50 (1/2) | ND- < LOQ | |
milk vetch honey | 0 (0/1) | ND |
Nectar Source | Detection Rate (%) | Range (μg/kg) | |
---|---|---|---|
BPF | acacia honey | 88.89 (8/9) | ND a-612.5 |
jujube honey | 100 (4/4) | 232.1–642.4 | |
vitex honey | 100 (3/3) | 224.7–415.2 | |
linden flower | 100 (4/4) | <LOQ b-593.7 | |
rape flower honey | 100 (3/3) | <LOQ-297.9 | |
citrus honey | 100 (3/3) | 190.7–376.7 | |
loquat honey | 100 (1/1) | 150.8 | |
multifloral honey | 100 (13/13) | <LOQ-1193 | |
sunflower honey | 100 (3/3) | <LOQ-189 | |
motherwort honey | 100 (1/1) | 154.6 | |
wolfberry honey | 100 (2/2) | <LOQ | |
milk vetch honey | 100 (1/1) | 578.2 |
Nectar Source | Detection Rate (%) | Range (μg/kg) | |
---|---|---|---|
MeP | acacia honey | 100 (9/9) | <LOQ b-176.9 |
jujube honey | 50 (2/4) | ND a-64.86 | |
vitex honey | 100 (3/3) | <LOQ | |
linden flower | 75 (3/4) | ND-249.7 | |
rape flower honey | 100 (3/3) | <LOQ-149.5 | |
citrus honey | 100 (3/3) | 89.65–299.2 | |
loquat honey | 100 (1/1) | <LOQ | |
multifloral honey | 69.23 (9/13) | ND-320.9 | |
sunflower honey | 66.67 (2/3) | ND-70.02 | |
motherwort honey | 100 (1/1) | 40.52 | |
wolfberry honey | 100 (2/2) | 54.34–72.19 | |
milk vetch honey | 100 (1/1) | 439.5 | |
PrP | acacia honey | 100 (9/9) | <LOQ-109.3 |
jujube honey | 75 (3/4) | ND- < LOQ | |
vitex honey | 33.33 (1/3) | <LOQ | |
linden flower | 75 (3/4) | ND- < LOQ | |
rape flower honey | 66.67 (2/3) | ND- < LOQ | |
citrus honey | 100 (3/3) | <LOQ-56.86 | |
loquat honey | 100 (1/1) | <LOQ | |
multifloral honey | 69.23 (9/13) | ND-136.7 | |
sunflower honey | 100 (3/3) | <LOQ-39.42 | |
motherwort honey | 100 (1/1) | <LOQ | |
wolfberry honey | 100 (2/2) | <LOQ-120.3 | |
milk vetch honey | 100 (1/1) | <LOQ |
Packaging Material | Detection Rate (%) | Range (μg/kg) | |
---|---|---|---|
TCS | PET | 28.57 (8/28) | ND a-144.6 |
PP | 33.33 (1/3) | ND- < LOQ b | |
laminated polymer/foil pouches | 0 (0/5) | ND | |
glass bottles with plastic lids | 42.86 (3/7) | ND- < LOQ | |
glass bottles with polymer-lined metal lids | 33.33 (1/3) | ND- < LOQ | |
all-glass bottle | 100 (1/1) | <LOQ | |
TCC | PET | 17.86 (5/28) | ND- < LOQ |
PP | 33.33 (1/3) | ND- < LOQ | |
laminated polymer/foil pouches | 20 (1/5) | ND- < LOQ | |
glass bottles with plastic lids | 14.28 (1/7) | ND- < LOQ | |
glass bottles with polymer-lined metal lids | 33.33 (1/3) | ND- < LOQ | |
all-glass bottle | 0 (0/1) | ND |
Packaging Material | Detection Rate (%) | Range (μg/kg) | |
---|---|---|---|
BPF | PET | 96.43 (27/28) | ND a-1193 |
PP | 100 (3/3) | <LOQ b-199.3 | |
laminated polymer/foil pouches | 100 (5/5) | <LOQ-580.4 | |
glass bottles with plastic lids | 100 (7/7) | ND-612.5 | |
glass bottles with polymer-lined metal lids | 100 (3/3) | <LOQ-479.8 | |
all-glass bottle | 100 (1/1) | 234.5 |
Packaging Material | Detection Rate (%) | Range (μg/kg) | |
---|---|---|---|
4HBP | PET | 32.14 (9/28) | ND a-172.3 |
PP | 33.33 (1/3) | ND-50.62 | |
laminated polymer/foil pouches | 40 (2/5) | ND-294.9 | |
glass bottles with plastic lids | 57.14 (4/7) | ND-72.37 | |
glass bottles with polymer-lined metal lids | 33.33 (1/3) | ND-94.43 | |
all-glass bottle | 0 (0/1) | ND |
Packaging Material | Detection Rate (%) | Range (μg/kg) | |
---|---|---|---|
MeP | PET | 82.14 (23/28) | ND a-439.5 |
PP | 100 (3/3) | 37.2–61.3 | |
laminated polymer/foil pouches | 80 (4/5) | ND-320.9 | |
glass bottles with plastic lids | 71.43 (5/7) | ND-176.9 | |
glass bottles with polymer-lined metal lids | 100 (3/3) | 64.86–299.2 | |
all-glass bottle | 100 (1/1) | 179.8 | |
PrP | PET | 85.71 (24/28) | ND-136.7 |
PP | 66.67 (2/3) | ND- < LOQ b | |
laminated polymer/foil pouches | 80 (4/5) | ND-45.12 | |
glass bottles with plastic lids | 71.42 (5/7) | ND-109.3 | |
glass bottles with polymer-lined metal lids | 100 (3/3) | ND- < LOQ | |
all-glass bottle | 0 (0/1) | ND |
Place of Origin | EDCs | Detection Rate (%) | Range (μg/kg) | Geometric Mean Concentration (μg/kg) |
---|---|---|---|---|
China | TCS | 27.5 (11/40) | ND a 144.6 | 3.14 |
TCC | 20.0 (8/40) | ND- < LOQ b | 1.44 | |
MTCS | 0 (0/40) | ND | ND | |
BPF | 97.5 (39/40) | ND-642.4 | 144.9 | |
4HBP | 32.5 (13/40) | ND-294.9 | 3.32 | |
MeP | 82.5 (33/40) | ND-439.5 | 27.39 | |
PrP | 85.0 (34/40) | ND-120.3 | 10 | |
Abroad | TCS | 42.86 (3/7) | ND- < LOQ | 5.57 |
TCC | 14.28 (1/7) | ND- < LOQ | 1.34 | |
MTCS | 0 (0/7) | ND | ND | |
BPF | 100 (7/7) | 187.6–1193 | 527.1 | |
4HBP | 57.14 (4/7) | ND-99.32 | 12.89 | |
MeP | 85.71 (6/7) | ND-320.9 | 56.19 | |
PrP | 57.14 (4/7) | ND-136.7 | 17.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Gao, M.; Li, H.; Hou, X.; Gong, A.; Cao, Y. Distribution and Health Risk Assessment of Triclosan and Other Typical Endocrine Disruptors in Honey. Foods 2025, 14, 2006. https://doi.org/10.3390/foods14122006
Wang J, Gao M, Li H, Hou X, Gong A, Cao Y. Distribution and Health Risk Assessment of Triclosan and Other Typical Endocrine Disruptors in Honey. Foods. 2025; 14(12):2006. https://doi.org/10.3390/foods14122006
Chicago/Turabian StyleWang, Jianing, Meiqi Gao, Hongmei Li, Xinyan Hou, Aijun Gong, and Yanqiu Cao. 2025. "Distribution and Health Risk Assessment of Triclosan and Other Typical Endocrine Disruptors in Honey" Foods 14, no. 12: 2006. https://doi.org/10.3390/foods14122006
APA StyleWang, J., Gao, M., Li, H., Hou, X., Gong, A., & Cao, Y. (2025). Distribution and Health Risk Assessment of Triclosan and Other Typical Endocrine Disruptors in Honey. Foods, 14(12), 2006. https://doi.org/10.3390/foods14122006