Influence of Terroir on Microbial Diversity and Wine Volatilome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Autochthonous Wine Yeasts
2.2. Culture Media and Enzymatic Screening Procedures
2.2.1. Medium Wallerstein Laboratory (WL)
2.2.2. Medium Lysine
2.2.3. Determination of Yeast Killer Activity
2.2.4. Medium for Detecting β-Glucosidase Activity
2.2.5. Medium for Detecting Cellulase Activity
2.3. Yeast Identification
2.4. Determination of Oenological Parameters
2.4.1. Analytical Determinations of Volatile Compounds
Determination Major Aroma Compounds
Determination Minor Aroma Compounds
2.5. Calculation of Aroma Series
2.6. Statistical Analysis
3. Results and Discussion
3.1. Microbiological Analysis
3.2. Oenological Parameters
3.3. Major Aroma Compounds
3.4. Minor Aroma Compounds
3.5. Aromatic Series, Multivariate and Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, T.H.; Kok, B.C.; Uttraphan, C.; Yee, M.H. Study of yeast and sugar in bio-energy generation. Bull. Electr. Eng. Inform. 2020, 9, 443–451. [Google Scholar] [CrossRef]
- Maicas, S. Advances in wine fermentation. Fermentation 2021, 7, 187. [Google Scholar] [CrossRef]
- Windholtz, S.; Vinsonneau, E.; Farris, L.; Thibon, C.; Masneuf-Pomarède, I. Yeast and filamentous fungi microbial communities in organic red grape juice: Effect of vintage, maturity stage, SO2, and bioprotection. Front. Microbiol. 2021, 12, 748416. [Google Scholar] [CrossRef] [PubMed]
- Franco, G.C.; Leiva, J.; Nand, S.; Lee, D.M.; Hajkowski, M.; Dick, K.; Withers, B.; Soto, L.; Mingoa, B.-R.; Acholonu, M.; et al. Soil microbial communities and wine terroir: Research gaps and data needs. Foods 2024, 13, 2475. [Google Scholar] [CrossRef]
- Li, R.; Feng, D.; Wang, H.; Zhang, Z.; Li, N.; Sun, Y. Genetic diversity of Non-Saccharomyces yeasts associated with spontaneous fermentation of Cabernet Sauvignon wines from Ningxia, China. Front. Microbiol. 2023, 14, 1253969. [Google Scholar] [CrossRef]
- Miranda, A.; Pereira, V.; Jardim, H.; Malfeito-Ferreira, M.; Marques, J.C. Impact of Non-Saccharomyces yeast fermentation in madeira wine chemical composition. Processes 2023, 11, 482. [Google Scholar] [CrossRef]
- Varela, C.; Borneman, A.R. Yeasts found in vineyards and wineries. Yeast 2017, 34, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Benito, Á.; Calderón, F.; Benito, S. The influence of Non-Saccharomyces species on wine fermentation quality parameters. Fermentation 2019, 5, 54. [Google Scholar] [CrossRef]
- Morata, A.; Escott, C.; Bañuelos, M.A.; Loira, I.; Del Fresno, J.M.; González, C.; Suárez-Lepe, J.A. Contribution of Non-Saccharomyces yeasts to wine freshness. A review. Biomolecules 2019, 10, 34. [Google Scholar] [CrossRef]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of wine microorganisms in their aroma profile. Foods 2020, 10, 51. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J.J. The life of Saccharomyces and Non-Saccharomyces yeasts in drinking wine. Microorganisms 2023, 11, 1178. [Google Scholar] [CrossRef]
- Jackowski, M.; Czepiela, W.; Hampf, L.; Żuczkowski, W.; Dymkowski, T.; Trusek, A. comparison of two commercially available strains, Saccharomycodes ludwigii and Torulaspora delbrueckii, for the production of low-alcohol beer. Beverages 2023, 9, 66. [Google Scholar] [CrossRef]
- Sun, W.; Chen, X.; Bi, P.; Han, J.; Li, S.; Liu, X.; Zhang, Z.; Long, F.; Guo, J. Screening and characterization of indigenous Non-Saccharomyces cerevisiae with high enzyme activity for kiwifruit wine production. Food Chem. 2024, 440, 138309. [Google Scholar] [CrossRef]
- Lin, M.; Boss, P.; Walker, M.; Sumby, K.; Grbin, P.; Jiranek, V. Evaluation of indigenous Non-Saccharomyces yeasts isolated from a south australian vineyard for their potential as wine starter cultures. Int. J. Food Microbiol. 2020, 312, 108373. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.; Vinagre, A.; Ambrona, J.; Molina, F.; Maqueda, M.; Rebollo, J.E. genetic instability of heterozygous hybrid populations of natural wine yeasts. Appl. Environ. Microbiol. 2004, 70, 4686–4691. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, C.; Michaelis, S.; Mitchell, A. Methods in Yeast Genetics; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1994. [Google Scholar]
- Lodder, J.; Kreger-van Rij, N.J.W. The Yeasts: A Taxonomic Study, 1st ed.; Elsevier: Cham, The Netherlands, 1952; pp. 84–85. [Google Scholar]
- Öztekin, S.; Karbancioglu-Guler, F. Biological control of green mould on mandarin fruit through the combined use of antagonistic yeasts. Biol. Control 2023, 180, 105186. [Google Scholar] [CrossRef]
- Maldonado, N.; Robledo, C.; Robledo, J. La espectrometría de masas MALDI-TOF en el laboratorio de microbiología clínica. Infectio 2018, 22, 35–45. [Google Scholar] [CrossRef]
- International Code of Oenological Practices; OIV International Organisation of Vine and Wine: Dijon, France, 2023.
- Peinado, R.A.; Moreno, J.A.; Muñoz, D.; Medina, M.; Moreno, J. Gas chromatographic quantification of major volatile compounds and polyols in wine by direct injection. J. Agric. Food Chem. 2004, 52, 6389–6393. [Google Scholar] [CrossRef] [PubMed]
- Palenzuela, M.D.V.; López de Lerma, N.; Sánchez-Suárez, F.; Martínez-García, R.; Peinado, R.A.; Rosal, A. Aroma composition of wines produced from grapes treated with organic amendments. Appl. Sci. 2023, 13, 8001. [Google Scholar] [CrossRef]
- Englezos, V.; Jolly, N.P.; Di Gianvito, P.; Rantsiou, K.; Cocolin, L. Microbial interactions in winemaking: Ecological aspects and effect on wine quality. Trends Food Sci. Technol. 2022, 127, 99–113. [Google Scholar] [CrossRef]
- Lowes, K.F.; Shearman, C.A.; Payne, J.; MacKenzie, D.; Archer, D.B.; Merry, R.J.; Gasson, M.J. Prevention of yeast spoilage in feed and food by the yeast mycocin HMK. Appl. Environ. Microbiol. 2000, 66, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Michlmayr, H.; Kneifel, W. β-Glucosidase activities of lactic acid bacteria: Mechanisms, impact on fermented food and human health. FEMS Microbiol. Lett. 2014, 352, 1–10. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, B.; Gu, H.; Xu, T.; Chen, Q.; Li, J.; Zhou, P.; Guan, X.; He, L.; Liang, Y.; et al. A mutant GH3 Family β-glucosidase from Oenococcus oeni exhibits superior adaptation to wine stresses and potential for improving wine aroma and phenolic profiles. Food Microbiol. 2024, 119, 104458. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically bound aroma precursors in fruits: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2022, 62, 215–243. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, R.; Sirisena, S.; Gan, R.; Fang, Z. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef]
- Maturano, Y.P.; Toro, M.E.; Castellanos, L.I.; Vazquez, F. Determinación de actividades celulolítica y xilanolítica en levaduras no-Saccharomyces de origen enológico. Rev. De Enol. 2007, 2, 1–10. [Google Scholar]
- Maturano, Y.P.; Assof, M.; Fabani, M.P.; Nally, M.C.; Jofré, V.; Rodríguez Assaf, L.A.; Toro, M.E.; de Figueroa, L.I.C.; Vazquez, F. Enzymatic activities produced by mixed Saccharomyces and Non-Saccharomyces cultures: Relationship with wine volatile composition. Antonie Van Leeuwenhoek 2015, 108, 1239–1256. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, I.; Cavalieri, D. metagenomic approaches to investigate the contribution of the vineyard environment to the quality of wine fermentation: Potentials and difficulties. Front. Microbiol. 2018, 9, 991. [Google Scholar] [CrossRef]
- de Celis, M.; Ruiz, J.; Benitez-Dominguez, B.; Vicente, J.; Tomasi, S.; Izquierdo-Gea, S.; Rozés, N.; Ruiz-De-Villa, C.; Gombau, J.; Zamora, F.; et al. Multi-omics framework to reveal the molecular determinants of fermentation performance in wine yeast populations. Microbiome 2024, 12, 203. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Q.; Zhang, P.; Chen, D.; Howell, K.S. The fungal microbiome is an important component of vineyard ecosystems and correlates with regional distinctiveness of wine. Msphere 2020, 5, e00534-20. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Fiorini, D.; Caprioli, G.; Sagratini, G.; Maggi, F.; Vittori, S.; Marcantoni, E.; Ballini, R. Quantitative profiling of volatile and phenolic substances in the wine vernaccia di serrapetrona by development of an HS-SPME-GC-FID/MS Method and HPLC-MS. Food Anal. Meth. 2014, 7, 1651–1660. [Google Scholar] [CrossRef]
- Szudera-Kończal, K.; Myszka, K.; Kubiak, P.; Drabińska, N.; Majcher, M.A. The combined effect of lactic acid bacteria and Galactomyces geotrichum fermentation on the aroma composition of sour whey. Molecules 2023, 28, 4308. [Google Scholar] [CrossRef]
- Hodson, G.; Wilkes, E.; Azevedo, S.; Battaglene, T. Methanol in wine. BIO Web Conf. 2017, 9, 02028. [Google Scholar] [CrossRef]
- Zea, L.; Serratosa, M.P.; Mérida, J.; Moyano, L. Acetaldehyde as key compound for the authenticity of sherry wines: A study covering 5 decades. Food. Sci. Food Saf. 2015, 14, 681–693. [Google Scholar] [CrossRef]
- Guittin, C.; Maçna, F.; Picou, C.; Perez, M.; Barreau, A.; Poitou, X.; Sablayrolles, J.-M.; Mouret, J.-R.; Farines, V. New online monitoring approaches to describe and understand the kinetics of acetaldehyde concentration during wine alcoholic fermentation: Access to production balances. Fermentation 2023, 9, 299. [Google Scholar] [CrossRef]
- Huang, Y.; Zhong, M.; Mu, S.; Han, Y.; Shi, Y.; Li, X.; Li, D. Assessment of the contributions of Saccharomyces cerevisiae, Hansenula sp. and Pichia kudriavzevii to volatile organic compounds and sensory characteristics of waxy rice wine. Eur. Food Res. Technol. 2023, 249, 685–697. [Google Scholar] [CrossRef]
- Scanes, K.T.; Hohrnann, S.; Prior, B.A. Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: A review. S. Afr. J. Enol. Vitic. 1998, 19, 17–24. [Google Scholar] [CrossRef]
- Jones, P.R.; Gawel, R.; Francis, I.L.; Waters, E.J. The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food. Qual. Prefer. 2008, 19, 596–607. [Google Scholar] [CrossRef]
- Gawel, R.; Sluyter, S.V.; Waters, E.J. The effects of ethanol and glycerol on the body and other sensory characteristics of riesling wines. Aust. J. Grape Wine Res. 2007, 13, 38–45. [Google Scholar] [CrossRef]
- Perpete, P.; Collin, S. Influence of beer ethanol content on the wort flavour perception. Food Chem. 2000, 71, 379–385. [Google Scholar] [CrossRef]
- Martín-García, F.J.; Palacios-Fernández, S.; López de Lerma, N.; García-Martínez, T.; Mauricio, J.C.; Peinado, R.A. The effect of yeast, sugar and sulfur dioxide on the volatile compounds in wine. Fermentation 2023, 9, 541. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Medina, M.; Mauricio, J.C. Changes in volatile compounds and aromatic series in sherry wine with high gluconic acid levels subjected to aging by submerged flor yeast cultures. Biotechnol. Lett. 2004, 26, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Espinosa, J.M.; Muñoz-Castells, R.; Moreno-García, J.; García-Martínez, T.; Mauricio, J.C.; Moreno, J. Analytical differentiation of wines from three terroirs located in a warm winegrowing area based on their volatilome. Molecules 2025, 30, 238. [Google Scholar] [CrossRef]
- Alises, M.O.; Sánchez-Palomo, E.; Viñas, M.G. Effects of winemaking techniques on the volatile compounds of Chelva wines. Food Biosci. 2024, 59, 104121. [Google Scholar] [CrossRef]
- Filippousi, M.E.; Chalvantzi, I.; Mallouchos, A.; Marmaras, I.; Banilas, G.; Nisiotou, A. The use of Hanseniaspora opuntiae to improve ‘sideritis’ wine quality, a late-ripening greek grape variety. Foods 2024, 13, 1061. [Google Scholar] [CrossRef]
- Meng, D.; Zhao, D.; Yang, H.; Li, Y.; Yan, Z.; Wang, Z.; Lv, Z.; Zhao, Z. An insight into the association between volatile and other active components of sea buckthorn berries in barren soils of western China. Food Humanit. 2024, 2, 100293. [Google Scholar] [CrossRef]
- López de Lerma, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; Garcia-Martinez, T. Influence of two yeast strains in free, bioimmobilized or immobilized with alginate forms on the aromatic profile of long aged sparkling wines. Food Chem. 2018, 50, 22–29. [Google Scholar] [CrossRef]
- Pino, J.A.; Queris, O. Analysis of volatile compounds of mango wine. Food Chem. 2011, 125, 1141–1146. [Google Scholar] [CrossRef]
- Tarko, T.; Duda, A. Volatilomics of fruit wines. Molecules 2024, 29, 2457. [Google Scholar] [CrossRef]
- Hein, K.; Ebeler, S.E.; Heymann, H. Perception of fruity and vegetative aromas in red wine. J. Sens. Stud. 2009, 24, 441–455. [Google Scholar] [CrossRef]
- Dumitriu, G.D.; Peinado, R.A.; Cotea, V.V.; de Lerma, N.L. Volatilome fingerprint of red wines aged with chips or staves: Influence of the aging time and toasting degree. Food Chem. 2020, 310, 125801. [Google Scholar] [CrossRef] [PubMed]
- Moyano, L.; Varo, M.Á.; Núñez, L.; López-Toledano, A.; Serratosa, M.P. Discovering the volatilome fingerprint of selected traditional Cuban wines elaborated with native grapes, tropical fruits, and rice using DHS–TD–GC–MS. J. Food Sci. 2024, 89, 4926–4940. [Google Scholar] [CrossRef] [PubMed]
Oenological Parameters | Lagar Los Borbones | Lagar Saavedra | Lagar Cañada Navarro | Coop. Aguilar de la Fra | Coop. San Acacio | Coop. La Unión |
---|---|---|---|---|---|---|
pH | 4.07 ± 0.06 e | 3.71 ±0.10 c | 3.24 ± 0.06 a | 3.61 ± 0.10 b | 3.81 ± 0.11 d | 3.71 ± 0.07 c |
Volatile acidity (g L−1) | 0.71 ± 0.10 b | 0.49 ± 0.10 a | 0.81 ±0.09 c | 0.91 ± 0.10 d | 2.20± 0.11 f | 1.22 ± 0.10 e |
Total acidity (g L−1) | 4.51 ± 0.08 a | 5.92 ± 0.08 c | 8.62 ± 0.07 f | 6.40 ± 0.11 d | 7.31 ± 0.11 e | 5.84 ± 0.10 b |
Ethanol (% v/v) | 12.6 ± 0.2 a | 14.6 ± 0.2 c | 12.6 ± 0.1 a | 13.6 ± 0.4 b | 15.00 ± 0.5 d | 13.4 ± 0.2 b |
Compounds (mg/L) | Lagar Los Borbones | Lagar Saavedra | Lagar Cañada Navarro | Coop Aguilar de la Fra. | Coop San Acacio | Coop La Unión |
---|---|---|---|---|---|---|
Alcohols | ||||||
Methanol | 69.2 ± 1.9 a | 104.2 ± 7.3 c | 98.6 ± 7.5 bc | 75.0 ± 7.0 a | 137.2 ± 6.2 d | 87.9 ± 6.3 b |
1-Propanol | 32.2 ± 1.4 ab | 35.5 ± 1.3 b | 29.4 ± 1.4 a | 39.9 ± 3.1 c | 62.2 ± 1.4 d | 33.1 ± 2.3 b |
Isobutanol | 144.8 ± 3.3 e | 136.5 ± 5.4 d | 126.6 ± 1.8 c | 115.5 ± 3.8 b | 44.6 ± 0.7 a | 41.8 ± 1.7 a |
Isoamyl alcohols | 367.5 ± 8.0 c | 444.0 ± 17.4 e | 416.1 ± 6.6 d | 345.8 ± 11.6 b | 207.2 ± 4.2 a | 338.4 ± 9.0 b |
2-Phenylethanol | 142.0 ± 12.3 c | 248.0 ± 18.7 d | 131.7 ± 10.5 c | 68.5 ± 6.9 b | 43.5 ± 3.2 a | 39.4 ± 2.3 a |
Carbonyl Compounds | ||||||
Acetaldehyde | 101.6 ± 8.4 b | 33.9 ± 2.0 a | 189.6 ± 16.0 d | 143.4 ± 5.4 c | 195.2 ± 9.4 f | 105.2 ± 7.3 d |
Acetoin | 85.4 ± 5.9 c | 18.0 ± 1.3 a | 77.4 ± 4.0 bc | 71.4 ± 2.1 b | 145.1 ± 14.7 d | 21.1 ± 1.1 a |
Esters | ||||||
Ethyl lactate | 51.1 ± 2.0 b | 10.1 ± 0.2 a | 13.1 ± 0.9 a | 277.7 ± 26.6 d | 105.9 ± 6.1 c | 34.5 ± 1.5 b |
Diethyl succinate | 11.8 ± 1.1 c | 8.17 ± 0.60 b | 4.70 ± 0.30 a | 13.4 ± 1.3 d | 8.60 ± 0.80 a | 5.84 ± 0.44 a |
Ethyl acetate | 52.0 ± 1.8 d | 19.1 ± 0.7 a | 86.1 ± 1.7 f | 69.8 ± 2.3 e | 31.8 ± 0.4 c | 24.9 ± 1.3 b |
Polyols | ||||||
2,3-Butanediol (levo) | 546.8 ± 22.5 b | 438.8 ± 29.2 a | 683.4 ± 38.4 c | 921.5 ± 0.6 e | 1326.6 ± 74.7 f | 779.7 ± 51.7 d |
2,3-Butanediol (meso) | 288.7 ± 25.2 b | 228.0 ± 11.7 a | 225.1 ± 12.7 a | 309.3 ± 2.6 b | 353.0 ± 21.4 c | 254.0 ± 15.8 a |
Glycerol (g/L) | 11.5 ± 1.2 c | 15.5 ± 1.1 d | 10.8 ± 0.9 bc | 9.50 ± 1.40 ab | 9.20 ± 0.81 ab | 8.50 ± 0.60 a |
Compounds | Lagar Los Borbones | Lagar Saavedra | Lagar Cañada Navarro | Coop Aguilar de la Fra. | Coop San Acacio | Coop La Unión |
---|---|---|---|---|---|---|
Alcohols | ||||||
Octanol | 132.9 ± 7.7 c | 56.2 ± 3.2 b | 137.7 ± 11.7 c | 207.2 ± 8.9 d | 22.9 ± 1.5 a | 149.6 ± 6.1 c |
Hexanol | 1099.2 ± 38.2 a | 1310.9 ± 60.7 b | 1488.1 ± 65.0 bc | 2057.0 ± 60.7 b | 1741.3 ±140.9 b | 2663.8 ± 204.6 c |
Decanol | 3.10 ± 0.10 a | 5.20 ± 0.20 b | 4.30 ± 0.4 ab | 9.10 ± 0.80 d | 7.50 ± 0.30 c | 10.8 ± 1.7 e |
2-Ethyl-1-hexanol | 82.1 ± 3.7 a | 95.5 ± 3.2 d | 117.2 ± 8.7 e | 57.0 ± 2.2 b | 48.2 ± 2.9 c | 61.3 ± 2.1 b |
Guaiacol | 23.1 ± 1.1 c | 24.4 ± 1.0 e | 12.9 ± 1.2 c | 4.10 ± 0.30 a | 11.7 ± 0.8 d | 6.70 ± 0.40 b |
4-Vinylphenol | 55.4 ± 3.4 b | 84.0 ± 4.1 e | 35.4 ± 2.5 c | 9.20 ± 0.60 a | 26.2 ± 1.7 d | 7.20 ± 0.40 a |
4-Ethylguaiacol | 13.3 ± 0.7 bc | 1.10 ± 0.10 ab | 5.00 ± 3.80 c | 0.0 ± 0.0 a | 3.30 ± 0.30 d | 0.0 ± 0.0 a |
Dodecanol | 11.9 ± 1.0 a | 8.80 ± 0.30 bc | 10.1 ± 0.7 d | 7.90 ± 0.50 ab | 7.60 ± 0.50 e | 9.70 ± 0.50 cd |
2-Furanmethanol | 19.2 ± 0.9 b | 18.9 ± 1.7 c | 8.10 ± 0.60 b | 2.70 ± 0.10 a | 6.90 ± 0.40 c | 4.10 ± 0.40 a |
Terpenoids | ||||||
E-Nerolidol | 2.60 ± 0.10 a | 2.70 ± 0.10 a | 2.70 ± 0.30 a | 2.60 ± 0.10 a | 2.70 ± 0.20 a | 2.70 ± 0.10 a |
B-Citronellol | 15.3 ± 0.6 b | 12.4 ± 0.8 a | 27.8 ± 2.1 b | 45.5 ± 3.1 c | 25.8 ± 1.7 a | 28.5 ± 1.3 b |
Z-Nerolidol | 0.50 ± 0.01 a | 0.20 ± 0.01 b | 0.50 ± 0.01 c | 0.10 ± 0.01 a | 0.0 ± 0.0 c | 0.0 ± 0.0 a |
Limonene | 27.0 ± 2.9 b | 25.9 ± 1.9 c | 25.1 ± 1.1 c | 17.1 ± 1.5 a | 21.5 ± 1.4 c | 20.9 ± 1.0 b |
Trans-Methyldihydrojasmonate | 2.80 ± 0.30 a | 3.00 ± 0.10 d | 2.40 ± 0.30 b | 1.90 ± 0.20 a | 1.80 ± 0.20 c | 2.90 ± 0.10 d |
B-Farnesene | 7.70 ± 0.10 f | 4.50 ± 0.40 b | 3.00 ± 0.10 a | 5.60 ± 0.30 d | 6.50 ± 0.40 e | 4.50 ± 0.40 c |
E-Citral | 0.20 ± 0.01 b | 0.90 ± 0.10 c | 0.50 ± 0.01 b | 0.50 ± 0.01 b | 0.50 ± 0.01 a | 1.00 ± 0.10 d |
Z-Citral | 4.80 ± 0.70 c | 2.40 ± 0.10 b | 2.50 ± 0.20 bc | 0.80 ± 0.01 a | 2.80 ± 0.20 d | 2.70 ± 0.20 bc |
Farnesol | 7.60 ± 0.10 d | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 5.60 ± 0.30 a | 0.0 ± 0.0 a | 0.0 ± 0.0 c |
B-Damascenone | 0.50 ± 0.01 b | 0.30 ± 0.01 a | 0.40 ± 0.01 a | 3.00 ± 0.20 d | 2.40 ± 0.10 a | 2.80 ± 0.20 c |
B-Ionone | 0.10 ± 0.01 c | 0.20 ± 0.01 d | 0.10 ± 0.01 b | 0.10 ± 0.01 a | 0.10 ± 0.01 b | 0.20 ± 0.01 d |
Aldehydes | ||||||
(E,E)-2,4-Nonadienal | 0.20 ± 0.01 bc | 0.20 ± 0.01 bc | 0.10 ± 0.01 b | 0.30 ± 0.01 d | 0.10 ± 0.01 a | 0.20 ± 0.01 c |
E-2-Octenal | 1.80 ± 0.10 f | 1.10 ± 0.01 c | 0.90 ± 0.01 b | 0.0 ± 0.0 a | 1.40 ± 0.10 d | 1.50 ± 0.10 e |
2,4-Decadienal,(E,E) | 0.30 ± 0.10 c | 0.20 ± 0.10 b | 0.10 ± 0.10 a | 0.20 ± 0.01 b | 0.20 ± 0.01 ab | 0.20 ± 0.10 b |
E-2-Nonenal | 0.40 ± 0.01 a | 0.90 ± 0.01 d | 0.50 ± 0.01 b | 0.70 ± 0.10 c | 1.00 ± 0.10 e | 0.90 ± 0.10 de |
Heptanal | 0.80 ± 0.01 a | 0.80 ± 0.01 a | 0.90 ± 0.10 a | 0.80 ± 0.01 a | 0.80 ± 0.01 a | 1.30 ± 0.10 b |
Phenylacetaldehyde | 1.80 ± 0.01 a | 2.10 ± 0.10 a | 2.10 ± 0.10 a | 3.00 ± 0.10 a | 1.80 ± 0.10 a | 2.80 ± 0.10 a |
Hexanal | 4.62 ± 0.32 a | 5.80 ± 0.40 b | 6.10 ± 0.20 bc | 5.60 ± 0.20 b | 5.70 ± 0.60 b | 6.70 ± 0.50 c |
Octanal | 0.70 ± 0.10 d | 0.90 ± 0.10 bc | 0.80 ± 0.10 ab | 1.00 ± 0.10 c | 1.40 ± 0.10 a | 1.30 ± 0.10 d |
Nonanal | 1.82 ± 0.10 d | 1.90 ± 0.10 b | 1.00 ± 0.10 a | 4.20 ± 0.20 c | 4.60 ± 0.10 b | 5.30 ± 0.30 e |
Decanal | 2.40 ± 0.10 c | 2.30 ± 0.20 b | 1.30 ± 0.10 a | 8.40 ± 0.60 c | 8.10 ± 0.40 b | 10.00 ± 0.60 d |
Benzaldehyde | 4.90 ± 0.40 d | 4.90 ± 0.20 cd | 4.30 ± 0.40 bc | 2.20 ± 0.10 a | 4.30 ± 0.30 b | 4.00 ± 0.50 b |
4-Methylbenzaldehyde | 1.40 ± 0.20 d | 1.10 ± 0.90 b | 1.00 ± 0.10 b | 0.80 ± 0.10 a | 1.00 ± 0.10 b | 1.30 ± 0.10 c |
3-Methylbenzaldehyde | 0.80 ± 0.10 c | 0.30 ± 0.01 a | 0.50 ± 0.10 b | 0.50 ± 0.10 b | 0.80 ± 0.01 d | 0.80 ± 0.10 c |
Hexylcinnamaldehyde | 1.01 ± 0.01 ab | 1.01 ± 0.01 ab | 0.90 ± 0.01 a | 1.01 ± 0.02 bc | 1.10 ± 0.10 d | 1.00 ± 0.02 c |
Ketones | ||||||
Acetophenone | 0.10 ± 0.01 a | 2.20 ± 0.10 bc | 0.20 ± 0.01 a | 2.20 ± 0.10 b | 2.40 ± 0.40 bc | 2.70 ± 0.50 c |
3-Methylacetophenone | 0.10 ± 0.01 a | 0.70 ± 0.10 c | 0.70 ± 0.10 d | 0.40 ± 0.30 b | 0.10 ± 0.00 a | 0.80 ± 0.01 |
3-Heptanone | 1.35 ± 0.10 ab | 1.40 ± 0.10 bc | 1.20 ± 0.13 e | 1.10 ± 0.10 a | 1.70 ± 0.10 de | 1.50 ± 0.10 cd |
2-Decanone | 2.80 ± 0.01 b | 2.80 ± 0.01 a | 2.80 ± 0.01 a | 3.30 ± 0.10 d | 2.90 ± 0.01 a | 3.10 ± 0.01 c |
3-Octen-2-one | 1.30 ± 0.10 e | 3.10 ± 0.20 d | 1.90 ± 0.10 b | 3.00 ± 0.60 d | 3.20 ± 0.10 a | 2.40 ± 0.10 c |
Z-Geranylacetone | 1.50 ± 0.01 b | 1.50 ± 0.01 a | 1.50 ± 0.10 a | 2.6 ± 0.20 bc | 2.40 ± 0.10 a | 2.7 ± 0.20 c |
Benzophenone | 6.70 ± 0.53 b | 3.30 ± 0.10 c | 5.20 ± 0.40 d | 0.90 ± 0.10 a | 1.20 ± 0.10 e | 1.30 ± 0.01 b |
E-Geranilacetone | 2.40 ± 0.20 a | 0.70 ± 0.10 a | 2.00 ± 0.20 c | 4.40 ± 0.20 e | 0.80 ± 0.10 d | 1.60 ± 0.10 b |
Esters | ||||||
Ethyl butanoate | 25.2 ± 1.0 a | 59.0 ± 2.8 c | 55.7 ± 2.7 c | 55.7 ± 5.0 c | 36.5 ± 3.2 b | 31.5 ± 1.8 b |
γ-Nonalactone | 10.1 ± 0.9 a | 14.7 ± 0.9 b | 20.1 ± 1.0 c | 20.4 ± 1.2 c | 23.7 ± 1.6 c | 85.5 ± 5.6 d |
Ethyl 3-methylbutanoate | 1.20 ± 0.10 c | 2.90 ± 0.01 d | 9.00 ± 0.30 e | 0.90 ± 0.01 b | 0.60 ± 0.01 a | 0.50 ± 0.01 a |
Ethyl isobutanoate | 36.5 ± 1.7 d | 167.5 ± 2.0 f | 150.3 ± 3.0 e | 28.5 ± 0.4 c | 14.4 ± 0.4 a | 18.0 ± 1.0 b |
Butyl acetate | 6.40 ± 0.32 c | 2.30 ± 0.10 a | 2.90 ± 0.10 b | 14.6 ± 0.9 d | 5.10 ± 0.10 c | 14.6 ± 0.5 d |
Octyl acetate | 1.60 ± 0.10 d | 0.70 ± 0.10 b | 0.90 ± 0.10 c | 4.0 ± 2.00 e | 0.60 ± 0.10 ab | 0.50 ± 0.01 a |
Hexyl hexanoate | 3.80 ± 0.30 d | 3.50 ± 0.10 b | 0.0 ± 0.0 a | 3.50 ± 0.20 b | 3.50 ± 0.10 c | 3.50 ± 0.20 b |
Ethyl benzoate | 0.20 ± 0.01 c | 0.10 ± 0.01 a | 0.30 ± 0.01 d | 0.40 ± 0.01 e | 0.40 ± 0.01 f | 0.0 ± 0.0 b |
Isoamyl acetate | 132.3 ± 7.8 a | 166.7 ± 8.6 a | 904.0 ± 53.0 d | 688.9 ± 25.4 c | 332.7 ± 20.1 b | 689.2 ± 29.1 c |
2-Phenylethyl butanoate | 1.10 ± 0.10 b | 6.80 ± 0.40 e | 2.00 ± 0.20 c | 2.70 ± 0.10 d | 0.40 ± 0.01 a | 1.10 ± 0.01 b |
Ethyl hexanoate | 1.00 ± 0.10 a | 43.1 ± 1.9 b | 43.3 ± 1.7 b | 58.6 ± 4.1 c | 59.0 ± 4.0 c | 58.1 ± 4.9 c |
Ethyl octanoate | 22.0 ± 1.7 a | 20.3 ± 0.8 a | 19.4 ± 0.2 a | 80.5 ± 3.1 d | 38.0 ± 4.0 b | 55.0 ± 3.3 c |
cis-3-Hexenylbutyrate | 4.00 ± 0.01 ab | 4.40 ± 0.30 c | 4.20 ± 0.30 bc | 3.80 ± 0.20 a | 4.10 ± 0.20 bc | 3.90 ± 0.10 ab |
2-Methylbutanoate | 0.70 ± 0.01 a | 4.50 ± 0.30 b | 5.80 ± 0.30 c | 0.60 ± 0.01 a | 0.10 ± 0.01 a | 0.70 ± 0.10 a |
Hexyl acetate | 1.20 ± 0.10 a | 0.60 ± 0.01 a | 1.80 ± 0.10 a | 0.90 ± 1.50 c | 2.50 ± 0.20 a | 8.30 ± 0.30 b |
Ethyl decanoate | 19.1 ± 0.8 a | 31.0 ± 1.0 c | 23.5 ± 0.5 b | 51.4 ± 4.0 d | 55.8 ± 2.7 e | 57.4 ± 0.6 e |
Ethyl heptanoate | 0.0 ± 0.0 a | 0.10 ± 0.01 c | 0.10 ± 0.01 b | 0.10 ± 0.01 d | 0.10 ± 0.01 e | 0.20 ± 0.01 f |
Z-3-Hexenol acetate | 1.30 ± 0.10 b | 0.0 ± 0.0 a | 5.40 ± 0.30 c | 0.0 ± 0.0 a | 10.3 ± 0.6 d | 3.40 ± 0.30 b |
Phenylethyl hexanoate | 0.20 ± 0.01 b | 0.20 ± 0.01 c | 0.20 ± 0.01 b | 0.20 ± 0.01 c | 0.20 ± 0.01 b | 0.01 ± 0.01 a |
Ethyl benzoate | 0.20 ± 0.01 b | 0.10 ± 0.01 b | 0.30 ± 0.01 d | 0.40 ± 0.01 e | 0.0 ± 0.0 a | 0.10 ± 0.01 c |
Ethyl dodecanoate | 19.1 ± 0.7 b | 31.1 ± 1.0 d | 23.5 ± 0.4 c | 9.70 ± 0.50 a | 20.3 ± 0.9 b | 57.4 ± 0.6 e |
Phenethyl benzoate | 1.20 ± 0.10 d | 2.10 ± 0.01 ab | 2.20 ± 0.01 c | 3.40 ± 0.20 e | 3.20 ± 0.10 a | 3.30 ± 0.10 de |
Ethyl undecanoate | 0.50 ± 0.01 c | 0.60 ± 0.01 d | 0.60 ± 0.01 bc | 0.50 ± 0.01 bc | 0.60 ± 0.01 b | 0.0 ± 0.0 a |
B-Phenylethyl acetate | 26.5 ± 1.7 a | 3.30 ± 0.20 b | 4.20 ± 0.20 b | 0.0 ± 0.0 a | 0.20 ± 0.01 c | 35.0 ± 3.0 d |
Ethyl hexadecanoate | 16.4 ± 0.9 e | 10.6 ± 0.6 a | 17.7 ± 0.8 b | 33.0 ± 2.3 c | 87.1 ± 4.1 b | 69.0 ± 3.0 d |
2-Phenylethylacetate | 1154.2 ± 88.9 a | 669.0 ± 35.0 b | 1619.2 ± 107.9 d | 650.4 ± 6.9 b | 385.4 ± 14.4 c | 1274.0 ± 99.0 c |
Geranol acetate | 1.30 ± 0.01 c | 1.30 ± 0.10 a | 2.90 ± 0.01 c | 2.40 ± 0.10 b | 2.90 ± 0.01 a | 4.80 ± 0.10 d |
Butyrolactone (mg/L) | 21.0 ± 16.0 b | 21.0 ± 16.0 b | 20.0 ± 14.0 b | 8.60 ± 0.70 a | 8.80 ± 0.60 a | 9.10 ± 0.40 a |
2-Phenylbenzo acetate | 2.30 ± 0.01 a | 2.50 ± 0.01 d | 2.30 ± 0.01 b | 2.10 ± 0.01 a | 2.01 ± 0.01 c | 2.01 ± 0.01 a |
Ethyl tetradecanoate | 8.70 ± 0.10 ab | 8.10 ± 0.40 a | 10.0 ± 0.9 c | 9.30 ± 0.70 bc | 8.20 ± 0.30 ab | 11.2 ± 1.0 d |
Furanoic | ||||||
5-HMF | 16,521.0 ± 14 a | 1140.1 ± 38.5 b | 1106.0 ± 13.6 b | 468.0 ± 14.0 a | 466.4 ± 28.1 c | 484.2 ± 35.6 a |
Furfural | 1707.7 ± 12.1 a | 1536.7 ± 96.0 d | 1013.6 ± 66.7 c | 436.2 ± 38 b | 735.4 ± 44.0 e | 561.6 ± 46.5 a |
5-Methylfurfural | 645.0 ± 2.6 d | 226.2 ± 15.2 b | 377.4 ± 20.6 c | 13.5 ± 0.7 a | 26.0 ± 2.7 e | 21.0 ± 2.0 d |
Pentylfuran | 3.30 ± 0.20 c | 7.10 ± 0.20 d | 7.70 ± 0.40 e | 0.0 ± 0.0 ab | 0.0 ± 0.0 ab | 0.0 ± 0.0 a |
Aromatic Series | Coop. Aguilar de la Fra. | Coop. La Union | Coop. San Acacio | Lagar Saavedra | Lagar Los Borbones | Lagar Cañada Navarro |
---|---|---|---|---|---|---|
Fruity | 54.9 ± 0.3 d | 44.8 ± 0.8 c | 29.0 ± 2.0 b | 28.7 ± 0.7 b | 26.1 ± 0.8 a | 47.0 ± 2.0 c |
Green fruit | 4.60 ± 0.30 b | 6.70 ± 0.40 b | 5.60± 0.70 c | 4.40 ± 0.10 b | 1.70 ± 0.10 a | 6.80 ± 0.20 d |
Green | 7.90 ± 0.30 ab | 9.40 ± 0.10 d | 12.2 ± 0.7 e | 7.40 ± 0.30 a | 8.50 ± 0.10 c | 8.10 ± 0.10 bc |
Creamy | 5.10 ± 0.20 b | 5.00 ± 1.01 b | 5.20 ± 0.30 b | 3.50 ± 0.10 a | 3.60 ± 0.10 a | 4.50 ± 0.10 ab |
Citrus | 17.0 ± 0.2 d | 18.8 ± 0.6 e | 16.0 ± 1.0 c | 9.90 ± 0.40 a | 11.1 ± 0.4 b | 8.90 ± 0.20 a |
Chemistry | 16.7 ± 0.5 b | 11.7 ± 0.2 a | 11.2 ± 0.3 a | 16.1 ± 0.5 b | 17.6 ± 0.5 c | 20.6 ± 0.1 d |
Honey | 0.60 ± 0.30 bc | 0.80 ± 0.01 d | 0.50 ± 0.01 a | 0.60 ± 0.01 c | 0.54 ± 0.01 bc | 0.50 ± 0.10 b |
Waxy | 23.10 ± 0.5 e | 19.4 ± 0.8 d | 14.0 ± 1.0 c | 6.10 ± 0.20 ab | 6.5 ± 0.40 b | 5.10 ± 0.20 a |
Herbal | 2.60 ± 0.20 b | 3.10 ± 0.10 c | 3.20 ± 0.10 c | 2.90 ± 0.10 c | 1.90 ± 0.20 a | 2.10 ± 0.10 a |
Floral | 14.5 ± 0.7 b | 14.2 ± 0.3 b | 10.3 ± 0.5 a | 30.0 ± 2.1 d | 22.0 ± 1.0 c | 23.1 ± 1.0 c |
Toasty | 0.10 ± 0.01 a | 0.10 ± 0.01 b | 0.20 ± 0.10 c | 0.35 ± 0.01 e | 0.50 ± 0.01 f | 0.20 ± 0.01 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcalá-Jiménez, M.T.; García-Martínez, T.; Mauricio, J.C.; Moreno, J.; Peinado, R.A. Influence of Terroir on Microbial Diversity and Wine Volatilome. Appl. Sci. 2025, 15, 3237. https://doi.org/10.3390/app15063237
Alcalá-Jiménez MT, García-Martínez T, Mauricio JC, Moreno J, Peinado RA. Influence of Terroir on Microbial Diversity and Wine Volatilome. Applied Sciences. 2025; 15(6):3237. https://doi.org/10.3390/app15063237
Chicago/Turabian StyleAlcalá-Jiménez, María Trinidad, Teresa García-Martínez, Juan Carlos Mauricio, Juan Moreno, and Rafael A. Peinado. 2025. "Influence of Terroir on Microbial Diversity and Wine Volatilome" Applied Sciences 15, no. 6: 3237. https://doi.org/10.3390/app15063237
APA StyleAlcalá-Jiménez, M. T., García-Martínez, T., Mauricio, J. C., Moreno, J., & Peinado, R. A. (2025). Influence of Terroir on Microbial Diversity and Wine Volatilome. Applied Sciences, 15(6), 3237. https://doi.org/10.3390/app15063237